大型企业数据仓库
星环数据仓库解决方案具备超高性能、高可扩展、极简易用、高性价比等特性。面对高速增长的数据规模,传统的数据仓库负荷严重超出。不扩容会影响性能与稳定性,但是扩容却十分昂贵。星环数据仓库解决方案广泛应用于金融、政企、交通、能源、电信等多个领域,可以满足大数据时代企业构建各类数据仓库的需求。
大型企业数据仓库 更多内容

行业资讯
数据仓库数据库
和聚合,以提供快速的查询响应时间和复杂的分析能力。查询优化:数据仓库数据库针对复杂的分析查询进行了优化,包括星型连接和位图索引等技术。高并发:支持高并发的用户访问和查询,尤其是在大型企业中,多个用户数据仓库数据库是一种特殊类型的数据库,它被设计用来存储和分析大量的历史数据,以支持企业决策制定。以下是数据仓库数据库的一些关键特点:数据整合:数据仓库数据库集成了来自企业内部不同数据源的数据,包括操作型数据库、文件系统和其他外部数据源。面向主题:数据按照主题组织,一个主题通常对应一个特定的业务领域,如销售、财务或人力资源。非易失性:数据仓库中的数据主要用于分析,不涉及日常事务处理,因此数据相对稳定,不经常变动。时变性:数据仓库能够存储历史数据,支持时间序列分析,反映业务随时间的变化。数据模型:数据仓库通常采用星型模型或雪花模型等多维数据模型,以优化查询性能。数据汇总:数据仓库中的数据经过汇总加密、访问控制和审计日志。备份和恢复:支持数据备份和恢复策略,以保护数据不受意外丢失或损坏。兼容性:许多数据仓库数据库兼容SQL标准,使得从操作型数据库迁移到数据仓库数据库更加容易。

行业资讯
分布式数据仓库
源的数据,支持跨系统的数据查询和分析。企业级数据仓库:支持企业级数据管理和分析,提供高性能和高可用性,适用于大型企业和组织。分布式数据仓库是一种将数据分散存储在多个节点上的数据仓库架构,旨在提高数据处理的性能、可扩展性和可靠性。以下是分布式数据仓库的详细解释:特点高可扩展性:通过增加更多的节点,可以轻松扩展数据仓库的存储,数据仓库仍然可以正常运行,提高系统的可靠性和可用性。灵活性:支持多种数据存储和计算引擎,可以根据不同的业务需求选择合适的组件和配置。架构数据存储层:数据分散存储在多个节点上,每个节点负责存储部分数据。计算层:支持并行计算,多个节点同时处理查询请求。协调层:负责节点之间的通信和协调,确保数据的一致性和查询的正确性。访问层:提供统一的接口,用户可以通过SQL或其他查询语言访问分布式数据仓库中的数据和计算能力,以应对不断增长的数据量和查询负载。高性能:分布式架构允许并行处理查询请求,多个节点同时工作,显著提高数据处理速度和查询响应时间。高可用性:通过数据冗余和节点备份,确保即使部分节点出现故障

行业资讯
企业数据仓库
企业数据仓库是企业提升数据管理能力、优化决策流程的关键基础设施。以下是企业数据仓库的架构、功能以及应用案例的概述:企业数据仓库架构企业数据仓库架构通常包括以下几个关键组件:数据源层:涵盖企业内外部的,通常以星型模式、雪花型模式或事实-维度模型进行存储。数据访问层:将存储在数据仓库中的数据以可视化、报表或查询的形式提供给业务用户。企业数据仓库功能企业数据仓库的主要功能包括:数据集成:将来自不同查询和分析过程,提高查询性能。高性能存储:采用大容量、高性能的存储系统,满足大量数据的存储和查询需求,优化查询性能。企业数据仓库应用案例以下是一些企业数据仓库的应用案例:销售分析:跨国零售企业利用数据仓库整合多个销售渠道的数据,进行销售分析。供应链优化:制造业企业通过数据仓库整合供应链各环节数据,运用数据分析识别瓶颈和问题,优化供应链效率。市场营销:互联网公司整合用户行为数据、偏好和社交媒体互动数据,分析营销活动效果,制定个性化营销策略。各类数据源,如业务系统数据库、文件、外部数据供应商等。数据采集与ETL:从数据源层抽取数据,经过清洗、转换和加载等步骤,将数据整合成适合分析的形式,并存储到数据仓库中。数据存储层:负责长期保存历史数据

