银行监管规定数据湖
银行监管规定数据湖 更多内容

行业资讯
银行数据治理
银行数据治理方案旨在通过建立全面的组织架构、明确的管理流程和严格的监管报送机制,确保数据的准确性、安全性和合规性,以提升银行的经营管理效率和风险控制能力。其核心内容可以概括为以下几个方面:数据治理覆盖、匹配性、持续性、有效性原则,确保数据治理覆盖数据全生命周期,与银行的管理模式、业务规模、风险状况相适应,并持续开展,推动数据真实准确客观反映银行实际情况,并有效应用于经营管理。监管数据纳入治理:银行需将监管数据纳入数据治理,建立工作机制和流程,确保监管数据报送工作有效组织开展,监管数据质量持续提升,法定代表人或主要负责人对监管数据质量承担最终责任。数据质量管理:银行应加强数据采集的统一管理向银行业监督管理机构报送。问责机制:建立问责机制,定期排查数据管理、数据质量控制、数据价值实现等方面问题,依据有关规定对高级管理层和相关部门及责任人进行问责。架构:银行应建立一个健全的组织架构,明确董事会、监事会、高级管理层及内设部门等职责要求,制定和实施系统化的制度、流程和方法,确保数据统一管理、高效运行,并在经营管理中充分发挥价值。数据治理原则:遵循全

行业资讯
银行图数据库
银行业应用图数据库的主要目的是进行风险管理和合规性监管。由于金融行业的复杂性,数据往往分散在不同的系统和应用程序中,增加了数据整合和分析的难度。图数据库可以通过构建图形数据模型并利用强大的图算法提供并提高客户满意度。反欺诈:以图的形式显示账户和交易、设备、位置和其他特征之间的关系,从而识别欺诈行为。合规监管:通过收集和分析关于特定交易、账户和客户的数据,检查是否符合监管要求,并且帮助银行保持符合更准确的数据分析和综合视图。具体来说,在银行行业中,图数据库可以用于以下几个领域:客户360视图:通过整合客户的交易、账户、借记卡、贷款等多个数据源,建立客户的360度视图,识别潜在的机会,降低风险法规的状态。资产和负债管理:通过建立银行的资产负债表的图形模型,帮助银行更好地管理其资产和负债,更好地进行务增长而不增加风险。星环分布式图数据库-TranswarpStellarDBTranswarpStellarDB是星环科技自主研发的企业级分布式图数据库,提供高性能的图存储、计算、分析、查询和展示服务。StellarDB支持原生图存储,千亿点、万亿边、PB级大规模图数据存储;具备10+层的深度链

行业资讯
银行数据湖
。提升数据治理水平:通过数据湖的建设,银行可以建立统一的数据标准和规范,加强数据质量管理,提升数据的安全性和合规性,更好地满足监管要求。关键技术存储技术:通常采用分布式文件系统,或对象存储,具备高可扩展性银行构建数据湖具有重要意义,以下是从不同方面介绍银行数据湖的情况:构建目标数据整合与集中管理:银行各业务系统产生大量数据,如客户信息、交易记录、信贷数据等,数据湖可将这些分散的数据整合到一个集中存储数据管理,包括数据的定义、来源、关系等,方便用户理解和使用数据。数据入湖流程数据抽取:从银行的核心业务系统、交易系统、客户关系管理系统等数据源中抽取数据,可采用ETL工具或数据复制技术。数据清洗与转换:对效果。风险评估与管理:利用数据湖中的多源数据,进行全面的风险评估和监控,如信用风险、市场风险、操作风险等,及时发现风险隐患,采取相应的风险控制措施,保障银行的稳健运营。运营优化与决策支持:对银行的库,方便进行统一管理和共享,打破数据孤岛。支持多样化数据分析:满足银行不同业务部门和用户的多样化分析需求,包括但不限于客户画像、风险评估、营销分析、财务分析等,为银行的决策提供全面、准确的数据支持

