银行隐私计算建模
Sophon P²C是一款分布式隐私计算平台,集隐私计算、加密网络通信等多种功能,为多方安全建模提供完整的解决方案。以隐私保护为前提,Sophon P²C解决了跨组织协作时无法安全利用各方数据的困境
Sophon P²C是一款分布式隐私计算平台,集隐私查询、隐私计算、加密通信等多种功能,能够为多方安全建模提供完整的解决方案。其以隐私保护为前提,能够帮助用户解决跨组织协作时无法安全利用各方数据的困境。
银行隐私计算建模 更多内容
行业资讯
隐私计算平台有哪些
,支持多方参与的机器学习建模;TensorFlowPrivacy则专注于差分隐私保护,被多家研究机构采用。商业解决方案中,蚂蚁链摩斯平台已服务超过500家企业客户,其特色是融合了区块链技术实现计算。这些平台在实际应用中展现出显著价值。某股份制商业银行采用蚂蚁摩斯平台后,在联合征信场景中数据使用合规率提升至99.9%,同时模型准确度保持行业领先水平。值得注意的是,行业垂直化解决方案正在兴起,如医疗领域专用的隐私计算平台,支持DICOM等专业数据格式的安全处理。隐私计算平台有哪些当前主流的隐私计算平台主要分为三大类型,满足不同场景下的数据安全计算需求。开源平台方面,FATE(FederatedAITechnologyEnabler)是最受欢迎的联邦学习框架过程可审计;腾讯云数盾则凭借与微信生态的深度整合,在营销场景表现突出。云服务厂商也纷纷入局,AWSCleanRooms和微软AzureConfidentialComputing都提供了即用型的隐私计算服务

行业资讯
什么是隐私计算?
)应运而生。隐私计算的核心目标是实现数据的共享、互通、计算、建模,同时确保数据的安全性和隐私性。隐私计算允许多个数据拥有者在不暴露数据本身的前提下,共同利用这些数据,从而产生超越各自数据本身的价值。这一过程的在数字化时代,数据已成为驱动社会发展的核心要素,而如何在保护个人隐私的同时实现数据的有效利用,则成为了一个亟待解决的问题。隐私计算(Privacy-preservingComputation实现,不仅保护了用户的隐私权益,也确保了数据计算的真实性和有效性。隐私计算是一个复杂而多样的技术体系,它融合了硬件、密码学、分布式机器学习等多种底层技术。其中,多方安全计算、联邦学习、可信执行环境、可信密态计算、同态加密、差分隐私等技术路线都是隐私计算的重要组成部分。这些技术各自拥有独特的特点和应用场景,共同构成了隐私计算的丰富技术栈。在实际应用中,隐私计算技术发挥着越来越重要的作用。面对海量的数据资源,隐私计算技术能够在严格的个人信息监管下,实现数据的合规利用。同时,在防范化解金融风险和金融支持实体经济的过程中,隐私计算也展现出了其独特的价值。它能够帮助金融机构在保护客户隐私的前提下,进行

行业资讯
隐私计算建设方案
引擎,是实现隐私保护计算的核心层。该层需具备高效的计算能力、良好的扩展性和稳定性,以支持大规模数据的隐私计算任务。应用层:为用户提供各种基于隐私计算的应用服务,如联合数据分析、联合建模、精准营销等隐私计算建设方案一、建设目标数据安全保护:确保在数据的采集、存储、使用、共享等全生命周期中,敏感数据不被泄露、篡改或滥用。合规性满足:严格遵循国内外关于数据隐私保护的法律法规。数据价值挖掘:在保障数据隐私的前提下,实现跨机构、跨部门的数据融合分析与应用,充分释放数据价值,为业务创新、决策支持等提供有力支撑。二、技术选型多方安全计算:适用于需要在多个参与方之间进行联合计算,且不暴露原始数据的场景相似但样本不同时,可采用横向联邦学习,如不同地区的银行基于各自的客户数据联合训练信用评估模型;纵向联邦学习适用于样本相似但特征不同的场景,如银行与电商平台合作,利用双方不同维度的客户数据进行联合建模的原始数据,包括结构化数据、半结构化数据和非结构化数据。数据存储需采用安全可靠的存储技术,如分布式存储、加密存储等,确保数据的完整性和安全性。隐私计算层:部署多方安全计算、联邦学习、同态加密等隐私计算

