湖仓一体的出现旨在融合数据仓库和数据湖的优势,通过在数据湖上构建数据仓库,实现存储成本更低、更具弹性性,并提高数据质量,减少数据冗余。
湖仓一体的特点:
- 事务支持:Lakehouse可以处理多条不同的数据管道。这意味着它可以在不破坏数据完整性的前提下支持并发的读写事务。
- Schemas:数仓会在所有存储其上的数据上施加Schema,而数据湖则不会。Lakehouse的架构可以根据应用的需求为绝大多数的数据施加schema,使其标准化。
- 报表以及分析应用的支持:报表和分析应用都可以使用这一存储架构。Lakehouse里面所保存的数据经过了清理和整合的过程,它可以用来加速分析。同时相比于数仓,它能够保存更多的数据,数据的时效性也会更高,能显著提升报表的质量。
- 数据类型扩展:数仓仅可以支持结构化数据,而Lakehouse的结构可以支持更多不同类型的数据,包括文件、视频、音频和系统日志。
- 端到端的流式支持:Lakehouse可以支持流式分析,从而能够满足实时报表的需求,实时报表在现在越来越多的企业中重要性在逐渐提高。
- 计算存储分离:我们往往使用低成本硬件和集群化架构来实现数据湖,这样的架构提供了非常廉价的分离式存储。Lakehouse是构建在数据湖之上的,因此自然也采用了存算分离的架构,数据存储在一个集群中,而在另一个集群中进行处理。
- 开放性:Lakehouse在其构建中通常会使Iceberg,Hudi,Delta Lake等构建组件,首先这些组件是开源开放的,其次这些组件采用了Parquet,ORC这样开放兼容的存储格式作为下层的数据存储格式,因此不同的引擎,不同的语言都可以在Lakehouse上进行操作。
星环科技湖仓一体解决方案
星环科技湖仓集一体架构,打破数据湖、数据仓库、数据集市的边界,基于湖仓集一体平台,所有人都可以访问实时的数据、历史的数据、原始的数据、加工过的数据,如业务分析师可以直接访问 原始的数据,数据工程师可以更高效地建模,数据科学家可以横跨不同的数据源进行数据分析和挖掘。通过统一SQL引擎和统一计算引擎,实现湖仓集数据的统一处理、查询、加工,支撑多种应用场景,配合统一的运维、审计、权限、告警等功能实现平台的统一管理,避免重复建设。
相比于开源湖仓,TDH湖仓集一体具有支持四种事务隔离级别,支持小文件灵活自动合并、实时数据快速读写、无需流转,湖仓集一体化存储等优势,帮助用户降低开发运维成本,提高开发分析效率,提升数据处理分析性能。