行业资讯
数据仓库搭建
数据仓库是一个集中存储、集成和管理来自不同数据源的大量数据的系统。数据仓库是一种面向决策支持的技术,旨在帮助企业从多个角度析数据,并为业务决策提供准确的信息。以下是搭建数据仓库的步骤:确定需求和目标数据仓库的格式。建设和维护数据仓库:建设数据仓库包括创建数据库和表结构、加载数据和建立索引等。数据仓库需要具备高性能、高可用性和易扩展性。对于大型数据仓库,可以考虑使用分布式系统和列式存储等技术来提高和数据质量管理等。通过合理的规划和管理,数据仓库可以帮助企业更好地分析数据、支持决策制定,并提供准确的数据驱动的信息。:在搭建数据仓库之前,必须明确需求和目标。了解业务的需求,确定需要收集和分析的数据类型以及数据存储和处理的方式。设计数据模型:数据模型是数据仓库的基础,确定如何组织和存储数据是非常重要的常见的数据模型包括星型模型和雪花模型。星型模型是常用的模型之一,它通过一个中心的事实表和多个维度表来表示数据。雪花模型在星型模型基础上进行了扩展,维度表可以进一步分解更小的表。数据抽取与转换:在搭建数据仓库之前

行业资讯
企业级数据仓库
是一个大型的中央仓库,将来自企业各个业务系统、不同数据源的数据进行整合和集中管理,打破了数据孤岛,让数据能够在企业内部自由流通。企业级数据仓库具有鲜明的特点,这些特点使其成为解决企业数据管理痛点的关键。它解锁企业级数据仓库:开启数据驱动的商业智慧大门数据仓库:企业数据困境的救星在企业数据管理的困境中,企业级数据仓库犹如一盏明灯,为企业照亮了前行的道路。企业级数据仓库是一个面向主题的、集成的、相对稳定的、反映历史变化的数据集合,用于支持企业决策分析。它与传统的数据存储方式有着本质的区别,就像现代化的大型仓储中心与杂乱无章的小仓库。传统的数据存储方式,如普通数据库,主要用于支持日常事务处理。这些数据库就像是一个个独立的小作坊,各自为政,数据分散且缺乏统一的规划和管理。它们注重数据的实时更新和事务的快速处理,但在面对复杂的数据分析和决策支持需求时,却显得力不从心。而企业级数据仓库则不同,它更像具有高度的集成性,能够将来自不同业务系统、不同格式的数据进行清洗、转换和加载,使其融合为一个统一的数据整体。数据仓库还具有面向主题的特性。它围绕着企业的核心业务主题,如销售、客户、产品等,对数据进行
行业资讯
数据仓库的模型设计
点正确的分析。对于大型企业数据仓库,通常采用分层架构设计来保证数据质量和管理效率。典型的分层包括:操作数据层(ODS):保留源系统原始数据,提供数据回溯能力数据仓库明细层(DWD):进行数据清洗、转换数据仓库的模型设计数据仓库模型设计是企业数据分析基础建设的核心环节,其设计质量直接影响后续的数据分析效率和应用效果。当前主流的维度建模方法主要包含两种范式:星型模型和雪花模型。星型模型作为最常用的和标准化数据仓库汇总层(DWS):按主题预聚合关键指标数据集市层(DM):面向具体部门或应用优化这种分层架构使ETL过程的故障隔离和问题诊断效率提升40%,同时支持更灵活的数据应用开发。维度表进一步分解为多级关联表来消除数据冗余。这种设计更适合业务关系复杂、维度属性层次分明的场景,如制造业的物料清单(BOM)分析。但需要注意的是,过度规范化会导致查询性能下降,因此实际应用中常采用折中