行业资讯
隐私计算 金融
,识别信用等级,降低多头信贷和欺诈风险。通过跨行业的数据联合建模,金融机构可以更有效地评估信贷风险,提高风控效果。精准营销:在金融营销中,隐私计算允许金融机构合规地调用外部数据,从而结合内外部数据进行精准营销,提升客户转化率。例如,通过联邦学习模型,某大型股份制银行在个人信贷营销中实现了显著的转化率提升。反洗钱与反欺诈:隐私计算技术能够提高金融机构的反洗钱和反欺诈能力,通过安全的数据共享和分析隐私计算在金融行业的应用正日益深入,为金融机构带来了诸多优势和创新机遇。以下是隐私计算在金融领域的一些主要应用场景和技术:应用场景联合风控:隐私计算技术可以帮助金融机构整合内外部数据资源进行风控预测,识别可疑交易和行为。保险精算:在保险行业,隐私计算可以用于精算模型的构建,帮助保险公司在不泄露客户隐私的情况下进行风险评估和定价。金融身份认证与征信评估:隐私计算技术可以在身份认证和征信评估过程中保护用户的敏感信息,同时提高评估的准确性。技术路径隐私计算技术在金融行业的应用主要依赖于以下几种技术:多方安全计算(MPC):允许多个参与方在不暴露各自数据的情况下进行联合计算。联邦学习:在保护数据隐私的

行业资讯
联邦隐私计算
联邦隐私计算通常指联邦学习与隐私计算技术相结合。基本原理数据不出本地:参与方在本地拥有各自的数据,在联合训练模型或进行数据处理时,数据始终不离开本地设备或数据中心,避免了数据的直接共享。加密参数交互正确的计算结果,防止单点数据泄露。差分隐私:通过在数据处理或模型训练过程中添加适量的随机噪声,使得处理后的结果对于数据集中任何单个记录的存在或缺失不敏感,在保护个体隐私的同时提供有价值的统计信息。应用场景金融领域:银行、证券、保险等机构可在不共享客户敏感信息的前提下,联合进行风险评估、反欺诈检测、精准营销等模型的训练和优化,提升金融服务的质量和效率,同时保护客户隐私。医疗健康领域:不同医疗机构之间可以利用联邦隐私计算技术,在保护患者隐私的情况下,联合进行疾病诊断模型的训练、药物研发等工作,促进医疗数据的共享和利用。工业领域:在供应链上下游企业之间,可通过联邦隐私计算实现数据共享和协同分析,如需求预测、质量控制、生产优化等,提高产业链的协同效率和竞争力。:通过加密技术对模型参数进行加密处理后在参与方之间进行传输和交换。各方利用本地数据对加密后的参数进行计算和更新,并将更新后的加密参数再返回给其他参与方。主要技术同态加密:允许在密文上直接进行特定类型的

行业资讯
隐私计算公司
隐私计算正在成为当今数字时代中的一个热门话题。作为一种创新的数据处理方式,隐私计算能够在保护用户数据隐私的同时,实现数据的有效利用。星环科技就是隐私计算服务公司之一。星环科技分布式隐私计算平台-SophonP²C星环科技分布式隐私计算平台SophonP²C集多方安全计算、联邦学习等多种功能,为隐私计算提供完整的解决方案,以隐私保护为前提,解决了跨组织协作时无法安全利用各方数据的困境。平台支持联邦学习、多方安全计算、匿踪查询等功能;性能方面,联邦学习与多方安全计算可达亿级数据量,助力数据要素安全流通和价值迸发,实现数字经济时代下的跨企业和行业的AI协作。星环科技的隐私计算技术已落地如数星河案例隐私计算优秀案例等多项认证和荣誉。随着隐私技术产品的技术能力和应用模式越发成熟,隐私计算将有助于构建数据流通的基础设施,在保证安全的前提下有效持续释放数据要素价值,促进数字经济高质量发展。据流通、政务民生、金融营销等垂直业务场景,为跨企业数据协作提供安全可信的平台支持。在政务民生场景,SophonP²C通过纵向联邦学习联合居民用电数据与用水数据,生成群租房预测名单。在联合建模过程中,全程明文

