银行隐私计算建模

星环隐私计算平台
Sophon P²C是一款分布式隐私计算平台,集隐私计算、加密网络通信等多种功能,为多方安全建模提供完整的解决方案。以隐私保护为前提,Sophon P²C解决了跨组织协作时无法安全利用各方数据的困境
隐私计算
Sophon P²C是一款分布式隐私计算平台,集隐私查询、隐私计算、加密通信等多种功能,能够为多方安全建模提供完整的解决方案。其以隐私保护为前提,能够帮助用户解决跨组织协作时无法安全利用各方数据的困境。

银行隐私计算建模 更多内容

)应运而生。隐私计算的核心目标是实现数据的共享、互通、计算建模,同时确保数据的安全性和隐私性。隐私计算允许多个数据拥有者在不暴露数据本身的前提下,共同利用这些数据,从而产生超越各自数据本身的价值。这一过程的在数字化时代,数据已成为驱动社会发展的核心要素,而如何在保护个人隐私的同时实现数据的有效利用,则成为了一个亟待解决的问题。隐私计算(Privacy-preservingComputation实现,不仅保护了用户的隐私权益,也确保了数据计算的真实性和有效性。隐私计算是一个复杂而多样的技术体系,它融合了硬件、密码学、分布式机器学习等多种底层技术。其中,多方安全计算、联邦学习、可信执行环境、可信密态计算、同态加密、差分隐私等技术路线都是隐私计算的重要组成部分。这些技术各自拥有独特的特点和应用场景,共同构成了隐私计算的丰富技术栈。在实际应用中,隐私计算技术发挥着越来越重要的作用。面对海量的数据资源,隐私计算技术能够在严格的个人信息监管下,实现数据的合规利用。同时,在防范化解金融风险和金融支持实体经济的过程中,隐私计算也展现出了其独特的价值。它能够帮助金融机构在保护客户隐私的前提下,进行
引擎,是实现隐私保护计算的核心层。该层需具备高效的计算能力、良好的扩展性和稳定性,以支持大规模数据的隐私计算任务。应用层:为用户提供各种基于隐私计算的应用服务,如联合数据分析、联合建模、精准营销等隐私计算建设方案一、建设目标数据安全保护:确保在数据的采集、存储、使用、共享等全生命周期中,敏感数据不被泄露、篡改或滥用。合规性满足:严格遵循国内外关于数据隐私保护的法律法规。数据价值挖掘:在保障数据隐私的前提下,实现跨机构、跨部门的数据融合分析与应用,充分释放数据价值,为业务创新、决策支持等提供有力支撑。二、技术选型多方安全计算:适用于需要在多个参与方之间进行联合计算,且不暴露原始数据的场景相似但样本不同时,可采用横向联邦学习,如不同地区的银行基于各自的客户数据联合训练信用评估模型;纵向联邦学习适用于样本相似但特征不同的场景,如银行与电商平台合作,利用双方不同维度的客户数据进行联合建模的原始数据,包括结构化数据、半结构化数据和非结构化数据。数据存储需采用安全可靠的存储技术,如分布式存储、加密存储等,确保数据的完整性和安全性。隐私计算层:部署多方安全计算、联邦学习、同态加密等隐私计算
行业资讯
隐私计算 金融
,识别信用等级,降低多头信贷和欺诈风险。通过跨行业的数据联合建模,金融机构可以更有效地评估信贷风险,提高风控效果。精准营销:在金融营销中,隐私计算允许金融机构合规地调用外部数据,从而结合内外部数据进行精准营销,提升客户转化率。例如,通过联邦学习模型,某大型股份制银行在个人信贷营销中实现了显著的转化率提升。反洗钱与反欺诈:隐私计算技术能够提高金融机构的反洗钱和反欺诈能力,通过安全的数据共享和分析隐私计算在金融行业的应用正日益深入,为金融机构带来了诸多优势和创新机遇。以下是隐私计算在金融领域的一些主要应用场景和技术:应用场景联合风控:隐私计算技术可以帮助金融机构整合内外部数据资源进行风控预测,识别可疑交易和行为。保险精算:在保险行业,隐私计算可以用于精算模型的构建,帮助保险公司在不泄露客户隐私的情况下进行风险评估和定价。金融身份认证与征信评估:隐私计算技术可以在身份认证和征信评估过程中保护用户的敏感信息,同时提高评估的准确性。技术路径隐私计算技术在金融行业的应用主要依赖于以下几种技术:多方安全计算(MPC):允许多个参与方在不暴露各自数据的情况下进行联合计算。联邦学习:在保护数据隐私
