金融行业数据湖构建
金融行业数据湖构建 更多内容


行业资讯
金融行业数字化转型
数字化转型是一个全面的过程,涉及风险管控、服务创新、技术应用和组织变革等多个层面。通过数据驱动、技术赋能和生态构建,金融行业旨在提供更安全、智能和便捷的金融服务,并在行业中形成竞争优势。星环科技助力金融行业是数字化转型的重要领域,其转型目标在于平衡风险控制、提升智慧金融服务以及服务社会经济的全面发展。风险控制与监管:金融行业在数字化过程中注重合规性,确保变革符合风控和监管要求。利用数据中台和,促进服务送达能力。分布式微服务架构提高灵活性和安全性,支持快速业务创新。组织与人才转型:培养数字化科技人才,使业务团队更懂数据,科技团队更了解业务。通过组织结构优化,推动业务与技术的深度融合。金融行业的在二十多个行业的客户使用这些产品进行数字化转型,赋能合作伙伴为客户打造包括数据湖、数据仓库、数据云、智能分析、实时计算等方面的应用和解决方案,同时,星环科技加强产品研发和创新,为客户和合作伙伴提供更好智能决策系统提升风险管理能力,通过数字画像进行精准分析。智慧金融服务:通过全渠道整合和业务流程重构,提供个性化、智能化的客户体验。利用大数据、AI等技术建立客户精准画像,实现智能营销和风控。服务创新与

行业资讯
金融行业隐私计算
隐私计算在金融行业具有极其重要的地位和广泛的应用前景。应用场景信贷风控联合建模:金融机构之间可以通过联邦学习等隐私计算技术,在不共享敏感数据的情况下,联合建立信贷风险评估模型。数据查询与验证:在信贷审批过程中,金融机构需要查询外部数据源来获取客户的更多信息,如征信报告、税务记录等。隐私计算技术可确保在查询和验证这些数据时,客户的隐私信息不被泄露,同时保证数据的真实性和完整性。精准营销客户画像构建:金融机构通过多方安全计算等技术,与其他企业合作构建更全面的客户画像。营销效果评估:在营销活动中,隐私计算可用于评估不同营销渠道和策略的效果。通过对客户反馈数据的加密分析,金融机构可以了解客户对不同,同态加密技术可以让数据在密文状态下进行计算和处理,计算结果解密后与明文计算结果相同,有效防止了数据在计算过程中的泄露风险。合规性:金融行业对数据合规性要求极高,隐私计算技术的应用有助于金融机构满足营销活动的响应情况,而不会泄露客户的隐私信息,从而优化营销方案。金融监管数据报送与共享:金融机构需要向监管部门报送大量的业务数据,隐私计算技术可确保数据在报送过程中的安全和隐私保护。同时,监管部门之间也

行业资讯
金融行业大模型
金融行业大模型是指专门针对金融领域的特点和需求,基于大量的金融数据训练而成的大语言模型。金融大模型特点金融专业性强:金融行业大模型具备深厚的金融专业知识,能够准确理解和处理各种金融术语、概念、市场动态等信息,例如东方财富的妙想金融大模型,可在投研、投顾、投教、投资等金融垂直场景发挥专业价值。数据质量要求高:金融数据的准确性和可靠性至关重要,因此金融行业大模型在训练和优化过程中,对数据的质量把控更为严格,以确保生成的结果符合金融业务的严谨性要求。风险控制能力突出:金融行业大模型能够协助金融机构更好地进行风险评估和控制,通过对海量数据的分析和挖掘,预测市场趋势、识别潜在风险因素,为风险管理提供有力支持。合规性要求严格:金融行业受到严格的监管,大模型的应用必须符合相关法规和合规要求,包括数据隐私保护、信息安全、反洗钱等方面的规定,以确保金融业务的合法合规运营。金融大模型应用场景智能投研:帮助分析师快速收集、整理和分析大量的金融市场数据、公司财报等信息,挖掘有价值的投资线索,生成投资报告和研究观点,提高投研效率和准确性。智能投顾:根据用户的风险偏好、投资目标和财务状况,为个人投资者提供个性化