行业资讯
国内隐私计算平台
星环SophonP²C是企业级隐私计算平台,拥有多项性能及安全认证,平台支持不同场景的隐私计算需求,包括横纵向联邦学习、多方安全计算、基于差分隐私的数据发布、匿踪查询等,为多方数据安全协作提供完整的平台底座。SophonP²C可用于解决跨组织协作时无法安全利用各方数据的难题,助力数据流通应用的合法合规。在保障隐私的前提下,围绕数据的集成、存储、治理、建模、分析、挖掘和流通等数据全生命周期,提供、高效的平台支持。分布式隐私计算平台SophonP²C产品优势:支持多种隐私计算框架,平台易用易部署1.采用同态加密、差分隐私、秘密分享、不经意传输等隐私技术,覆盖联邦学习(FL)、多方安全计算(MPC)、匿踪查询(PIR)、隐私求交(PSI)等多种隐私计算功能。2.支持大数据规模的隐私计算场景,支持亿级数据进行联邦学习、多方安全计算和隐私求交。3.提供页面可视化安装部署,并支持实体部署、容器部署、云上部署等多种方式,轻松完成平台上线。4.低代码可视化隐私计算平台,提供算子托拉拽式本地数据清洗与特征工程能力,实现高效数据预处理。5.多行业AI落地经验,可提供专家级应用服务,如联邦风控、联邦反

技术,可以保障数据在加密状态下被采集、传输、存储、计算、共享和流通,中间的数据不会被攻击和被泄露。星环科技的联邦学习平台SophonP²C拥有隐私计算、加密网络通信等多种功能,为多方安全建模提供完整的近日,零壹财经•零壹智库发布国内首个系统研究隐私计算在金融领域应用的报告——《开启新纪元:隐私计算在金融领域应用发展报告(2021)》,星环科技荣登隐私计算厂商图谱,并成为国内唯一一家拥有大数据背景的入选企业。此次报告由零壹财经·零壹智库作为研究机构,由中国科技体制改革委员会数字经济发展研究小组、深圳市信用促进会、横琴数链数字金融研究院联合发布,旨在遴选出一批具有代表性的隐私计算厂商,树立引领等。一旦大数据平台宕机,组织中诸多核心业务将无法开展,造成的损失不可估量。作为大数据和人工智能基础软件平台供应商,星环科技一直非常重视企业用户的数据安全问题。今年3月,星环科技发布了隐私计算和联邦学习解决方案。以隐私保护为前提,SophonP²C从根本上解决了跨组织协作时无法安全利用各方数据的困境,真正实现了“原始数据不流通,分析模型流通”。星环科技隐私计算平台SophonP²C架构图安全性方面
猜你喜欢

行业资讯
一站式大数据开发工具
TranswarpDataStudio(简称TDS)是星环科技自研的一站式大数据开发工具,提供数据集成、存储、治理、服务和共享等数据处理全生命周期的企业级管理能力。结合星环科技大数据基础平台TranswarpDataHub简称TDH)业界创新的多模态的大数据处理能力,能够提升企业构建数据中台、数据仓库、数据湖等系统的效率,更高效地实现数据资产化和数据业务化数据开发套件,助力企业完成数据统一化数据开发套件包含了大数据整合工具Transporter、数据库在线开发与协同工具SQLBook和任务调度软件Workflow,该套件作为星环科技大数据基础平台TranswarpDataHub的生态开发应用工具,针对数据开发场景,提供数据集成、SQL开发和任务调度的能力,帮助企业将数据归集到数据湖仓,完成数据统一化的过程。数据开发套件的三大核心优势:分布式架构设计,可支持PB级别的数据平台建设,支持日均十万级任务调度,性能可扩展;支持SQL关键词和SQL片段推荐,数据开发知识积累,智能化持续优化开发体验和开发效率;基于大数据平台计算能力提供数据转换能力,避免传统ETL工具本身的计算瓶颈。数据治理套件,...