行业资讯
商业银行数据治理
,以确保数据可信。数据使用监管和风险管理:商业银行需要建立监管机制,确保数据使用符合法规和内部规定,依法开展数据收集、存储、使用和共享活动。商业银行需要对数据使用风险进行评估控制,保障银行业务的顺利开展商业银行数据治理指商业银行对数据的管理、监管和质量控制的一套规范和流程,包括数据收集、存储、处理、分析和应用等全过程。商业银行数据治理的目的是确保数据质量、数据安全性、数据一致性和数据完整性,以数据的安全性和保密性,采取措施防止数据泄露和恶意攻击。这包括访问控制、网络安全、风险评估、安全检查和应急响应等。数据使用和共享:商业银行应该规范数据的使用和共享,确保数据的正确性和可信度。银行可以选择不同的数据共享方式,如数据仓库、数据交换和API等,确保了数据的安全性和合规性。数据治理体系:商业银行需要建立完备的数据治理体系,以规范数据处理和数据管理流程,包括数据治理架构、数据分析和数据报告等有效地支持银行的业务运营、风险管理和决策制定等方面。商业银行必须采取有效的措施来保护客户的个人信息和其他敏感信息,防止数据泄露和丢失,维护客户信任和银行业务连续性。商业银行数据治理的实践中,需要遵循以下

行业资讯
银行数据治理
组织架构、管理流程和技术系统的综合性工程。良好的数据治理能够帮助银行实现三个关键目标:一是确保数据的准确性和一致性,避免因数据错误导致的决策失误;二是满足日益严格的监管合规要求,如反洗钱、客户隐私保护等能减少风险、满足合规要求,更能释放数据潜能,成为银行数字化转型的重要推动力。未来,随着技术的发展和监管环境的变化,银行数据治理将持续演进,为银行业创造更大价值。不一致的数据。元数据管理则是对数据本身的描述信息进行管理,帮助理解数据的含义和来源。数据安全管理在银行业尤为重要,包括对敏感数据的加密、访问权限控制和操作审计等措施。数据生命周期管理规定了数据从创建银行数据治理在数字化时代,数据已成为银行业核心的资产之一。银行每天处理着海量的交易数据、客户信息和市场动态,如何有效管理和利用这些数据,不仅关系到银行的运营效率,更直接影响风险控制和客户服务质量。银行数据治理正是为此而建立的一套系统性方法。数据治理的概念与重要性数据治理是指通过制定政策、流程和标准,确保数据的质量、安全性和可用性的全过程管理。对于银行业而言,数据治理不是单一的技术问题,而是涉及

行业资讯
数据合规治理
数据合规治理是企业或组织为确保数据的收集、存储、处理、传输和使用等活动符合相关法律法规、监管要求以及内部政策标准而实施的一系列管理措施和技术手段。治理目标合法合规:确保数据活动严格遵循国家和地区的治理策略制定:依据相关法律法规和企业自身业务需求,制定数据合规治理的总体策略和方针,明确数据合规的目标、原则和重点领域,为具体治理工作提供指导。制度与流程建设:建立完善的数据合规管理制度和流程,涵盖数据法律法规,以及行业监管要求,避免因违法违规行为导致的法律风险和监管处罚。保护数据主体权益:充分尊重和保护数据主体的隐私权、知情权、选择权等合法权益,确保数据的处理活动得到数据主体的明确授权,数据的使用不会对其造成不必要的损害。维护企业声誉和市场信任:通过建立健全的数据合规治理体系,提升企业在数据管理方面的规范性和透明度,增强客户、合作伙伴等对企业的信任,维护企业的良好声誉和市场竞争力。治理内容数据分类分级、数据访问控制、数据安全管理、数据隐私保护、数据审计等方面,确保数据活动的各个环节都有章可循。人员培训与意识提升:开展数据合规培训教育活动,提高全体员工对数据合规重要性的认识,使其了解相关