行业资讯
隐私计算系统
不可见”的难题,通过安全多方计算、联邦学习、同态加密等技术手段,让数据在不暴露原始内容的情况下进行联合计算和分析,从而在保护数据隐私的同时,充分挖掘数据的价值。二、应用场景金融领域:银行等金融机构在隐私计算系统:数据安全与价值挖掘的新引擎在数字化浪潮席卷全球的今天,数据已然成为企业和社会发展的重要资产。然而,数据的广泛应用也带来了严峻的数据隐私安全问题。隐私计算系统的出现,为平衡数据流通与隐私保护提供了创新解决方案,正逐渐成为各行业关注和应用的焦点。一、隐私计算系统是什么隐私计算系统是一种融合了多种技术,能够在保障数据隐私安全的前提下,实现数据的计算和分析的技术体系。它致力于解决数据“可用进行信贷评估、风险预测时,往往需要整合多方数据。隐私计算系统可以帮助金融机构在不泄露客户敏感信息的前提下,联合其他机构的数据进行更精准的风险评估,降低信贷风险,同时保护客户隐私。医疗行业:医疗数据包含患者大量的敏感信息。通过隐私计算系统,医疗机构可以在保护患者隐私的基础上,将不同医院的数据进行联合分析,用于疾病研究、药物研发等,推动医疗技术的进步。智慧城市建设:城市管理涉及交通、能源、环境等多领域
技术,可以保障数据在加密状态下被采集、传输、存储、计算、共享和流通,中间的数据不会被攻击和被泄露。星环科技的联邦学习平台SophonP²C拥有隐私计算、加密网络通信等多种功能,为多方安全建模提供完整的近日,零壹财经•零壹智库发布国内首个系统研究隐私计算在金融领域应用的报告——《开启新纪元:隐私计算在金融领域应用发展报告(2021)》,星环科技荣登隐私计算厂商图谱,并成为国内唯一一家拥有大数据背景的入选企业。此次报告由零壹财经·零壹智库作为研究机构,由中国科技体制改革委员会数字经济发展研究小组、深圳市信用促进会、横琴数链数字金融研究院联合发布,旨在遴选出一批具有代表性的隐私计算厂商,树立引领等。一旦大数据平台宕机,组织中诸多核心业务将无法开展,造成的损失不可估量。作为大数据和人工智能基础软件平台供应商,星环科技一直非常重视企业用户的数据安全问题。今年3月,星环科技发布了隐私计算和联邦学习解决方案。以隐私保护为前提,SophonP²C从根本上解决了跨组织协作时无法安全利用各方数据的困境,真正实现了“原始数据不流通,分析模型流通”。星环科技隐私计算平台SophonP²C架构图安全性方面
行业资讯
联邦隐私计算
联邦隐私计算通常指联邦学习与隐私计算技术相结合。基本原理数据不出本地:参与方在本地拥有各自的数据,在联合训练模型或进行数据处理时,数据始终不离开本地设备或数据中心,避免了数据的直接共享。加密参数交互正确的计算结果,防止单点数据泄露。差分隐私:通过在数据处理或模型训练过程中添加适量的随机噪声,使得处理后的结果对于数据集中任何单个记录的存在或缺失不敏感,在保护个体隐私的同时提供有价值的统计信息。应用场景金融领域:银行、证券、保险等机构可在不共享客户敏感信息的前提下,联合进行风险评估、反欺诈检测、精准营销等模型的训练和优化,提升金融服务的质量和效率,同时保护客户隐私。医疗健康领域:不同医疗机构之间可以利用联邦隐私计算技术,在保护患者隐私的情况下,联合进行疾病诊断模型的训练、药物研发等工作,促进医疗数据的共享和利用。工业领域:在供应链上下游企业之间,可通过联邦隐私计算实现数据共享和协同分析,如需求预测、质量控制、生产优化等,提高产业链的协同效率和竞争力。:通过加密技术对模型参数进行加密处理后在参与方之间进行传输和交换。各方利用本地数据对加密后的参数进行计算和更新,并将更新后的加密参数再返回给其他参与方。主要技术同态加密:允许在密文上直接进行特定类型的