行业资讯
国产边缘计算平台
数字经济时代,边缘计算作为行业数字转型的核心能力底座,正在快速崛起。星环科技也在边缘计算领域进行了诸多探索,研发了边缘计算平台Sophon。Sophon是解决多模态数据集成和治理过程中的边缘化、智能化的云端-边缘端融合计算平台,支持标准的视频和物联网协议接入,低代码的业务流程构建,高性能的数据处理和分析,企业级的云-边数据、服务治理,以及针对边缘嵌入式和云端服务器等异构硬件的适配。星环科技Sophon平台包括设备数据管理、模型训练迭代、边缘模型部署、应用构建分发、数据治理能力、边缘自治能力、云边协同能力七大能力。Sophon可以从两个层面实现效益价值:降低长尾应用的实施人力,降低从数据到模型,模型到应用的构建成本;改变长尾应用的落地模式,从粗放的一次性模型交付到精细化的模型持续运营。其主要技术创新包括:边缘可视化流处理构建、边缘数据采样驱动模型迭代、边缘实时数据可视化、边缘深度推理引擎。设备数据管理:平台支持超过20种标准的设备协议,用户只需要进行简单配置便可快速将物联网设备或视频设备接入平台,并进行设备数据实时预览和统一管理。边缘模型部署:平台支持多种框架训练的深度学习模型的上架,通...

行业资讯
图数据库技术
图数据库技术是一种应对处理网络、社交网络、金融、物流、人力资源等领域大规模图数据的数据库技术。它的核心思想是将数据以节点和边(或关系)的形式表示为图结构,并且使用图论算法来处理和分析图数据。与传统关系型数据库相比,图数据库具有以下独有的优势:高效处理复杂关系:图数据库能够更加高效和便利地处理网络关系的复杂性,而关系型数据库则需要多表关联,从而开销比较大。更加贴合业务需求:图数据库建立的业务图模型更能够贴合实际业务需求,更好的反映业务中的关系复杂性,同时也更加容易维护和解决问题。易于拓展:作为新型数据库,图数据库基于跨平台开源软件,并且基于标准语言,可以并行处理,易于拓展。更好的查询性能:图数据库采用以图形方式存储的数据,查询性能快,即使在数据量较大时,图查询语言效果也良好。更好的原型应用程序:图数据库的特性,同时也增加了更多的应用程序,这些程序在传统关系型数据库中往往比较困难。图数据库技术在社交网络分析、推荐系统、物流、金融、人工智能等领域有广泛的应用前景。星环分布式图数据库StellarDB星环科技致力于打造企业级大数据基础软件,围绕数据的集成、存储、治理、建模、分析、挖掘和流通等数...

行业资讯
多模数据平台监控软件
AquilaInsight是星环科技推出的一款多模数据平台监控软件,为企业运维团队提供了一套统一、完整、便捷的智能化运维解决方案。通过丰富的仪表盘管理、告警与通知管理、实时和历史查询语句运行分析、计算和存储引擎的统一监控、完整的日志收集过滤与检索等功能,实现高效智能运维的目标,充分保证集群稳定高效的运作。业务痛点企业在应对业务部门的扩张以及数据融合创新时,通常会针对不同的项目场景引入不同的数据模型以及大数据产品。这些产品和模型为企业解决了海量多源异构数据的存储管理难题,但与此同时,产品服务的可靠性问题也为企业带来了挑战。服务需要持续高效、稳定、可靠的运作,对于企业运维团队来说需要做到有问题及时发现,资源不够及时扩容,出现故障迅速修复,以防止出现服务器长时间宕机、业务长时间中断、数据丢失等问题。企业如果采用了大量分布式架构的大数据组件,那么运维人员需要掌握每一款大数据产品的相关知识,极大的增加了企业的运维成本以及运维人员的学习成本。并且由于缺乏统一的运维入口,传统的查询运维难以完成指标数据的可视化,极易缺乏或遗漏关键监测指标。在数据碎片化、监控对象粒度庞大的情况下,自动化监控难以实现,无...

