所谓语言模型是一种机器学习算法,可以根据给定文本来预测下一个词语或字符出现的概率。通过大量的文本数据学习语言的统计特征,然后生成具有相似统计特征的新文本。其主要目标是建立一个统计模型,用于估计文本序列中每个词语或字符出现的概率,从而实现自然语言处理任务,如语言生成和语言理解。
大型语言模型(LargeLanguageModel,LLM)是自然语言处理(NaturalLanguageProcessing,NLP)的一种方法,利用大规模语料数据进行预训练来构建预训练语言模型(Pre-trainedLanguageModels,PLMs)。
简单来说,大语言模型是一种深度学习模型,通过在大规模数据集上进行训练,以实现对人类语言的理解。它的主要目标是准确地学习和理解人类语言,使得机器能够像人类一样解释和理解语言。这种模型的出现彻底改变了计算机理解和生成人类语言的方式。
与普通的语言模型相比,大型语言模型在规模上有显著不同。这种类型的模型通常具备大量的参数,并利用巨大的文本语料库进行训练。大型语言模型是一种强大的工具,通过减少人工干预,可以快速、准确地处理自然语言数据。这些模型可用于许多任务,如文本生成、情感分析、问答系统、自动文摘、机器翻译、文献分类等。
星环科技大模型训练工具,帮助企业打造自己的专属大模型
星环科技在行业内首先提出行业大模型应用创新场景,推出相应的工具,帮助企业构建自有的行业大模型,通过大模型基础设施,形成具备“新型人机交互”且“敏捷可持续迭代“的人工智能应用。
为了帮助企业用户基于大模型构建未来应用,星环科技推出了Sophon LLMOps,帮助企业构建自己的行业大模型。
除此之外,星环科技在行业首先推出了两大行业大模型:服务于金融行业的星环金融大模型无涯,以及大数据分析大模型SoLar “求索”。
