隐私计算底层架构
Sophon P²C是一款分布式隐私计算平台,集隐私计算、加密网络通信等多种功能,为多方安全建模提供完整的解决方案。以隐私保护为前提,Sophon P²C解决了跨组织协作时无法安全利用各方数据的困境架构,确保平台在大数据量下也能获得卓越的性能。Sophon P²C的多种联邦学习算法适用于各类垂直业务场景,为跨企业AI协作提供安全可靠的平台支持。
Sophon P²C是一款分布式隐私计算平台,集隐私查询、隐私计算、加密通信等多种功能,能够为多方安全建模提供完整的解决方案。其以隐私保护为前提,能够帮助用户解决跨组织协作时无法安全利用各方数据的困境。
隐私计算底层架构 更多内容

行业资讯
隐私计算架构
隐私计算架构是一种融合了多种技术和组件,旨在实现数据隐私保护与数据价值挖掘双重目标的系统架构。总体架构分层基础设施层:为隐私计算提供底层的硬件和网络支持,包括服务器、存储设备、网络设备等。该层需要有效的整合和管理,同时确保数据的隐私和安全。隐私计算核心层:是整个架构的核心,包含了各种隐私计算技术和算法,如安全多方计算、同态加密、差分隐私、联邦学习等。该层根据具体的应用场景和需求,选择合适的隐私的安全共享和交换。架构模式集中式架构:存在一个中心节点或服务器,负责协调和管理整个隐私计算过程。数据所有者将数据发送到中心节点,中心节点利用隐私计算技术进行处理,并将结果返回给数据所有者或其他授权用户。这种架构的优点是易于管理和协调,计算效率较高,但存在中心节点单点故障和数据集中存储的风险。分布式架构:不存在中心节点,数据和计算任务分散在多个节点或参与者之间。各个节点通过隐私计算协议和算法进行协同工作,共同完成数据的隐私保护和计算任务。分布式架构的优点是具有更高的安全性和隐私性,不存在单点故障问题,但计算效率和协调难度相对较高。混合式架构:结合了集中式架构和分布式架构的优点,在系统中既有中心

行业资讯
究竟什么是隐私计算?
隐私计算并非一个单一的技术,而是一套复杂的技术体系,它融合了硬件、密码学、分布式机器学习等多种底层技术。这套技术体系的核心在于对涉及隐私的信息进行精细化的处理。无论是视频、图像、文字,还是数值、网络行为数据,隐私计算都能对它们进行描述、度量、评价和融合等操作。通过符号化、公式化的方式,隐私计算不仅为隐私信息提供了量化评价的标准,还发展出了一系列的理论、算法及应用技术,这些技术为多系统融合的隐私信息保护提供了有力支持。隐私计算的核心价值在于其独特的处理模式——“数据可用不可见”以及“数据不动模型动”。这意味着,在隐私计算的框架下,数据可以在不离开其原始存储位置的情况下被安全地利用。这种处理方式的考虑,这些机构往往不愿意或不敢轻易共享数据。这时,隐私计算就发挥了关键作用。能够在不泄露原始数据的情况下,通过一系列复杂的计算过程,安全地输出反诈所需的计算结果,为打击电信诈骗、网络赌博等犯罪行为提供了有力的技术支持。隐私计算的应用已经渗透到我们日常生活的方方面面。从一顿简单的早餐支付,到一次复杂的保险理赔,背后都有隐私计算的身影。它默默地守护着我们的数据安全,确保个人信息在数字世界中得到更有效的保护。