行业资讯
数据安全管理平台
星环科技自主研发的数据安全管理平台TranswarpDefensor,基于Defensor的五大核心能力和星环科技全局数据安全策略,可以帮助企业建设以数据为中心的数据安全防护。Defensor能够帮助企业了解内部数据敏感信息的资产地图,发现潜在风险,并监控企业重要数据的合规使用;同时,也能对企业敏感数据进行分类分级,通过数据脱敏、水印等方式对数据进行事前事后的保护,防止数据泄露或能够在数据泄露后做到可以溯源追踪。五大核心能力:分类分级、数据脱敏、操作监测、操作审计、个人信息去标识第一,敏感数据识别与分类分级,帮助企业全面梳理敏感资产,并绘制分类分级资产地图。Defensor内置的分类分级标准参照,涵盖了多个行业法律法规,并与律师深度合作探讨,共同落实了大量规则;基于正则表达式、关键字内容、算法匹配、字典匹配等方式,自动扫描全局敏感数据,提供定时敏感识别扫描任务。第二,提供数据脱敏和水印等能力,让敏感数据可以脱敏后服务业务,并在发生泄露后可以追踪溯源。平台预置多种脱敏算法,开箱即用,满足不同场景,不同安全等级的脱敏要求。当敏感数据需要对外流通时,支持在数据集中嵌入水印,当数据发生泄漏后,...

行业资讯
国产分布式图数据库
分布式图数据库是一种用于存储、管理和查询图数据的数据库,适用于处理海量复杂数据、实现多跳关系查询和图算法计算。通过分布式存储和计算,实现对大规模图数据的高效管理和查询。分布式图数据库使用图结构存储数据,节点和边可以拥有自定义的属性,支持多种查询语言和图算法。它通常由多个节点组成,每个节点负责存储和处理一部分数据,互相协作完成任务。分布式图数据库适用于金融、社交媒体、医疗等领域的数据分析和挖掘。TranswarpStellarDB是由星环科技自主研发的一款分布式图数据库,兼容开放Cypher查询语言。它支持原生图存储结构,提供PB级别的海量图数据的存储和分析能力。同时,在易用性、安全性、运维管理以及开放性方面也有着不错的表现。TranswarpStellarDB4.0性能在多跳查询和图算法方面实现了数倍升级,并且在易用性、安全性、运维管理和开放性等方面都进行了全面升级,可以帮助企业用户更快、更高效地挖掘海量数据互联的价值。通过采用分布式集群存储的方式,TranswarpStellarDB克服了海量关联图数据存储的难题,并通过集群化存储和丰富的算法来实现低延迟的多层关系查询。已经在金融、政...

行业资讯
图数据库的优势有哪些?
图数据库相对于其他传统的数据库有很多优势,以下是几点常见的优势:灵活的数据模型:图数据库支持灵活的数据模型,可以存储复杂的实体类型和其之间的关系,如社交网络、地图路线等复杂模型。强大的关系查询能力:图数据库通过树状遍历方式遍历关系,使用广度优先搜索和深度优先搜索算法,提供更快速、更精确的关系查询和分析。高效的数据处理能力:图数据库处理大规模图数据的效率更高,能够对图数据进行快速存储、索引和查询,降低了大数据量和高并发访问时的数据处理成本和时间成本。聚焦场景:图数据库适用于需要对关系进行建模和分析的应用场景,更加专注于应用场景的需求,为用户提供更好的数据处理能力和建模分析能力。多语言支持:图数据库支持多种语言,为多类开发者和企业提供了更便利的操作性和接口。图数据库具有灵活性高、查询性能强、数据处理能力优异、聚焦场景和多语言支持等优势。这些优势使得图数据库在现代大数据场景下的应用越来越广泛化。星环分布式图数据库StellarDB星环科技致力于打造企业级大数据基础软件,围绕数据的集成、存储、治理、建模、分析、挖掘和流通等数据全生命周期提供基础软件与服务,在图计算领域深耕多年,自主研发了分布式...