行业资讯
银行业数据治理
、匹配性原则、持续性原则和有效性原则。这意味着数据治理需要覆盖数据的全生命周期,适应业务规模和风险状况,并持续有效地推动数据真实准确客观地反映实际情况,并有效应用于经营管理。监管数据纳入治理:银行银行业数据治理是指银行业金融机构通过建立组织架构,明确董事会、监事会、高级管理层及内设部门等职责要求,制定和实施系统化的制度、流程和方法,确保数据统一管理、高效运行,并在经营管理中充分发挥价值的动态过程。以下是银行业数据治理的几个关键点:数据治理纳入公司治理范畴:银行业金融机构应将数据治理纳入公司治理,建立自上而下、协调一致的数据治理体系。遵循基本原则:银行业金融机构数据治理应遵循全覆盖原则业金融机构应将监管数据纳入数据治理,建立工作机制和流程,确保监管数据报送工作有效组织开展,监管数据质量持续提升。法定代表人或主要负责人对监管数据质量承担最终责任。数据治理架构:应建立组织架构健全、职责边界清晰与标准,依法合规采集、应用数据,依法保护客户隐私,划分数据安全等级,明确访问和拷贝等权限,监控访问和拷贝等行为,完善数据安全技术,定期审计数据安全。数据资料统一管理:建立全面严密的管理流程、归档制度

行业资讯
银行数据质量治理工作
业务逻辑和外部权威数据源,制定数据准确性的校验规则,如利率数据应与央行发布的基准利率保持合理的偏差范围,确保数据能够真实反映业务实际情况。数据质量管理流程建设数据质量规划:结合银行的业务战略和监管要求主席,各业务部门负责人和数据管理专家作为成员,负责制定数据治理战略方针、决策重大事项、协调资源分配以及监督数据治理工作的整体推进。设立数据质量管理团队:该团队可隶属于银行的数据管理部门,成员包括数据管理员:在各业务部门指定专人担任数据管理员,负责本部门数据的收集、录入、维护和使用过程中的数据质量把关,与数据质量管理团队紧密协作,及时反馈和解决本部门的数据质量问题。制定数据质量标准与规范数据格式规范银行数据质量治理工作对于银行的稳健运营、风险控制、客户服务以及战略决策等方面都具有至关重要的意义。以下是一些常见的银行数据质量治理工作措施:建立数据治理组织架构成立数据治理委员会:由银行高层领导担任:统一规定各类数据的存储格式,金额精确到小数点后两位等,确保数据在不同系统和业务流程中的一致性和可读性。编码规则统一:针对客户类型、产品代码、交易渠道等制定标准化的编码体系,避免因编码不一致导致的数据混乱

行业资讯
银行数据治理
及本行信息安全与隐私保护政策等相关规定,确保合规性。数据访问控制:银行数据库采用严格的访问控制机制,只有经过授权的人员才能访问敏感数据。这通常通过使用基于角色的访问控制来实现。数据生命周期管理过程。以下是银行数据治理的几个关键要素:数据治理架构:银行需要建立一个组织架构健全、职责边界清晰的数据治理架构,明确不同层级和部门的职责分工,并建立多层次、相互衔接的运行机制。数据管理框架:银行应制定数据,依法合规采集、应用数据,依法保护客户隐私,划分数据安全等级,明确访问和拷贝等权限,监控访问和拷贝等行为,完善数据安全技术,定期审计数据安全。数据合规性:银行数据治理应遵循法律法规、采购合同、客户授权:银行业务中,数据生命周期管理是确保数据从创建、存储、使用、共享、归档直至销毁的每一个环节中都能得到妥善管理的过程。数据所有权和责任:确定数据所有权对于确保数据的适当使用至关重要。数据所有者不仅负责数据的银行数据治理是指银行业金融机构通过建立组织架构,明确董事会、监事会、高级管理层及内设部门等职责要求,制定和实施系统化的制度、流程和方法,确保数据统一管理、高效运行,并在经营管理中充分发挥价值的动态
猜你喜欢

行业资讯
分布式隐私计算平台
星环科技分布式隐私计算平台SophonP²C集多方安全计算、联邦学习等多种功能,为隐私计算提供完整的解决方案,以隐私保护为前提,解决了跨组织协作时无法安全利用各方数据的困境。平台支持联邦学习、多方安全计算、匿踪查询等功能;性能方面,联邦学习与多方安全计算可达亿级数据量,助力数据要素安全流通和价值迸发,实现数字经济时代下的跨企业和行业的AI协作。星环科技的隐私计算技术已落地如数据流通、政务民生、金融营销等垂直业务场景,为跨企业数据协作提供安全可信的平台支持。在政务民生场景,SophonP²C通过纵向联邦学习联合居民用电数据与用水数据,生成群租房预测名单。在联合建模过程中,全程明文数据不出,有效保护了居民用水用电的数据隐私信息。联合训练模型比本地单独用电数据训练的模型AUC提升20%以上,赋能政务决策高效的处理分析能力,为政府有效排查群租房,消除群租房造成的消防、安全隐患,打造和谐、安全、美丽的生活环境作出了突出贡献,为政务决策、民生建设发挥信息化支撑保障作用。在精准营销场景,通过纵向联邦学习,车企安全引入了多方数据,丰富用户特征维度,对用户行为进行统计分析。在联合建模过程中,全程明文数据...