行业资讯
隐私计算节点
隐私计算节点是隐私计算架构中承担数据处理、计算任务执行以及与其他节点交互协作等功能的关键单元。功能特点数据处理与存储:负责对本地的隐私数据进行加密、脱敏等预处理操作,并安全存储。在计算过程中,能够,如身份认证、数据加密、访问控制等,确保节点自身以及所处理数据的安全性和隐私性。对数据的访问和使用进行严格的权限管理,防止数据泄露和非法访问。技术架构硬件层:通常基于高性能的服务器或专用计算设备构建高效地对加密数据进行读取、写入等操作,支持多种数据格式和存储方式。计算任务执行:具备强大的计算能力,可运行联邦学习、安全多方计算、同态加密等隐私计算算法,执行各种复杂的计算任务,如模型训练、数据分析、加密运算等。通信与协作:与其他隐私计算节点进行安全通信,通过加密通道传输数据和计算指令。在多节点协作的场景中,能够按照预定的协议与其他节点进行交互,共同完成隐私计算任务。安全与隐私保护:内置多种安全机制,配备强大的处理器、大容量内存和高速存储设备,以满足隐私计算对计算资源和数据存储的需求。部分节点可能还会采用特殊的硬件加密模块或可信执行环境(TEE)技术,增强数据处理的安全性。软件层:运行隐私计算相关

行业资讯
什么是隐私计算?
实现,不仅保护了用户的隐私权益,也确保了数据计算的真实性和有效性。隐私计算是一个复杂而多样的技术体系,它融合了硬件、密码学、分布式机器学习等多种底层技术。其中,多方安全计算、联邦学习、可信执行环境在数字化时代,数据已成为驱动社会发展的核心要素,而如何在保护个人隐私的同时实现数据的有效利用,则成为了一个亟待解决的问题。隐私计算(Privacy-preservingComputation)应运而生。隐私计算的核心目标是实现数据的共享、互通、计算、建模,同时确保数据的安全性和隐私性。隐私计算允许多个数据拥有者在不暴露数据本身的前提下,共同利用这些数据,从而产生超越各自数据本身的价值。这一过程的、可信密态计算、同态加密、差分隐私等技术路线都是隐私计算的重要组成部分。这些技术各自拥有独特的特点和应用场景,共同构成了隐私计算的丰富技术栈。在实际应用中,隐私计算技术发挥着越来越重要的作用。面对海量的数据资源,隐私计算技术能够在严格的个人信息监管下,实现数据的合规利用。同时,在防范化解金融风险和金融支持实体经济的过程中,隐私计算也展现出了其独特的价值。它能够帮助金融机构在保护客户隐私的前提下,进行

行业资讯
联邦计算与隐私计算
批次加密信息的传输,多种加密安全手段和优异的通信架构,确保平台在大数据量下也能获得卓越的性能。星环科技在隐私计算方面的技术探索和落地实践也受到了行业的广泛认可,入围工信部网安中心“2021数字技术融合联邦计算和隐私计算都是在保护数据隐私的前提下进行数据计算或模型训练的技术手段。联邦计算指的是在不泄露原始数据隐私的前提下,将各方的数据集合并在一起进行计算或模型训练。与传统的数据集中式计算方案相比,联邦计算更加注重数据隐私保护和数据的去中心。联邦计算的基本流程是:通过密码学手段保证各方之间的数据隐私;将各个参与方提供的数据在本地预处理,提取特征,然后在各方之间进行模型参数更新;后汇总模型参数,得到联合训练后的模型。联邦计算应用于数据大规模分布式场景,例如金融风控、医疗诊疗、智慧城市等多个领域。隐私计算则是一种在不将原始数据暴露的前提下,基于加密计算实现对数据的计算、查询或分析。隐私计算中的数据能够在加密状态下保存、传输、计算和输出,用户在享受计算结果的同时,也可以享受到数据隐私保护。在隐私计算中,数据拥有者将原始数据进行加密,形成密文。在密文的基础上,进行加密计算,得到密文结果。之后,密

行业资讯
隐私计算建设方案
、技术选型等。平台搭建与部署:根据技术选型和架构设计,搭建隐私计算平台,包括硬件设备的采购与安装、软件系统的部署与配置等。在搭建过程中,需确保平台的性能、安全性和稳定性满足要求。数据接入与预处理:将各隐私计算建设方案一、建设目标数据安全保护:确保在数据的采集、存储、使用、共享等全生命周期中,敏感数据不被泄露、篡改或滥用。合规性满足:严格遵循国内外关于数据隐私保护的法律法规。数据价值挖掘:在保障数据隐私的前提下,实现跨机构、跨部门的数据融合分析与应用,充分释放数据价值,为业务创新、决策支持等提供有力支撑。二、技术选型多方安全计算:适用于需要在多个参与方之间进行联合计算,且不暴露原始数据的场景建模。同态加密:允许在密文上进行特定的计算,计算结果解密后与明文计算结果相同。在一些对数据保密性要求极高的科学计算、医疗研究等领域,可采用同态加密技术对数据进行加密计算。三、架构设计数据层:负责存储各参与方的原始数据,包括结构化数据、半结构化数据和非结构化数据。数据存储需采用安全可靠的存储技术,如分布式存储、加密存储等,确保数据的完整性和安全性。隐私计算层:部署多方安全计算、联邦学习、同态加密等隐私计算