行业资讯
隐私计算技术
隐私计算是指通过多种技术手段,在不暴露数据本身的前提下实现数据的共享、互通、计算建模,从而产生超出原始数据的价值,并保证数据不会泄露给其他参与方。与传统的数据安全方式相比,隐私计算通过技术手段,而不是对人的信任。能够在参与方之间实现可用但不可见的操作,并且在运作过程中可以防备参与方之间的攻击。这推进了数据的安全性和隐私保护,保护了数据价值和用户的隐私隐私计算技术主要有以下几个方向:多方安全计算:基于密码学的隐私计算技术。通过设计特殊的加密算法和协议,能够在没有可信第三方的情况下,直接在多个参与方输入的加密数据上进行计算。其中,主要的技术包括同态加密、混淆电路、秘密分享和零知识证明等。联邦学习:是由人工智能隐私保护技术衍生出来的技术。联邦学习是一个机器学习框架,可以帮助多个机构在满足用户隐私保护、数据安全和政府法规的要求下进行数据使用和机器学习建模。其中,包括横向联邦学习、纵向联邦学习和联邦迁移学习等。可信执行环境:是基于可信硬件的隐私计算技术。该技术通过打造一个安全的区域,为代码的执行和数据的存储提供更高的安全性,以确保数据的机密性和不可篡改性。同态加密:是一种具有密文同态运算
行业资讯
隐私计算公司
隐私计算正在成为当今数字时代中的一个热门话题。作为一种创新的数据处理方式,隐私计算能够在保护用户数据隐私的同时,实现数据的有效利用。星环科技就是隐私计算服务公司之一。星环科技分布式隐私计算平台-SophonP²C星环科技分布式隐私计算平台SophonP²C集多方安全计算、联邦学习等多种功能,为隐私计算提供完整的解决方案,以隐私保护为前提,解决了跨组织协作时无法安全利用各方数据的困境。平台支持联邦学习、多方安全计算、匿踪查询等功能;性能方面,联邦学习与多方安全计算可达亿级数据量,助力数据要素安全流通和价值迸发,实现数字经济时代下的跨企业和行业的AI协作。星环科技的隐私计算技术已落地如数星河案例隐私计算优秀案例等多项认证和荣誉。随着隐私技术产品的技术能力和应用模式越发成熟,隐私计算将有助于构建数据流通的基础设施,在保证安全的前提下有效持续释放数据要素价值,促进数字经济高质量发展。据流通、政务民生、金融营销等垂直业务场景,为跨企业数据协作提供安全可信的平台支持。在政务民生场景,SophonP²C通过纵向联邦学习联合居民用电数据与用水数据,生成群租房预测名单。在联合建模过程中,全程明文
垂直领域知识图谱产品主要用于面向特定领域知识应用需求,通过构建和应用知识图谱解决对应领域的专业问题。目前,知识图谱在智慧医疗与智慧金融领域已取得了一系列成功实践,被应用于辅助医生、药物发现、临床科研、风险防控、内部监管、投资研究、保险理赔等众多实际业务场景,并涌现出了一批知识图谱产品或服务平台。星环科技自主研发的知识图谱平台Sophon正是一款覆盖知识全生命周期,集知识的采集、建模、融合、存储、计算及应用为一体的知识图谱产品。平台支持低代码图谱构建、智能化知识抽取、多模态知识存储与融合、多形式知识计算和推理以及多维度的图谱分析。除了具备链路完备性,平台还从业务场景出发,沉淀了金融、保险等场景的图数据模型、规则模型和算法模型,可以帮助用户快速解决不同场景下的业务问题。目前,星环科技Sophon已经在金融等多个行业成功落地,在反洗钱、反欺诈、疫情防控、公共安全、企业级营销、保险知识智能问答等场景有着广泛的应用。同时星环科技在推动知识图谱技术创新和成功落地的过程中,也获得了多项荣誉和权威认可:入选Gartner《MarketGuideforArtificialIntelligenceStar...
