联 系 我 们
售前咨询
售后咨询
微信关注:星环科技服务号
更多联系方式 >

行业资讯

首页>行业资讯>大模型和小模型>

大模型和小模型

发布时间 2023-07-27

星环大模型运营平台
星环大模型运营平台(Sophon LLMOps)是星环科技推出的企业级大模型全生命周期运营管理平台,旨在赋能企业用户能敏捷、高效、有闭环地将大模型落地到生产和业务中去。Sophon LLMOps打通并优化了语料接入和开发、提示工程、大模型训练、知识抽取和融合、模型管理、应用和智能体构建、应用部署、运维和监控,以及业务效果对齐提升的全链路流程。

大模型和小模型是指在机器学习和深度学习中模型的规模和复杂度的不同。

大模型通常指参数数量较多、层级较深、具有较高的复杂度的模型。这些模型通常需要大量的计算资源和存储空间来进行训练和推断,并且在某些任务中能够取得更好的性能和效果。大模型拥有更多的自由度和表达能力,能够更好地拟合、捕捉复杂的数据模式和规律。

小模型则对于大模型而言,参数数量较少、层级较浅、复杂度较低。这些模型通常需要较少的计算资源和存储空间,可以在资源有限的环境下进行训练和推断。尽管小模型可能无法达到大模型的性能水平,但它们通常具有更快的推理速度和更低的存储要。小模型适用于资源受限的设备和场景,并可以在较短的时间内迭代和训练。

大模型和小模型的选择取决于具体的应用场景和需求。如果需要更高的性能和精度且有足够的计算资源和存储空间,那么大模型可能是更好的选择。如果资源有限,但仍需要一定的功能和性能,那么可以使用小模型来满足需求。在现实应用中,也可以根据实际情况进行灵活的选择,例如使用大模型进行预训练,然后通过微调和模型压缩等技术将其转化为小模型。大模型和小模型都有其适用的场景和优势,选择合适的模型有助于提高效率和性能。

 

关键词:
大模型和小模型,大模型,小模型

热门产品

  • TDC星环数据云平台(TDC),基于云原生技术融合数据 PaaS、分析PaaS、应用 PaaS,实现数据端到端全生命周期管理。

  • TDS数据开发 | 数据治理 | 共享交换 支撑企业级数据治理和数据资产平台建设

  • SophonSophon-星环智能分析工具,分布式计算、多模态处理、图形化建模、隐私密保护、云边化一体。

  • KunDB星环分布式交易型数据库 SQL兼容、强一致、高性能、高可用

  • ArgoDBTranswarp ArgoDB 是星环科技自主研发的分布式分析型闪存数据库,可以替代Hadoop+MPP混合架构。支持标准SQL语法,提供多模分析、实时数据处理、存算解耦、混合负载、数据联邦、异构服务器混合部署等领先技术能力。