行业资讯
数据隐私计算
、高并发、高效能隐私保护的系统设计理论与架构。主要技术手段:隐私计算的主要技术手段包括多方安全计算(MPC)、联邦学习、可信执行环境(TEE)、同态加密、零知识证明、差分隐私等。这些技术能够在不暴露数据隐私计算是一种在保护数据隐私的前提下,对数据进行分析和计算的技术。数据隐私计算是面向隐私信息全生命周期保护的计算理论和方法。它涉及在处理视频、音频、图像、图形、文字、数值、泛在网络行为信息流等信息时,对所涉及的隐私信息进行描述、度量、评价和融合等操作。隐私计算涵盖了信息搜集者、发布者和使用者在信息产生、感知、发布、传播、存储、处理、使用、销毁等全生命周期过程的所有计算操作,并包含支持海量用户原始数据的前提下,实现数据的分析计算和价值挖掘。应用场景:隐私计算技术可以为各参与方提供安全的合作模式,在确保数据合规使用的情况下,实现数据共享和数据价值挖掘,有着广泛的应用前景。应用场景包括金融行业(如联合风控、联合营销)、医疗领域(如基因组学分析、临床医学研究)、政务领域(如政务数字化、中小微企业融资)以及新兴场景(如物流运输、公共安全、智慧能源和数据交易所等)。技术特点:隐私计算的主要特点包括

行业资讯
可信隐私计算
间大量多批次加密信息的传输,多种加密安全手段和优异的通信架构,确保平台在大数据量下也能获得卓越的性能。星环科技在隐私计算方面的技术探索和落地实践也受到了行业的广泛认可,入围工信部网安中心“2021数字可信隐私计算是基于隐私计算和安全计领域的技术实现,并且在此基础上提供高级别安全保障、隐私保护和数据共享能力。其主要目的是保护数据隐私、避免数据泄露、提高数据共享率、实现智能化计算和数据分析等。相较于传统的隐私计算技术,可信隐私计算具有更高的安全性和可信度,具体包括以下特:可验证性:能够对隐私计算过程进行验证,在保证隐私和安全的前提下,保障计算的正确性和可靠性,消除不可信因素的干扰。可审计性:能够对隐私计算过程进行推导和溯源,有利于发现隐私数据泄露的源头和原因,做出相应的应对更新。非侵入性:能够在无需客户端、服务器或内部插件的前提下完成便携式的防撕裂计算,保证数据隐私安全并减少对客户端的干扰。反数据分析:对输出数据进行打乱、扰动和干扰以减少敏感数据泄露的风险,具有一定的反数据分析能力。可信隐私计算是一项高级别的隶属于隐私计算和安全计算技术的计算方法,旨在提供高可靠性、可操作性、可验证性和可
猜你喜欢

行业资讯
数据中台推荐供应商
作为一家企业级大数据基础软件开发商,星环科技很早就在数据中台领域布局,结合星环科技全系产品的相关组件实现数据中台能力建设。星环科技把数据中台建设归纳为三中心、六能力、两个体系,这当中都会有星环科技产品作为支撑,从而保证企业能够快速实现,并搭建起数据中台,满足企业未来发展变化。其中,三中心分别是存储中心、分析探索中心、业务赋能中心;六能力包括数据汇聚能力、数据整合能力、智能分析能力、实时计算能力、统一访问能力、统一服务能力;两个体系则是安全和运维保障体系与数据和分析支撑体系。三中心、六能力、两个保障体系都构建在一个云底座之上,满足企业私有化或者混合云多云的部署形态,同时灵活组件式的可插拔式部署形态,能够帮助企业更迅速的起步,按规划分步完善数据中台建设。除了提供基础组件和相应的工具帮助客户快速构建数据中台之外,星环科技还提供咨询实施服务,可以为企业提供量身定制的“数据云基础设施+咨询服务的端到端产品+服务”的综合解决方案。在星环科技的咨询服务产品体系中,包括为企业构建中台的架构规划、应用规划,以及帮助企业实施建设数据底座、数据中台、数据仓库,以及数据治理服务,也包括了数据的分析、业务分析、...