行业资讯
金融行业数据治理
金融行业数据治理是指金融机构通过建立完善的数据治理体系,运用一系列技术、流程和制度,对金融业务活动中产生的海量数据进行有效管理和利用,以提升数据质量、保障数据安全、促进数据共享和发挥数据价值的过程。治理背景与目标背景:金融行业数据具有体量大、类型多、变化快、敏感度高、监管严格等特点,随着金融科技的快速发展和数字化转型的加速推进,数据已成为金融机构的核心资产和竞争力的关键因素。目标:确保数据的整改措施,跟踪整改效果。元数据管理元数据采集与存储:对金融数据的业务定义、技术定义、数据来源、数据流向、数据关系等元数据进行全面采集和集中存储。元数据应用:构建元数据地图和目录,方便业务人员和技术人员查询准确性、完整性、一致性、及时性和安全性,满足监管要求,支持业务决策,提升客户体验,防范金融风险,促进金融创新。治理内容数据标准管理统一标准制定:制定涵盖客户信息、产品代码、交易数据等方面的统一数据标准管理:对金融产品的定义、属性、规则等进行规范管理,确保产品信息在不同系统中的一致性和完整性。数据安全管理安全制度与规范:建立健全数据安全管理制度,明确数据访问、使用、存储、传输等环节的安全要求和操作规范

行业资讯
金融行业大模型
需要包含多个子模型,如银行模型、资本市场模型、保险模型、货币政策模型、宏观经济模型等。这些子模型需要进行有效的集成和数据共享,以便全面考虑各种经济情况下的金融风险和影响因素。金融行业大模型可以应用于风险-TranswarpInfinity针对智能投研领域特定的业务逻辑,星环科技通过预训、提示、增强、推导范式的构建,实现Financial-Specific-LLM的训练,推出了金融行业智能投研大模型无涯Infinity。星环科技深耕金融领域,服务大量金融行业客户,积累了上百万金融专业领域的语料;基于星环科技对图数据库、深度图推理算法的技术,形成了大规模高质量的金融类事件训练指令集。二者共同铸就了星环科技开发金融领域大语言模型的坚实底座。金融行业大模型是一个较为复杂的金融系统模型,其中包含了金融机构、金融市场、金融产品、经济政策等因素,可以用来模拟和测金融市场的波动和变化,作为金融风险管理和决策的重要工具。一个完整的金融行业大模型基于大模型的事件驱动与深度图引擎,实现对事件语义刻画、定价因子挖掘、时序编码、异构关系图卷积传播,进而构建包含事件冲击、时序变化、截面联动和决策博弈等多个维度的智能投研新范式。星环科技无涯金融大模型
的“数据引擎”。顺应数字化转型的趋势方向,通过构建新型金融数据平台,能为金融企业重塑价值,激发金融企业关键能力域的提升。以数据为基础,从金融企业数字化转型脉络来看,新型金融数据平台需要集弹性化、多模化、智能化、敏捷化、安全化多种能力为一体。本篇报告将梳理金融科技在数据领域的发展及演变趋势,并从金融企业成功实践中提取构建新型金融数据平台的方法论,助力各金融企业打造自己的数据底座,为数字化转型赋能。生态呈现新的发展态势。《金融科技发展规划(2022-2025年)》提出,坚持“数字驱动、智慧为民、绿色低碳、公平普惠”的发展原则,以加强金融数据要素应用为基础,以深化金融供给侧结构性改革为目标,以加快金融机构数字化转型、强化金融科技审慎监管为主线,将数字元素注入金融服务全流程,将数字思维贯穿业务运营全链条,注重金融创新的科技驱动和数据赋能,推动我国金融科技从“立柱架梁”全面迈入“积厚成势”新阶段,力争到2025年实现整体水平与核心竞争力跨越式的提升。金融创新发展离不开数据的有力支撑。数据已成为金融数字化转型的基础性、战略性资源。金融机构需要高度重视数据要素,充分释放数据潜能,点燃金融数字化转型