星环科技图数据库StellarDB是国产高性能图数据库,采用分布式架构和原生图计算引擎,支持超大规模数据管理和高效的图计算。TranswarpStellarDB具有以下特点:原生图存储:StellarDB为数据存储设计了专有的图存储结构,优化查询性能,通过高效的压缩算法减少磁盘和内存的使用量。根据分区策略,图数据均匀分布于集群各节点。优越的性能:存储引擎和计算引擎结合,使计算引擎可以利用数据locality提升计算性能,拥有卓越的数据读写能力,支持大规模并行处理,毫秒级的查询响应。高扩展性:完全的分布式架构,具有良好的可扩展性,支持在线扩容和升级。拥有万亿级图数据处理能力,支持数据多副本,提供集群高可用和高可靠。灵活的查询方式:计算引擎支持灵活易懂的图查询语言TranswarpExtended-OpenCypher,拥有丰富的图操作语法。同时提供SQL支持,多模场景灵活切换。深度分析能力:支持10层及以上的图深度遍历和复杂分析。丰富的算法库:内置丰富的算法库,几十种图算法开箱即用,优化的分布式并行图算法,千万级子图计算效率达到行业先进水平。企业级功能:支持用户权限认证、集群状态监控、日...

行业资讯
图数据库有哪些特点?
图数据库是现代数据库系统中的一种,它主要的特点就是使用了图论的概念来进行数据管理。传统的关系型数据库通常是基于表和列的结构进行数据管理,而图数据库则是构建了节点和边的图形结构,可以更好的表示现实世界中的复杂关系。下面是图数据库的几个主要特点:1.基于图形结构:图数据库是基于图形结构来进行数据管理的。它通过节点和边来构建数据的表示形式,使得数据之间的关系和结构更加直观和清晰。这对于处理关联复杂、数据关系复杂的场景具有重要意义。2.高效地关系查询和分析:图数据库具有高效的关系查询和分析能力。对于一个大规模的图,传统的SQL查询方式显然不能满足查询时间的要求。而图数据库则可以通过图数据库内部的算法来进行实时的查询和分析。尤其是针对一些复杂的图分析算法,图数据库更能够快速地获得结果,提高查询速度。3.可扩展性:由于采用了分布式的技术设计,使图数据库的可扩展性极佳。当需要管理的数据量增加时,图数据库可以通过简单的集群扩展方式来实现性能的提升。而且,图数据库的分布式能力也可以让其在多个节点上进行操作,提高了系统的容错能力和加载能力。4.元素和关系度量:图数据库具有丰富的元素数据和关系数据量度方式。...

行业资讯
数据要素安全流通服务
数据要素是数字经济发展的关键生产要素,是数字经济发展的基础。加快培育数据要素市场是全面建设社会主义现代化国家的一项基础性工作,对推动经济高质量发展、建设数字中国和数字强省、促进经济社会数字化转型具有重要意义。星环科技致力于打造企业级大数据基础软件,围绕数据全生命周期提供基础软件与服务。基于在大数据、分布式数据库、隐私计算、数据安全流通领域的多年积累,星环科技研发了数据要素流通全过程的一系列工具,在各方数据不出域的前提下,为数据资源方和数据消费方提供数据交付服务。2021年星环科技成为上海数据交易所首批签约数商。2022年9月星环科技曾受邀出席“深数交”数据合规活动,分享数据安全出境解决方案。2022年12月星环科技与中国东信旗下北部湾大数据交易中心达成了战略合作。星环科技在产品的各层级上都完善了安全技术,从而可以给用户提供体系化的数据安全防护能力,助力企业高效、合规的开展数据流通业务。在基础设施层,星环科技提供基于容器的云原生操作系统TCOS,它不仅能够提供容器隔离和镜像扫描,还新增了漏洞检测以及面向业务的微隔离安全技术,从而可以为用户开辟一个独立的数据与计算环境,外部的服务未经授权无...