行业资讯
数据中台建设
随着行业和技术领域的变化日新月异,从数据仓库、动态数仓,到数据湖,从新一代湖仓一体技术到可插拔数据库,概念的引入虽然简单,但如何做到更有效,更复杂的数据资产管理就考验着对生产能力和工艺过程的管理能力。星环科技认为数据中台是一种能力、是一种组织上的策略而不仅仅是一种技术架构,它是在信息化基础上建立的可编织和可复用的数据可分析能力,从而支撑企业数字化转型。星环科技的数据中台三中心、六能力、两个体系星环科技很早就在数据中台领域布局,结合星环科技全系产品的相关组件实现数据中台能力建设。星环科技把数据中台建设归纳为三中心、六能力、两个体系,这当中都会有星环科技产品作为支撑,从而保证企业能够快速实现,并搭建起数据中台,满足企业未来发展变化。数据存储、分析探索、业务赋能三中心第一,帮助企业构建存储中心,提升数据的汇聚和整合能力;第二,构建数据分析探索中心,专注于智能分析能力和实时计算能力的提升,推动智能推荐能力和全链路实时监测和保障能力;第三,构建业务赋能中心,提供统一的访问能力实现跨平台联邦,统一的访问层控制,确保数据安全可用,同时搭建统一的服务能力,面向多场景的服务应用支撑。安全和运维、数据和分...

行业资讯
省市级碳排放监测服务平台建设方案
双碳目标下,全国碳排放监测服务平台启动建设力争2030年前实现碳达峰、2060年前实现碳中和,我国明确提出“双碳”目标,充分彰显了在构建人类命运共同体进程中的大国担当。国家电网公司主动担当重要使命,提出“实现双碳目标,能源是主战场,电力是主力军,电网是排头兵”的战略部署,率先行动,发布《全国碳排放监测服务平台建设工作方案》。“双碳”目标的实现离不开科技支撑。《全国碳排放监测服务平台建设工作方案》指出,全国碳排放监测服务平台建设的总体目标是以电网数字化赋能和助力国家碳达峰碳中和,实现“电力看双碳”,“双碳看经济”,为国家碳排放统计核算体系建设、宏观调控政策制定、经济社会全面绿色转型发展等工作提供决策支持。平台建设需要解决以下问题:以数字化平台技术解决各省的地市、区县、重点行业碳排放数据维度不全面、核算方法不完善、碳核算体系不统一等方面的问题;强化数据应用,发挥好决策支撑作用,深挖电力大数据价值,开展“电力看环保”“电力看经济”等大数据应用。积极响应号召,星环科技打造碳排放监测服务平台解决方案星环科技作为大数据基础软件领域的代表性企业,有着高度的责任感和使命感,为响应“全国碳排放监测服务平...

行业资讯
图计算平台代表厂商
星环科技作为一家企业级大数据基础软件开发商,在图计算领域深耕多年,有着深厚的技术积淀和丰富的实践经验。星环科技自主研发的分布式图数据库StellarDB,兼容openCypher查询语言,提供海量图数据的存储和分析能力,支持原生图存储结构,支持万亿边PB级数据存储。同时,StellarDB具备毫秒级点边查询能力,10+层的深度链路分析能力,提供近40种的图分析算法,具备数据2D和3D展示能力。StellarDB克服了海量关联图数据存储的难题,通过集群化存储和丰富算法,实现了传统数据库无法提供的低延时多层关系查询,目前已经用于金融、政府、交通等众多行业,用于反洗钱、风险控制、营销等多种场景。同时StellarDB还获得了多项行业权威认可:入选信通院2022大数据十大关键词“图计算平台”代表厂商;通过了中国信通院图数据库和图计算平台基础能力两项专项测评;入选著名咨询机构Gartner《中国数据库市场指南》、《工具:中国数据库管理系统供应商甄选》报告等,彰显了其产品技术领先性。如今,5G、物联网、AI等技术的发展应用让数据呈指数倍增长,为图数据库发展提供了更广阔的应用空间。顺势而为,乘势而上...