行业资讯
图数据库公司哪家好?
近年来,图数据库的价值逐渐得到了大家的关注。作为一家专注于图数据库研发的企业,星环科技成为了行业内备受关注的图数据库公司之一。星环科技致力于打造企业级大数据基础软件,旨在为用户提供数据的集成、存储、治理、建模、分析、挖掘和流通等全生命周期的基础软件和服务。同时,作为一家深入图计算领域多年的公司,星环科技自主研发了分布式图数据库StellarDB,StellarDB兼容openCypher查询语言,提供海量图数据的存储和分析能力,支持原生图存储结构,支持万亿边PB级数据存储。另外,StellarDB还具备毫秒级的点边查询能力、10+层深度链路分析能力和近40种的图分析算法,同时还可提供数据2D和3D展示能力。星环科技进一步推出的StellarDB4.0版本,在数据导入、多跳查询和图算法性能方面实现了数倍升级,同时在易用性、安全性、运维管理和开放性方面也全面升级。这些升级内容均有利于帮助企业用户更高效地挖掘海量数据互联价值。星环科技已经成功克服了海量关联图数据存储的难题,通过集群化存储和丰富算法,实现了传统数据库无法提供的低延时多层关系查询。广泛应用于金融、政府、交通等多个行业的反洗钱、风...

行业资讯
图数据库是什么?
图数据库是一种特殊的数据库管理系统,可以高效地存储和查询各种复杂数据间的关系。一般而言,图数据库是基于图形理论和图形模型而建立的,相比于传统的关系数据库(RDBMS),图数据库能够很好的解决复杂数据之间的连接问题,有着优越的效率和性能。图数据库可以看作一个由节点(节点表示具体的数据)和边(边表示节点之间的生物关系)组成的图,这种图称为图形数据。这些节点和边都具有特定的属性,这些属性包含了数据的详细信息,比如名称,性别,地址等内容。这种数据呈现了一个更加真实和可视的方式,具有更加完整的信息和语义,可以用于多种领域,如社交网络,交通规划,生物医学等,因此有着极其广泛的应用前景。相比于其他数据库系统,图数据库拥有以下优点:应对复杂性:图数据库可以轻松处理各种形式的复杂数据,可以通过在图形结构中表示数据之间的联系,从而实现更好的查询和可视化。相比于传统的关系型数据库,图形数据的可视化更加清晰有条理,能够更加方便的进行复杂数据的关系分析。高效性:图数据库能够高效地处理大量的数据连接操作,而且查询时不需要太多的连接,所以具有更高的查询效率。例如,在社交网络中,图数据库能够高效的搜索出用户之间的关系...

行业资讯
发电行业数据底座整体解决方案
星环科技凭借自身在大数据、人工智能等领域多年来积累的技术优势和实践经验,能够为水电行业打造基于国产基础软件的新一代数据底座,实现海量数据实时接入及应用。在方案中,所有时序数据通过实时接口统一接入星环科技分布式时序数据库TranswarpTimelyre,关系型数据接入关系型分析引擎TranswarpInceptor关系库,非结构化数据接入对象存储平台。然后对时序数据、关系数据进行主题建模和维度建模,将建模结果直接写星环科技分布式数据库入ArgoDB中,形成DWD和DWS层。并在ArogDB中,面向应用分析,构建数据指标宽表、应用主题数据等数据集市层。这里有几个很关键的联合分析技术,一个是“序关分析”,举个例子,我们在做故障预警算法开发的过程中,需要提取故障特征,通过历史设备台账数据(一般存在关系型数据库),把所有设备的故障开始时间、故障结束时间,故障类型等拿出来,关联时序数据库找到设备故障时刻的测点值,这些值要提取出来,作为样本进行AI模型训练。另外一个是流上机器学习与流批一体,按照上面的例子,训练完模型后,需要部署在实时计算引擎上,与离线库中的档案数据表等,构建实时故障预警模型,对同...