行业资讯
金融行业数据库
数据库作为金融系统的核心基础设施,历经数十年发展,为金融行业经营战略转型升级提供了有力的技术支撑。在国家和行业政策指导下,金融机构积极探索我国数据库在实际业务中的创新应用并已经开始规模化在核心已有累计超300家金融行业客户,覆盖银行、券商、保险等多个细分领域。通过为企业搭建数字化转型的数字底座,星环科技持续为金融行业筑牢数字底座,助力金融科技不断发展。星环科技致力于打造企业级大数据和系统中进行改造升级。星环科技深耕金融科技领域多年,有着完善的产品、解决方案和丰富的落地经验,为金融领域数据管理分析提供多模型大数据平台、分布式olap数据库、人工智能平台、知识图谱平台、数据安全与流通平台、金融大模型等专业产品,助力金融客户实现国产化信创替代、数字化转型、智慧金融与数据安全流通。解决了金融领域数据存储成本高、数据整合困难、数据处理性能不足、分析拓展能力差、应用模型难以共享等问题。目前公司人工智能基础软件,围绕数据全生命周期提供基础软件与服务。经过多年自主研发,已形成大数据与云基础平台(tdh&tdc)、分布式关系型数据库(argodb&kundb)、数据开发与智能分析工具(tds&sophon)、知识平台与领域大模型(tkh&无涯)的软件产品矩阵。

行业资讯
金融行业大模型
”,基于海量金融数据进行深度训练,能够理解、生成和处理金融领域的各种自然语言任务。与通用大模型相比,金融大模型有着更明确的“专业指向”。它针对金融行业的特点和需求进行优化,比如对金融术语的精准理解、对市场趋势的深度分析等。这就好比一位是全科医生,能处理各种常见病症;而另一位则是专科医生,对某一领域的疾病有着更深入、更专业的见解和治疗方法。金融行业高度依赖数据和技术,这一特性使它成为大模型落地应用的高潜场景。在金融行业,每天都会产生海量的数据,从交易记录到市场行情,从客户信息到风险评估数据,这些数据就是金融大模型的“燃料”。数据流通规模大、数字化基础好的优势,让金融大模型能够充分学习和理解金融领域的、行业动态、企业财务报表等,挖掘出隐藏在其中的投资机会。通过对历史数据和实时信息的深度学习,大模型可以预测市场趋势,为投资决策提供有力支持。(二)智能客服与客户服务智能客服是金融大模型的另一大重要应用审查与监管方面,金融大模型同样大显身手。金融行业面临着严格的监管要求,合规审查工作繁琐且重要。大模型可以快速处理大量的合规文件和数据,帮助金融机构及时发现潜在的合规风险,确保业务活动符合监管规定。
猜你喜欢

行业资讯
常见的图数据库应用场景有哪些?
图数据库有许多适用场景,常见的应用场景有:社交媒体:社交媒体中的用户和关系可以建模为图结构。用图数据库来管理和查询这些社交数据,可以实现更精确的社交关系分析。金融:在金融领域中,图数据库可以用于合规风控、反欺诈、投资和信贷决策等众多场景。例如,通过在图中存储和分析不同实体(如银行账户、信用卡、电话、邮箱、运单等)之间的关系,可以准确识别欺诈降低风险。物流和运输:物流和运输领域也是图数据库的应用场景之一。例如,通过在图中存储城市、仓库、货物、运输路线等信息,可以进行物流管理、运输计划优化、货物追踪等任务。生命科学:在生命科学领域,图数据库可以用于存储和分析复杂的基因、蛋白质、代谢物等数据,帮助科学家发现新的治疗方法和疾病机制。游戏:游戏开发者可以使用图数据库来管理玩家角色、各种装备、地图、任务等复杂的游戏数据,实现更好的游戏体验。图数据库的灵活性和高效性使其在多个领域都有着广泛的应用。星环分布式图数据库StellarDB星环科技致力于打造企业级大数据基础软件,围绕数据的集成、存储、治理、建模、分析、挖掘和流通等数据全生命周期提供基础软件与服务,在图计算领域深耕多年,自主研发了分布式图数据...