行业资讯
数据仓库的类型
访问和更新能力。企业数据仓库:用于存储来自整个企业的数据,支持跨部门的决策支持和分析。通常包含历史数据和汇总数据,用于长期分析和报告。数据湖:存储原始数据的大型存储库,可以是结构化、半结构化或非结构化数据仓库:部署在云平台上的数据仓库,提供弹性扩展、按需付费和简化维护的优势。混合数据仓库:结合了传统数据仓库和大数据技术,支持多种数据类型和分析工具。允许企业在单一平台上处理结构化和非结构化数据。虚拟数据仓库的类型可以根据不同的维度进行分类,以下是几种常见的数据仓库类型:操作型数据仓库:也称为实时数据仓库,用于存储操作型数据,支持日常业务操作的查询和报告。通常与交易系统紧密集成,提供快速的数据数据。通常用于大数据处理和分析,支持数据科学和机器学习。数据湖仓:结合了数据湖和数据仓库的特点,提供对原始数据和加工数据的统一管理。支持多种数据类型和分析工作负载,包括数据科学、机器学习和传统BI。云数据仓库:不是物理存储数据,而是通过软件定义的方式,将多个数据源虚拟化为一个统一的数据仓库。允许用户像操作单一数据仓库一样操作分散的数据源。事务型数据仓库:专注于支持高事务处理的数据仓库,通常用于金融

行业资讯
数据仓库 数据湖
和分析。数据仓库是包含多种数据的存储库,并且是高度建模的。数据仓库的主要作用是实现跨业务条线、跨系统的数据整合,为管理分析和业务决策提供统一的数据支持。数据湖(DataLake)数据湖是一个存储企业的各种各样原始数据的大型仓库,其中的数据可供存取、处理、分析及传输。数据湖是企业所有数据的单一存储,包括源系统数据的原始副本,以及用于报告、可视化、分析和机器学习等任务的转换数据。数据湖能够包括来自关系数据、企业数据等。而数据湖是面对各类数据的存储、管理、集中到底层基础数据层,不仅处理实时的流数据、结构化数据、非结构化数据,还包括用于分析、调查等各种目的的数据。数据处理方式:数据仓库通常在经过ETL什么是数据仓库和数据湖?数据仓库(DataWarehouse)是一个面向主题的、集成的、相对稳定的、反映历史变化的数据集合存储系统,数据仓库将来自不同来源的结构化数据聚合起来,用于业务智能领域的比较库(行和列)的结构化数据,半结构化数据(CSV,日志,XML,JSON),非结构化数据(电子邮件,文档,PDF)和二进制数据(图像,音频,视频)。数据仓库和数据湖有什么区别?数据仓库和数据湖是两种

行业资讯
什么是统一数据仓库,有什么优势?
管理工具来管理各种类型的数据,如数据质量、数据集成、数据治理、元数据和主数据管理、数据库管理和架构等。大型企业采用企业级数据仓库已成为一种佳做法,可用于存储从各种不同操作源中提取的集成化集中数据。这样什么是统一数据仓库?统一数据库也被称为企业数据仓库,它可以保存一个组织的所有业务信息,并使整个公司都能访问这些信息。如今,大多数公司都在孤立的孤岛中管理数据,而同一组织的不同团队则使用各种数据,就可以执行复杂的查询,而不会与业务系统的事务性操作发生冲突。数据仓库的典型架构由不同的组件组成,在对数据执行某些关键操作后,数据会从一个组件传递到下一个组件。统一数据仓库的结构由数据仓库架构中包含的组件的子集组成,即:数据源、核心DW、数据集市、提取、转换和加载(ETL)流程以及元数据存储库。统一数据仓库重要的好处是,所有数据都基于一个中心前提:因此,无需单独分析数据,就能将其转化为可操作的信息,从而促进决策过程的改进。统一数据仓库的优势数据仓库可为数据提供更多支持,因为它们旨在跟踪、管理和分析信息,为决策支持、分析报告和数据挖掘提供一个良好的环境。统一的数据仓库与其他分析程序携手合作,促进公司
猜你喜欢