行业资讯
什么是分布式时空数据库?
时空数据库时空数据库是一种针对时空数据处理的数据库系统。它以时间和空间为基础,整合了空间信息和时间信息,能够对时空数据进行存储、查询和分析。时空数据库广泛应用于交通运输、城市规划、GIS等领域。分布式时空数据库分布式时空数据库是一种对时空数据进行存储和处理的数据库系统,通过分布式存储和分布式计算等技术,可以实现对大规模时空数据的高效处理和分析。与传统的集中式数据库系统不同,分布式时空数据库将数据存储在多个存储节点上,并将计算任务分配给多个计算节点来完成,从而极大地提高了时空数据的处理能力和可靠性。分布式时空数据库的出现,使得处理大规模时空数据成为了可能,也更好地满足了各个领域对时空数据深度分析的需求。星环分布式时空数据库-TranswarpSpactureSpacture是星环科技自主研发的一款面向空间、时空数据的存储与管理,集计算与存储为一体的分布式数据库产品,支持大规模矢量数据、时空轨迹数据的存储与计算,具有完备的数据查询、分析和挖掘能力,可用于时空查询分析、时空模式挖掘、时空轨迹聚类等时空轨迹数据分析场景,广泛应用于交通物流、城市管理、位置服务等场景。

行业资讯
企业级AI能力运营平台
为解决AI落地难的问题,星环科技从用户需求端出发,研发了一款基于云原生架构的企业级AI能力运营平台SophonMLOps,助推AI模型落地。SophonMLOps是基于云原生架构构建的企业级AI能力运营平台,聚焦于机器学习模型全生命周期中的模型管理、模型部署、模型监控预警、模型评估和模型迭代等关键环节。通过统一纳管、统一运维、统一应用、统一监控、统一评估、统一解释,赋予企业客户易用、高效且安全可靠的AI能力运营服务,协助客户规模化管理日益增长的机器学习模型,提升模型使用效率,降低模型集成管理成本,控制模型生产环境风险。SophonMLOps针对企业AI运营的痛点,围绕企业AI模型接入、运营管理、持续训练的全生命周期,分别提供规模化集成管理、高效模型推理、模型监控预警、模型性能评估、隐私安全保障等功能,为企业的AI日常运营插上翅膀。SophonMLOps打通了AI的全生命周期,为企业的各类用户角色搭建了统一的AI协作平台。对于企业而言,MLOps规模化集成管理了多源异构的机器学习模型,并提供高效且保障隐私安全的模型推理、监控预警及性能评估服务;对用户而言,能感受到操作上的快捷,AI应用与...

行业资讯
电力行业数字化转型服务商
星环科技致力于打造企业级大数据基础软件,具备大数据与云基础平台、分布式关系型数据库、数据开发与智能分析工具的软件产品矩阵,多年来深耕电力领域,覆盖电力产业“发-输-变-配-用”五大环节,为推动电力行业数字化转型做出了重要贡献。在国网上海电力智能配用电大数据应用系统建设项目中,基于星环科技大数据基础平台TDH构建的智能配用电大数据应用系统汇集了浦东1210平方千米的236万户的用电数据,高负荷738万千瓦,年用电量329亿度,占上海全网四分之一。集成的内外部数据源有10个,整个数据量到现在已经接近8个T了,台账的数据总量有29.14万条。在多元数据集成及大数据平台基础之上,应用系统实现了用电查询,电力地图等基础功能及用户用电行为分析,节电用电预测网架优化和错峰调度等业务应用。基于多源异构数据的关联解析,和海量用电负荷实际数据存储、索引,实现了用电查询的基础应用,包括230万用户,26000个台区,4000余中压馈线的基本台账及用电数据的快速查询,并可以进行用户用电画像、地图定位、供电范围等数据的查询,服务响应时间在三秒以内。此前,星环科技还曾凭借《星环科技电力智慧供应链智能决策平台建设方...