行业资讯
金融、医疗知识图谱平台
垂直领域知识图谱产品主要用于面向特定领域知识应用需求,通过构建和应用知识图谱解决对应领域的专业问题。目前,知识图谱在智慧医疗与智慧金融领域已取得了一系列成功实践,被应用于辅助医生、药物发现、临床科研、风险防控、内部监管、投资研究、保险理赔等众多实际业务场景,并涌现出了一批知识图谱产品或服务平台。星环科技自主研发的知识图谱平台Sophon正是一款覆盖知识全生命周期,集知识的采集、建模、融合、存储、计算及应用为一体的知识图谱产品。平台支持低代码图谱构建、智能化知识抽取、多模态知识存储与融合、多形式知识计算和推理以及多维度的图谱分析。除了具备链路完备性,平台还从业务场景出发,沉淀了金融、保险等场景的图数据模型、规则模型和算法模型,可以帮助用户快速解决不同场景下的业务问题。目前,星环科技Sophon已经在金融等多个行业成功落地,在反洗钱、反欺诈、疫情防控、公共安全、企业级营销、保险知识智能问答等场景有着广泛的应用。同时星环科技在推动知识图谱技术创新和成功落地的过程中,也获得了多项荣誉和权威认可:入选Gartner《MarketGuideforArtificialIntelligenceStar...

行业资讯
基于数据安全网关的跨境安全流通方案
星环科技致力于打造企业级大数据基础软件,基于在大数据、分布式数据库、隐私计算、数据安全流通领域有着多年积累,研发了数据要素流通全过程的一系列工具,在各方数据不出域的前提下,为数据资源方和数据消费方提供数据交付服务。2022年9月星环科技曾受邀出席“深数交”数据合规活动,分享数据安全出境解决方案。2021年星环科技成为上海数据交易所首批签约数商。2022年12月星环科技与中国东信旗下北部湾大数据交易中心达成了战略合作。伴随数字经济蓬勃发展,融入全球数据跨境流动的趋势不可避免。数据出境安全治理受到广泛重视,为进一步规范数据出境活动,保护个人信息权益,维护国家安全和社会公共利益,促进数据跨境安全,国家互联网信息办公室发布了《数据出境安全评估办法》。国内运营的外企(尤其是零售、化工等)、新能源汽车以及生态企业(含自动驾驶等)、国际化企业与出海企业、跨境电商和物流、有融资需求的基于数字化做业务创新的创业公司等是国内迫切需要落实数据安全出境的企业。然而企业在落地数据出境安全方面存在一些实际困难,主要体现在:错综复杂的数据如何分类分级,如何识别重要数据;重要数据如何存储和管理,才能达到相关法律法规的...

行业资讯
什么是时空数据库?
时空数据库(Spacial-temporaldatabase)是一种专门用于存储和管理时空数据的数据库管理系统,它是传统关系型数据库的一个扩展,可以实现对时空数据进行有效管理和处理。时空数据是指带有时空坐标或时间戳的数据,例如地图、气象数据、交通、城市规划等。因此,时空数据库可以用于多种应用程序,如地理信息系统、航空航天、气象预报、GPS导航等。时空数据库与传统数据库不同的是,它提供了额外的功能和数据类型,例如点、线、面等空间对象和时间序列数据类型。此外,时空数据库还支持空间查询和时空查询,例如常见的缓冲区查询,使得用户可以在时空范围内进行查询和分析。这种数据库可以对时空数据进行高效的存储、查询、更新和分析,并通过插件技术集成其他地理信息数据源。星环分布式时空数据库-SpactureSpacture是星环科技自主研发的一款面向空间、时空数据的存储与管理,集计算与存储为一体的分布式数据库产品,支持大规模矢量数据、时空轨迹数据的存储与计算,具有完备的数据查询、分析和挖掘能力,可用于时空查询分析、时空模式挖掘、时空轨迹聚类等时空轨迹数据分析场景,广泛应用于交通物流、城市管理、位置服务等场景。