行业资讯
构建城轨交通数据底座
利用星环科技数据云平台TDC打造的基于PaaS平台的绿色轨道交通线网指挥中心,为轨交集团打造技术中台、数据中台、模型中台、业务中台。与传统模式相比,PaaS模式采取集约化部署,能大大提高资源利用率;可为开发人员提供隔离的租户环境,灵活选择所需大数据与AI能力,进行探索分析和数据挖掘。技术中台:统一资源管控,灵活资源分配,快速资源申请与部署。数据中台:全量数据接入;面向应用主题的指标计算与规范化数据存储。模型中台:基于人工智能、深度学习的算法模型,支撑业务分析、评估、与决策。业务中台:采用微服务架构,串联系统功能,打通整合业务应用。通过采集实时能耗、电能质量、设备状态等实时数据和客流信息、列车运营信息、基础信息等非实时数据,基于星环科技智能分析工具Sophon进行建模预测,支撑上层能耗统计与监测应用、能耗综合评估应用,实现行车调度精细化,促进轨道交通绿色低碳发展。星环科技致力于打造企业级大数据基础软件,围绕数据全生命周期提供基础软件与服务,形成了大数据与云基础平台、分布式关系型数据库、数据开发与智能分析工具的软件产品矩阵。通过为企业搭建数字化转型的数字底座,星环科技助力政府、金融、能源、...

企业选择合适的图数据库需要考虑多方面的因素,包括以下几点:数据集规模:如果需要处理大规模的图形数据,应选择支持水平扩展和集群部署的图数据库。查询需求:不同的图数据库对数据类型和查询需求的支持程度有所不同,应根据实际需求选择。性能和可扩展性:不同的图数据库性能和可扩展性有所不同,应选择性能和可扩展性良好的图数据库。支持程度:选择使用支持程度好的图数据库,可以得到更好的技术支持。维护和成本:选择维护成本低、方便使用的图数据库,能够降低维护成本和使用难度。在选择图数据库时,应根据具体需求进行综合分析、评估和选择。星环科技分布式图数据库是国内比较知名的图数据库产品之一。星环分布式图数据库StellarDB星环科技在图计算领域深耕多年,自主研发了分布式图数据库StellarDB,兼容openCypher查询语言,提供海量图数据的存储和分析能力,支持原生图存储结构,支持万亿边PB级数据存储。同时,StellarDB具备毫秒级点边查询能力,10+层的深度链路分析能力,提供近40种的图分析算法,具备数据2D和3D展示能力。StellarDB在数据导入、多跳查询和图算法性能方面实现了数倍升级,同时在易用...

行业资讯
国产时空数据库有哪些?
随着科技和信息技术的快速发展,时空数据已经成为重要的技术支撑和决策工具。与此同时,国内也出现了不少优秀的国产时空数据库产品,不仅在空间分析、时序分析等方面实现了卓越的表现,同时也在存储管理、可视化展示等方面有着出色的成果。不少时空数据库产品已实现了高可靠性、高性能和高稳定性的功能,在交通运输、城市规划、GIS和物流供应链等领域都有着广泛的应用。其中星环科技的分布式时空数据库-TranswarpSpacture就是其中一款优秀的时空数据库产品。星环分布式时空数据库-TranswarpSpactureSpacture是星环科技自主研发的一款面向空间、时空数据的存储与管理,集计算与存储为一体的分布式数据库产品,支持大规模矢量数据、时空轨迹数据的存储与计算,具有完备的数据查询、分析和挖掘能力,可用于时空查询分析、时空模式挖掘、时空轨迹聚类等时空轨迹数据分析场景,广泛应用于交通物流、城市管理、位置服务等场景。产品优势原生空间:时空数据类型,针对空间时空数据的特定优化。兼容OGC标准:提供丰富的分析函数,具备复杂分析挖掘能力。支持SQL:基于SQL完成空间分析和轨迹分析,降低产品使用门槛。兼容Po...

行业资讯
数据底座解决方案实践应用
星环科技数据底座方案已在多个场景落地应用:广西某水电企业工业大数据生态云平台按照“统一规划、统一设计、统一建设”原则开展适应电力能源需求的“云-雾-端”多级、多云协同云计算架构设计。形成电力能源企业计算云、存储云、网络云、安全云等多云架构体系。打造包含智慧运营中心、设备状态诊断中心、安全应急中心、气象资源中心、智慧营销中心与智慧电厂的核心智慧化平台,实现数字化业务管控、智慧化企业经营和生态化商业服务的完整生态,实现企业的数字化转型。工业大数据生态云平台实施分为平台构建、数据资产治理实施与基础门户建设三个部分。其中IaaS层提供计算资源、存储资源、网络资源等基础设施服务;PaaS层由容器云、微服务治理、DevOps、敏捷开发平台、大数据平台、数据资产管理、统一应用门户等组成,为上层智慧企业应用提供基础能力平台的支撑,未来可进一步扩展人工智能平台、元宇宙、区块链、数字孪生等新技术应用平台;SaaS层应用提供数字化业务管理、智慧化企业运营管控、生态化商业服务等应用,并基于统一应用门户为用户提供交互服务。新能源集控中心是实时数仓在新能源方面的应用,跟水电比较像,比如区域监控中心一体化大数据应用...