行业资讯
图数据库有哪些特点?
图数据库是现代数据库系统中的一种,它主要的特点就是使用了图论的概念来进行数据管理。传统的关系型数据库通常是基于表和列的结构进行数据管理,而图数据库则是构建了节点和边的图形结构,可以更好的表示现实世界中的复杂关系。下面是图数据库的几个主要特点:1.基于图形结构:图数据库是基于图形结构来进行数据管理的。它通过节点和边来构建数据的表示形式,使得数据之间的关系和结构更加直观和清晰。这对于处理关联复杂、数据关系复杂的场景具有重要意义。2.高效地关系查询和分析:图数据库具有高效的关系查询和分析能力。对于一个大规模的图,传统的SQL查询方式显然不能满足查询时间的要求。而图数据库则可以通过图数据库内部的算法来进行实时的查询和分析。尤其是针对一些复杂的图分析算法,图数据库更能够快速地获得结果,提高查询速度。3.可扩展性:由于采用了分布式的技术设计,使图数据库的可扩展性极佳。当需要管理的数据量增加时,图数据库可以通过简单的集群扩展方式来实现性能的提升。而且,图数据库的分布式能力也可以让其在多个节点上进行操作,提高了系统的容错能力和加载能力。4.元素和关系度量:图数据库具有丰富的元素数据和关系数据量度方式。...

行业资讯
银行图数据库应用场景有哪些?
银行图数据库的应用场景:反洗钱:图数据库可以将可疑交易数据存储于其中,帮助银行更快速地提取、分析与关系,识别出潜在的洗钱行为。客户关系管理:银行图数据库可以将客户的不同信息(如交易记录、信用评级、客户所在地和行业等)进行整合,并将这些信息在一个数据仓库中呈现出来。这使得银行能够更加精准地分析客户需求,提供更加符合客户需求、更加优质的服务。风险管理:银行是一个与风险息息相关的行业。图数据库可以帮助银行对相关风险进行整合和分析。通过解析大量的金融数据,图数据库可以找出潜在的风险点,提前控制风险。数字化转型:图数据库能够将社交网络、收集的数据等信息关联起来,并创造性地开拓新业务模式。除了与客户密切相关的业务领域,图数据库还能够在支持业务流程优化方面发挥重要作用。营销:银行可以使用图数据库来收集客户数据、行为数据等,这样可以更加精确地预测客户习惯,对客户进行更加细致的营销和服务。银行图数据库有着广泛的应用场景,可以在多个角度上支持银行的业务发展,提高服务的质量和效率。星环分布式图数据库StellarDB星环科技致力于打造企业级大数据基础软件,围绕数据的集成、存储、治理、建模、分析、挖掘和流通等...

行业资讯
基于数据安全网关的跨境安全流通方案
星环科技致力于打造企业级大数据基础软件,基于在大数据、分布式数据库、隐私计算、数据安全流通领域有着多年积累,研发了数据要素流通全过程的一系列工具,在各方数据不出域的前提下,为数据资源方和数据消费方提供数据交付服务。2022年9月星环科技曾受邀出席“深数交”数据合规活动,分享数据安全出境解决方案。2021年星环科技成为上海数据交易所首批签约数商。2022年12月星环科技与中国东信旗下北部湾大数据交易中心达成了战略合作。伴随数字经济蓬勃发展,融入全球数据跨境流动的趋势不可避免。数据出境安全治理受到广泛重视,为进一步规范数据出境活动,保护个人信息权益,维护国家安全和社会公共利益,促进数据跨境安全,国家互联网信息办公室发布了《数据出境安全评估办法》。国内运营的外企(尤其是零售、化工等)、新能源汽车以及生态企业(含自动驾驶等)、国际化企业与出海企业、跨境电商和物流、有融资需求的基于数字化做业务创新的创业公司等是国内迫切需要落实数据安全出境的企业。然而企业在落地数据出境安全方面存在一些实际困难,主要体现在:错综复杂的数据如何分类分级,如何识别重要数据;重要数据如何存储和管理,才能达到相关法律法规的...