新时代需要新技术,企业应抓住机遇实现旧平台的改造升级数据库技术经过不断的发展,已经从以Oracle、IBM为代表的集中式数据库,演进到分布式、多模型、云原生的形态,并在很多场景应用落地,带来了真实的业务价值。当前得益于国家政策的大力扶持以及国内市场环境的快速发展,国产软件加速发展,国产化替代进程正在不断加速。自主可控是国产化替代的核心,同时也是一个阶段性的目标。我们不应该满足于此,应该抓住国产化改造的机遇,用新技术去替代老技术,实现自主可控的同时,完成旧系统的改造升级,这也是信创的主旨。星环科技致力于打造企业级大数据基础软件,围绕数据全生命周期提供基础软件与服务,在分布式技术、多模型技术、数据云技术等方面有很多技术突破。比如大数据基础平台TDH是全球首个通过TPC-DS基准测试的产品;提出了创新的多模型统一技术架构,支持业内主流的10种数据模型,Gartner®发布的中国数据库技术发展趋势报告引用星环科技多模型联合分析用例,论证了多模型融合分析的趋势和价值。基于多年积累的分布式技术、多模型统一技术、数据云技术等,星环科技打造了分布式数据库ArgoDB、分布式交易型数据库KunDB、分布...
图数据库有许多适用场景,常见的应用场景有:社交媒体:社交媒体中的用户和关系可以建模为图结构。用图数据库来管理和查询这些社交数据,可以实现更精确的社交关系分析。金融:在金融领域中,图数据库可以用于合规风控、反欺诈、投资和信贷决策等众多场景。例如,通过在图中存储和分析不同实体(如银行账户、信用卡、电话、邮箱、运单等)之间的关系,可以准确识别欺诈降低风险。物流和运输:物流和运输领域也是图数据库的应用场景之一。例如,通过在图中存储城市、仓库、货物、运输路线等信息,可以进行物流管理、运输计划优化、货物追踪等任务。生命科学:在生命科学领域,图数据库可以用于存储和分析复杂的基因、蛋白质、代谢物等数据,帮助科学家发现新的治疗方法和疾病机制。游戏:游戏开发者可以使用图数据库来管理玩家角色、各种装备、地图、任务等复杂的游戏数据,实现更好的游戏体验。图数据库的灵活性和高效性使其在多个领域都有着广泛的应用。星环分布式图数据库StellarDB星环科技致力于打造企业级大数据基础软件,围绕数据的集成、存储、治理、建模、分析、挖掘和流通等数据全生命周期提供基础软件与服务,在图计算领域深耕多年,自主研发了分布式图数据...
星环科技图数据库StellarDB是国产高性能图数据库,采用分布式架构和原生图计算引擎,支持超大规模数据管理和高效的图计算。TranswarpStellarDB具有以下特点:原生图存储:StellarDB为数据存储设计了专有的图存储结构,优化查询性能,通过高效的压缩算法减少磁盘和内存的使用量。根据分区策略,图数据均匀分布于集群各节点。优越的性能:存储引擎和计算引擎结合,使计算引擎可以利用数据locality提升计算性能,拥有卓越的数据读写能力,支持大规模并行处理,毫秒级的查询响应。高扩展性:完全的分布式架构,具有良好的可扩展性,支持在线扩容和升级。拥有万亿级图数据处理能力,支持数据多副本,提供集群高可用和高可靠。灵活的查询方式:计算引擎支持灵活易懂的图查询语言TranswarpExtended-OpenCypher,拥有丰富的图操作语法。同时提供SQL支持,多模场景灵活切换。深度分析能力:支持10层及以上的图深度遍历和复杂分析。丰富的算法库:内置丰富的算法库,几十种图算法开箱即用,优化的分布式并行图算法,千万级子图计算效率达到行业先进水平。企业级功能:支持用户权限认证、集群状态监控、日...