行业资讯
银行图数据库应用场景有哪些?
银行图数据库的应用场景:反洗钱:图数据库可以将可疑交易数据存储于其中,帮助银行更快速地提取、分析与关系,识别出潜在的洗钱行为。客户关系管理:银行图数据库可以将客户的不同信息(如交易记录、信用评级、客户所在地和行业等)进行整合,并将这些信息在一个数据仓库中呈现出来。这使得银行能够更加精准地分析客户需求,提供更加符合客户需求、更加优质的服务。风险管理:银行是一个与风险息息相关的行业。图数据库可以帮助银行对相关风险进行整合和分析。通过解析大量的金融数据,图数据库可以找出潜在的风险点,提前控制风险。数字化转型:图数据库能够将社交网络、收集的数据等信息关联起来,并创造性地开拓新业务模式。除了与客户密切相关的业务领域,图数据库还能够在支持业务流程优化方面发挥重要作用。营销:银行可以使用图数据库来收集客户数据、行为数据等,这样可以更加精确地预测客户习惯,对客户进行更加细致的营销和服务。银行图数据库有着广泛的应用场景,可以在多个角度上支持银行的业务发展,提高服务的质量和效率。星环分布式图数据库StellarDB星环科技致力于打造企业级大数据基础软件,围绕数据的集成、存储、治理、建模、分析、挖掘和流通等...

行业资讯
常见的图数据库应用场景有哪些?
图数据库有许多适用场景,常见的应用场景有:社交媒体:社交媒体中的用户和关系可以建模为图结构。用图数据库来管理和查询这些社交数据,可以实现更精确的社交关系分析。金融:在金融领域中,图数据库可以用于合规风控、反欺诈、投资和信贷决策等众多场景。例如,通过在图中存储和分析不同实体(如银行账户、信用卡、电话、邮箱、运单等)之间的关系,可以准确识别欺诈降低风险。物流和运输:物流和运输领域也是图数据库的应用场景之一。例如,通过在图中存储城市、仓库、货物、运输路线等信息,可以进行物流管理、运输计划优化、货物追踪等任务。生命科学:在生命科学领域,图数据库可以用于存储和分析复杂的基因、蛋白质、代谢物等数据,帮助科学家发现新的治疗方法和疾病机制。游戏:游戏开发者可以使用图数据库来管理玩家角色、各种装备、地图、任务等复杂的游戏数据,实现更好的游戏体验。图数据库的灵活性和高效性使其在多个领域都有着广泛的应用。星环分布式图数据库StellarDB星环科技致力于打造企业级大数据基础软件,围绕数据的集成、存储、治理、建模、分析、挖掘和流通等数据全生命周期提供基础软件与服务,在图计算领域深耕多年,自主研发了分布式图数据...

行业资讯
国产化替代升级实践
新时代需要新技术,企业应抓住机遇实现旧平台的改造升级数据库技术经过不断的发展,已经从以Oracle、IBM为代表的集中式数据库,演进到分布式、多模型、云原生的形态,并在很多场景应用落地,带来了真实的业务价值。当前得益于国家政策的大力扶持以及国内市场环境的快速发展,国产软件加速发展,国产化替代进程正在不断加速。自主可控是国产化替代的核心,同时也是一个阶段性的目标。我们不应该满足于此,应该抓住国产化改造的机遇,用新技术去替代老技术,实现自主可控的同时,完成旧系统的改造升级,这也是信创的主旨。星环科技致力于打造企业级大数据基础软件,围绕数据全生命周期提供基础软件与服务,在分布式技术、多模型技术、数据云技术等方面有很多技术突破。比如大数据基础平台TDH是全球首个通过TPC-DS基准测试的产品;提出了创新的多模型统一技术架构,支持业内主流的10种数据模型,Gartner®发布的中国数据库技术发展趋势报告引用星环科技多模型联合分析用例,论证了多模型融合分析的趋势和价值。基于多年积累的分布式技术、多模型统一技术、数据云技术等,星环科技打造了分布式数据库ArgoDB、分布式交易型数据库KunDB、分布...