行业资讯
图数据库的应用场景
图数据库的应用场景非常广泛,可以应用于各个行业。以下是一些常见的应用场景:金融:在金融领域,图数据库可以帮助银行、保险公司等企业处理复杂的数据结构,支持欺诈检测、交易路由、投资组合分析等操作。社交网络:图数据库可以存储和处理社交网络中的复杂关系图谱和大量用户数据,支持好友推荐、社区发现、个性化内容推荐等操作。物流:在物流领域,图数据库可以帮助企业优化路径规划、物流运输等操作,加速发货、配送时间并提高效率。制造业:图数据库可以支持企业处理复杂的设备关系结构图,进行维修保养、设备性能分析、生产计划优化等操作。能源行业:在能源领域,图数据库可以处理复杂的电网、管道等结构图谱,并支持多种能源趋势分析和紧急事件监测等操作。电商:图数据库可以应用于电商业务中,存储和处理复杂的商品与用户之间的关系,支持个性化推荐、购物车分析、用户行为预测等操作。图数据库可以在各个领域中应用,并且在处理复杂的数据结构和大量的数据时比传统数据库具有更高的性能和效率。星环分布式图数据库StellarDB星环科技致力于打造企业级大数据基础软件,围绕数据的集成、存储、治理、建模、分析、挖掘和流通等数据全生命周期提供基础软件与...

行业资讯
数据安全实践案例
近年来,企业数据安全问题的重要性被提上了前所未有的高度。星环科技提供了从云基础设施、数据平台、数据资源、数据应用的数据安全能力。覆盖数据生命周期的各个阶段,涉及数据的收集、存储、使用、加工以及开放流通。全方位保障企业的数据安全,支撑业务合法合规的开展。星环科技凭借全面的数据安全能力助力某支付机构构建安全防线的落地实践。该支付机构拥有大量数据资产,目前机构面临着较大的挑战,需要加强数据安全管理,为此,机构决定与星环科技合作,利用星环科技的技术来提升数据安全管理能力,共同打造一个基于隐私计算的数据服务平台DaaS。根据客户需求,星环科技在基础设施层提供了基于容器的云原生操作系统TCOS,可以为用户提供独立的数据与计算环境,减少数据对外暴露的风险。在数据平台层,星环科技大数据基础平台TDH新版本增强了安全技术,支持行列级权限控制、动态脱敏等。在数据资产层,星环科技借助两款新产品:数据安全管理平台Defensor帮助企业构建整个数据安全管理域及数据流通平台Navier:包含隐私计算平台SophonP²C和数据交易门户datamall,提供包括联邦学习和差分隐私等技术能力。该支付机构的数据管理平...

行业资讯
国产数据库有哪些?
在国产数据库产品方面,星环科技坚持自主研发与技术创新,打造了自主可控的高性能分布式数据库ArgoDB和分布式交易型数据库KunDB,以及分布式图数据库StellarDB等产品。KunDB具备较强的SQL兼容性,同时具备高可用、高并发、在线扩缩容、数据强一致性等能力,适用于操作型业务、高并发业务等场景。ArgoDB具备完整的SQL兼容性,同时具备高扩展、高可靠、多模型、存算解耦等能力,一站式满足数据仓库、实时数据仓库、数据集市、OLAP、联邦计算等场景。通过不断的打磨和对业务场景不断的落地实践,ArgoDB和KunDB已成为具有完全自主知识产权的成熟的国产数据库,能够为更多的客户提供高性能、高可靠、成熟的数据库产品服务,帮助用户应对智能数据时代海量数据的分析与探索。分布式图数据库StellarDB兼容openCypher查询语言,提供海量图数据的存储和分析能力,支持原生图存储结构,支持万亿边PB级数据存储。同时,StellarDB具备毫秒级点边查询能力,10+层的深度链路分析能力,提供近40种的图分析算法,具备数据2D和3D展示能力。星环科技StellarDB在金融、政府和社交网络等领域...