行业资讯
数据安全出境解决方案
近年来,随着数字经济的蓬勃发展,数据跨境活动日益频繁,数据处理者的数据出境需求快速增长。为规范数据出境活动,保护个人信息权益,维护国家安全和社会公共利益,促进数据跨境安全、自由流动,国家互联网信息办公室公布了《数据出境安全评估办法》,9月1日起施行。《数据安全出境评估办法》构建了我国数据出境安全评估的制度,然而企业在具体落地方面,还存在诸如数据分类分级;重要数据识别、存储、管理;数据安全监督;敏感数据防泄露等实际困难,国内迫切需要落实数据安全出境的企业。星环科技致力于打造企业级大数据基础软件,围绕数据的集成、存储、治理、建模、分析、挖掘和流通等数据全生命周期提供基础软件与服务,构建明日数据世界。在数据安全与流通方面,星环科技具备一系列产品和解决方案。针对有数据跨境需求的企业,星环科技可以提供一套可落地的企业数据安全出境合规解决方案,为企业提供数据跨境一站式服务,助力企业高效、合规的开展数据流通业务。以某智能车企云端车联网全球化数据安全合规案例为例,针对客户面对的系统内存在大量个人隐私数据,但是没有资产地图;缺乏数据分类分级策略;缺乏个人隐私数据使用、流转的监测与防护;需要敏感资产风险评...

行业资讯
边缘计算平台
在边缘计算领域,星环科技研发了边缘计算平台Sophon。Sophon是解决多模态数据集成和治理过程中的边缘化、智能化的云端-边缘端融合计算平台,支持标准的视频和物联网协议接入,低代码的业务流程构建,高性能的数据处理和分析,企业级的云-边数据、服务治理,以及针对边缘嵌入式和云端服务器等异构硬件的适配。星环科技Sophon平台包括设备数据管理、模型训练迭代、边缘模型部署、应用构建分发、数据治理能力、边缘自治能力、云边协同能力七大能力。Sophon可以从两个层面实现效益价值:降低长尾应用的实施人力,降低从数据到模型,模型到应用的构建成本;改变长尾应用的落地模式,从粗放的一次性模型交付到精细化的模型持续运营。其主要技术创新包括:边缘可视化流处理构建、边缘数据采样驱动模型迭代、边缘实时数据可视化、边缘深度推理引擎。Sophon在智能制造、智能安防、智能工地、智能交通、智能城市、智能校园、智能加油站等城市治理、设备可预测性维护等云边一体场景有着广泛的应用。当前边缘计算作为产业数字化转型核心技术已形成共识,我国也高度重视边缘计算的发展,积极推进边缘计算在工业互联网等多个领域的技术、标准与产业发展。星...

行业资讯
国内隐私计算平台
星环SophonP²C是企业级隐私计算平台,拥有多项性能及安全认证,平台支持不同场景的隐私计算需求,包括横纵向联邦学习、多方安全计算、基于差分隐私的数据发布、匿踪查询等,为多方数据安全协作提供完整的平台底座。SophonP²C可用于解决跨组织协作时无法安全利用各方数据的难题,助力数据流通应用的合法合规。在保障隐私的前提下,围绕数据的集成、存储、治理、建模、分析、挖掘和流通等数据全生命周期,提供多种开箱即用的工具,方便用户进行数据处理、分析、特征工程等工作,可快速进行多方数据统计、分析建模和应用工作。平台拥有的多种适应不同安全和通讯环境的加密安全手段和通信架构,为跨组织的数据协作提供安全、可靠、高效的平台支持。分布式隐私计算平台SophonP²C产品优势:支持多种隐私计算框架,平台易用易部署1.采用同态加密、差分隐私、秘密分享、不经意传输等隐私技术,覆盖联邦学习(FL)、多方安全计算(MPC)、匿踪查询(PIR)、隐私求交(PSI)等多种隐私计算功能。2.支持大数据规模的隐私计算场景,支持亿级数据进行联邦学习、多方安全计算和隐私求交。3.提供页面可视化安装部署,并支持实体部署、容器部署、...