星环科技分布式隐私计算平台SophonP²C集多方安全计算、联邦学习等多种功能,为隐私计算提供完整的解决方案,以隐私保护为前提,解决了跨组织协作时无法安全利用各方数据的困境。平台支持联邦学习、多方安全计算、匿踪查询等功能;性能方面,联邦学习与多方安全计算可达亿级数据量,助力数据要素安全流通和价值迸发,实现数字经济时代下的跨企业和行业的AI协作。星环科技的隐私计算技术已落地如数据流通、政务民生、金融营销等垂直业务场景,为跨企业数据协作提供安全可信的平台支持。在政务民生场景,SophonP²C通过纵向联邦学习联合居民用电数据与用水数据,生成群租房预测名单。在联合建模过程中,全程明文数据不出,有效保护了居民用水用电的数据隐私信息。联合训练模型比本地单独用电数据训练的模型AUC提升20%以上,赋能政务决策高效的处理分析能力,为政府有效排查群租房,消除群租房造成的消防、安全隐患,打造和谐、安全、美丽的生活环境作出了突出贡献,为政务决策、民生建设发挥信息化支撑保障作用。在精准营销场景,通过纵向联邦学习,车企安全引入了多方数据,丰富用户特征维度,对用户行为进行统计分析。在联合建模过程中,全程明文数据...
时空数据库(Spacial-temporaldatabase)是一种专门用于存储和管理时空数据的数据库管理系统,它是传统关系型数据库的一个扩展,可以实现对时空数据进行有效管理和处理。时空数据是指带有时空坐标或时间戳的数据,例如地图、气象数据、交通、城市规划等。因此,时空数据库可以用于多种应用程序,如地理信息系统、航空航天、气象预报、GPS导航等。时空数据库与传统数据库不同的是,它提供了额外的功能和数据类型,例如点、线、面等空间对象和时间序列数据类型。此外,时空数据库还支持空间查询和时空查询,例如常见的缓冲区查询,使得用户可以在时空范围内进行查询和分析。这种数据库可以对时空数据进行高效的存储、查询、更新和分析,并通过插件技术集成其他地理信息数据源。星环分布式时空数据库-SpactureSpacture是星环科技自主研发的一款面向空间、时空数据的存储与管理,集计算与存储为一体的分布式数据库产品,支持大规模矢量数据、时空轨迹数据的存储与计算,具有完备的数据查询、分析和挖掘能力,可用于时空查询分析、时空模式挖掘、时空轨迹聚类等时空轨迹数据分析场景,广泛应用于交通物流、城市管理、位置服务等场景。
图数据库是现代数据库系统中的一种,它主要的特点就是使用了图论的概念来进行数据管理。传统的关系型数据库通常是基于表和列的结构进行数据管理,而图数据库则是构建了节点和边的图形结构,可以更好的表示现实世界中的复杂关系。下面是图数据库的几个主要特点:1.基于图形结构:图数据库是基于图形结构来进行数据管理的。它通过节点和边来构建数据的表示形式,使得数据之间的关系和结构更加直观和清晰。这对于处理关联复杂、数据关系复杂的场景具有重要意义。2.高效地关系查询和分析:图数据库具有高效的关系查询和分析能力。对于一个大规模的图,传统的SQL查询方式显然不能满足查询时间的要求。而图数据库则可以通过图数据库内部的算法来进行实时的查询和分析。尤其是针对一些复杂的图分析算法,图数据库更能够快速地获得结果,提高查询速度。3.可扩展性:由于采用了分布式的技术设计,使图数据库的可扩展性极佳。当需要管理的数据量增加时,图数据库可以通过简单的集群扩展方式来实现性能的提升。而且,图数据库的分布式能力也可以让其在多个节点上进行操作,提高了系统的容错能力和加载能力。4.元素和关系度量:图数据库具有丰富的元素数据和关系数据量度方式。...