行业资讯
金融、医疗知识图谱平台
垂直领域知识图谱产品主要用于面向特定领域知识应用需求,通过构建和应用知识图谱解决对应领域的专业问题。目前,知识图谱在智慧医疗与智慧金融领域已取得了一系列成功实践,被应用于辅助医生、药物发现、临床科研、风险防控、内部监管、投资研究、保险理赔等众多实际业务场景,并涌现出了一批知识图谱产品或服务平台。星环科技自主研发的知识图谱平台Sophon正是一款覆盖知识全生命周期,集知识的采集、建模、融合、存储、计算及应用为一体的知识图谱产品。平台支持低代码图谱构建、智能化知识抽取、多模态知识存储与融合、多形式知识计算和推理以及多维度的图谱分析。除了具备链路完备性,平台还从业务场景出发,沉淀了金融、保险等场景的图数据模型、规则模型和算法模型,可以帮助用户快速解决不同场景下的业务问题。目前,星环科技Sophon已经在金融等多个行业成功落地,在反洗钱、反欺诈、疫情防控、公共安全、企业级营销、保险知识智能问答等场景有着广泛的应用。同时星环科技在推动知识图谱技术创新和成功落地的过程中,也获得了多项荣誉和权威认可:入选Gartner《MarketGuideforArtificialIntelligenceStar...

星环科技图数据库StellarDB是国产高性能图数据库,采用分布式架构和原生图计算引擎,支持超大规模数据管理和高效的图计算。TranswarpStellarDB具有以下特点:原生图存储:StellarDB为数据存储设计了专有的图存储结构,优化查询性能,通过高效的压缩算法减少磁盘和内存的使用量。根据分区策略,图数据均匀分布于集群各节点。优越的性能:存储引擎和计算引擎结合,使计算引擎可以利用数据locality提升计算性能,拥有卓越的数据读写能力,支持大规模并行处理,毫秒级的查询响应。高扩展性:完全的分布式架构,具有良好的可扩展性,支持在线扩容和升级。拥有万亿级图数据处理能力,支持数据多副本,提供集群高可用和高可靠。灵活的查询方式:计算引擎支持灵活易懂的图查询语言TranswarpExtended-OpenCypher,拥有丰富的图操作语法。同时提供SQL支持,多模场景灵活切换。深度分析能力:支持10层及以上的图深度遍历和复杂分析。丰富的算法库:内置丰富的算法库,几十种图算法开箱即用,优化的分布式并行图算法,千万级子图计算效率达到行业先进水平。企业级功能:支持用户权限认证、集群状态监控、日...

行业资讯
数据要素安全流通服务
数据要素是数字经济发展的关键生产要素,是数字经济发展的基础。加快培育数据要素市场是全面建设社会主义现代化国家的一项基础性工作,对推动经济高质量发展、建设数字中国和数字强省、促进经济社会数字化转型具有重要意义。星环科技致力于打造企业级大数据基础软件,围绕数据全生命周期提供基础软件与服务。基于在大数据、分布式数据库、隐私计算、数据安全流通领域的多年积累,星环科技研发了数据要素流通全过程的一系列工具,在各方数据不出域的前提下,为数据资源方和数据消费方提供数据交付服务。2021年星环科技成为上海数据交易所首批签约数商。2022年9月星环科技曾受邀出席“深数交”数据合规活动,分享数据安全出境解决方案。2022年12月星环科技与中国东信旗下北部湾大数据交易中心达成了战略合作。星环科技在产品的各层级上都完善了安全技术,从而可以给用户提供体系化的数据安全防护能力,助力企业高效、合规的开展数据流通业务。在基础设施层,星环科技提供基于容器的云原生操作系统TCOS,它不仅能够提供容器隔离和镜像扫描,还新增了漏洞检测以及面向业务的微隔离安全技术,从而可以为用户开辟一个独立的数据与计算环境,外部的服务未经授权无...