行业资讯
数字政府建设
近日,领先的IT市场研究和咨询公司IDC发布2022年数字政府百强榜,梳理出数字政府领域领先的技术供应商,评估了技术提供商的市场能力及市场份额。星环科技作为企业级大数据基础软件开发商,成功入选IDC数字政府百强榜“大数据及数据治理”模块。星环科技致力于打造企业级大数据基础软件,围绕数据的集成、存储、治理、建模、分析、挖掘和流通等数据全生命周期提供基础软件与服务,形成了大数据与云基础平台、分布式关系型数据库、数据开发与智能分析工具的软件产品矩阵。在政府领域,星环科技通过智慧政务数字底座为政府数字化转型建设提供计算、存储、算法等基础能力支撑,归集业务数据,优化业务流程,治理出有价值的数据资源,进行专题分析沉淀数据资产,服务部门之间数据共享与业务协同,服务领导决策与政策制定,服务公众、企业便捷办事。公司产品已被多个部委或省市机关部门使用,助力构建数字化政府,提升治理效率。比如星环科技基于数据云平台TDC为建设上海市数据资源平台提供了底层支撑,将70多个委办局以及16个区县业务库的结构化和非结构化数据进行归集,构建三级数据共享交换体系,保障数据安全,支撑“一网通办”等数据服务能力。此外,根据不...

行业资讯
图数据库有哪些?
图数据库是一种用于处理图形数据的特殊类型的数据库。它们旨在存储和管理关系和连接,具有比其他类型的数据库更强大的能力。目前国内有众多优秀图数据库产品,星环科技图数据库产品StellarDB其中之一。TranswarpStellarDB是星环科技自主研发的企业级分布式图数据库,提供高性能的图存储、计算、分析、查询和展示服务。StellarDB支持原生图存储,千亿点、万亿边、PB级大规模图数据存储;具备10+层的深度链路分析能力,提供丰富的图分析算法和深度图算法;支持标准图查询语言并兼容openCypher,并具备海量数据3D图展示能力。可以帮助用户快速开发欺诈检测、推荐引擎、社交网络分析、知识图谱等应用。TranswarpStellarDB优势:原生图存储:StellarDB为数据存储设计了专有的图存储结构,优化查询性能,通过高效的压缩算法减少磁盘和内存的使用量。根据分区策略,图数据均匀分布于集群各节点。优越的性能:存储引擎和计算引擎结合,使计算引擎可以利用数据locality提升计算性能,拥有卓越的数据读写能力,支持大规模并行处理,毫秒级的查询响应。高扩展性:完全的分布式架构,具有良好的...

行业资讯
数据库国产化替代
数据库作为提供数据存储与处理能力的基础软件,是信息系统的基础、信息安全的基石,因此,数据库自主可控和国产化替代已经刻不容缓。兼容性是国产化替代关键,自研数据库更具潜力Oracle数据库发展较早,在国内市场内占领了一定先机,企业经过信息化的长期积累和革新,基于Oracle开发了大量的系统业务。为了能够适配新的国产数据库产品,必须对应用代码进行大量修改,各数据表的数据类型、函数、语法规则需要进行系统、全面的改造,这就要求新的国产数据库对原有数据库能够有很好的兼容性支持,降低迁移的代码改造成本。Oracle经过多年的发展,在SQL语言、性能、实例形态、容灾方案等方面有很多积累扩展。若要实现Oracle数据库的国产化替代,除了要能够提供在性能、容灾能力、安全能力等方面全方位提供对等的能力,首先要解决的就是如何兼容Oracle的大量SQL方言,尤其是Oracle的PL/SQL这一独特的广受欢迎的语法体系。中国信通院《数据库发展研究报告》中表示,“国内关系型数据库产品中多数是基于MySQL和PostgreSQL二次开发的”。因此,这些产品对MySQL、PostgreSQL兼容性较好,但没有体系化的...