星环科技致力于打造企业级大数据基础软件,基于在大数据、分布式数据库、隐私计算、数据安全流通领域有着多年积累,研发了数据要素流通全过程的一系列工具,在各方数据不出域的前提下,为数据资源方和数据消费方提供数据交付服务。2022年9月星环科技曾受邀出席“深数交”数据合规活动,分享数据安全出境解决方案。2021年星环科技成为上海数据交易所首批签约数商。2022年12月星环科技与中国东信旗下北部湾大数据交易中心达成了战略合作。伴随数字经济蓬勃发展,融入全球数据跨境流动的趋势不可避免。数据出境安全治理受到广泛重视,为进一步规范数据出境活动,保护个人信息权益,维护国家安全和社会公共利益,促进数据跨境安全,国家互联网信息办公室发布了《数据出境安全评估办法》。国内运营的外企(尤其是零售、化工等)、新能源汽车以及生态企业(含自动驾驶等)、国际化企业与出海企业、跨境电商和物流、有融资需求的基于数字化做业务创新的创业公司等是国内迫切需要落实数据安全出境的企业。然而企业在落地数据出境安全方面存在一些实际困难,主要体现在:错综复杂的数据如何分类分级,如何识别重要数据;重要数据如何存储和管理,才能达到相关法律法规的...
银行图数据库的应用场景:反洗钱:图数据库可以将可疑交易数据存储于其中,帮助银行更快速地提取、分析与关系,识别出潜在的洗钱行为。客户关系管理:银行图数据库可以将客户的不同信息(如交易记录、信用评级、客户所在地和行业等)进行整合,并将这些信息在一个数据仓库中呈现出来。这使得银行能够更加精准地分析客户需求,提供更加符合客户需求、更加优质的服务。风险管理:银行是一个与风险息息相关的行业。图数据库可以帮助银行对相关风险进行整合和分析。通过解析大量的金融数据,图数据库可以找出潜在的风险点,提前控制风险。数字化转型:图数据库能够将社交网络、收集的数据等信息关联起来,并创造性地开拓新业务模式。除了与客户密切相关的业务领域,图数据库还能够在支持业务流程优化方面发挥重要作用。营销:银行可以使用图数据库来收集客户数据、行为数据等,这样可以更加精确地预测客户习惯,对客户进行更加细致的营销和服务。银行图数据库有着广泛的应用场景,可以在多个角度上支持银行的业务发展,提高服务的质量和效率。星环分布式图数据库StellarDB星环科技致力于打造企业级大数据基础软件,围绕数据的集成、存储、治理、建模、分析、挖掘和流通等...
数据要素是数字经济发展的关键生产要素,是数字经济发展的基础。加快培育数据要素市场是全面建设社会主义现代化国家的一项基础性工作,对推动经济高质量发展、建设数字中国和数字强省、促进经济社会数字化转型具有重要意义。星环科技致力于打造企业级大数据基础软件,围绕数据全生命周期提供基础软件与服务。基于在大数据、分布式数据库、隐私计算、数据安全流通领域的多年积累,星环科技研发了数据要素流通全过程的一系列工具,在各方数据不出域的前提下,为数据资源方和数据消费方提供数据交付服务。2021年星环科技成为上海数据交易所首批签约数商。2022年9月星环科技曾受邀出席“深数交”数据合规活动,分享数据安全出境解决方案。2022年12月星环科技与中国东信旗下北部湾大数据交易中心达成了战略合作。星环科技在产品的各层级上都完善了安全技术,从而可以给用户提供体系化的数据安全防护能力,助力企业高效、合规的开展数据流通业务。在基础设施层,星环科技提供基于容器的云原生操作系统TCOS,它不仅能够提供容器隔离和镜像扫描,还新增了漏洞检测以及面向业务的微隔离安全技术,从而可以为用户开辟一个独立的数据与计算环境,外部的服务未经授权无...