行业资讯
国产化替代升级实践
新时代需要新技术,企业应抓住机遇实现旧平台的改造升级数据库技术经过不断的发展,已经从以Oracle、IBM为代表的集中式数据库,演进到分布式、多模型、云原生的形态,并在很多场景应用落地,带来了真实的业务价值。当前得益于国家政策的大力扶持以及国内市场环境的快速发展,国产软件加速发展,国产化替代进程正在不断加速。自主可控是国产化替代的核心,同时也是一个阶段性的目标。我们不应该满足于此,应该抓住国产化改造的机遇,用新技术去替代老技术,实现自主可控的同时,完成旧系统的改造升级,这也是信创的主旨。星环科技致力于打造企业级大数据基础软件,围绕数据全生命周期提供基础软件与服务,在分布式技术、多模型技术、数据云技术等方面有很多技术突破。比如大数据基础平台TDH是全球首个通过TPC-DS基准测试的产品;提出了创新的多模型统一技术架构,支持业内主流的10种数据模型,Gartner®发布的中国数据库技术发展趋势报告引用星环科技多模型联合分析用例,论证了多模型融合分析的趋势和价值。基于多年积累的分布式技术、多模型统一技术、数据云技术等,星环科技打造了分布式数据库ArgoDB、分布式交易型数据库KunDB、分布...

行业资讯
什么是时空数据库?
时空数据库(Spacial-temporaldatabase)是一种专门用于存储和管理时空数据的数据库管理系统,它是传统关系型数据库的一个扩展,可以实现对时空数据进行有效管理和处理。时空数据是指带有时空坐标或时间戳的数据,例如地图、气象数据、交通、城市规划等。因此,时空数据库可以用于多种应用程序,如地理信息系统、航空航天、气象预报、GPS导航等。时空数据库与传统数据库不同的是,它提供了额外的功能和数据类型,例如点、线、面等空间对象和时间序列数据类型。此外,时空数据库还支持空间查询和时空查询,例如常见的缓冲区查询,使得用户可以在时空范围内进行查询和分析。这种数据库可以对时空数据进行高效的存储、查询、更新和分析,并通过插件技术集成其他地理信息数据源。星环分布式时空数据库-SpactureSpacture是星环科技自主研发的一款面向空间、时空数据的存储与管理,集计算与存储为一体的分布式数据库产品,支持大规模矢量数据、时空轨迹数据的存储与计算,具有完备的数据查询、分析和挖掘能力,可用于时空查询分析、时空模式挖掘、时空轨迹聚类等时空轨迹数据分析场景,广泛应用于交通物流、城市管理、位置服务等场景。

行业资讯
分布式隐私计算平台
星环科技分布式隐私计算平台SophonP²C集多方安全计算、联邦学习等多种功能,为隐私计算提供完整的解决方案,以隐私保护为前提,解决了跨组织协作时无法安全利用各方数据的困境。平台支持联邦学习、多方安全计算、匿踪查询等功能;性能方面,联邦学习与多方安全计算可达亿级数据量,助力数据要素安全流通和价值迸发,实现数字经济时代下的跨企业和行业的AI协作。星环科技的隐私计算技术已落地如数据流通、政务民生、金融营销等垂直业务场景,为跨企业数据协作提供安全可信的平台支持。在政务民生场景,SophonP²C通过纵向联邦学习联合居民用电数据与用水数据,生成群租房预测名单。在联合建模过程中,全程明文数据不出,有效保护了居民用水用电的数据隐私信息。联合训练模型比本地单独用电数据训练的模型AUC提升20%以上,赋能政务决策高效的处理分析能力,为政府有效排查群租房,消除群租房造成的消防、安全隐患,打造和谐、安全、美丽的生活环境作出了突出贡献,为政务决策、民生建设发挥信息化支撑保障作用。在精准营销场景,通过纵向联邦学习,车企安全引入了多方数据,丰富用户特征维度,对用户行为进行统计分析。在联合建模过程中,全程明文数据...