隐私计算商业应用
Sophon P²C是一款分布式隐私计算平台,集隐私计算、加密网络通信等多种功能,为多方安全建模提供完整的解决方案。以隐私保护为前提,Sophon P²C解决了跨组织协作时无法安全利用各方数据的困境
Sophon P²C是一款分布式隐私计算平台,集隐私查询、隐私计算、加密通信等多种功能,能够为多方安全建模提供完整的解决方案。其以隐私保护为前提,能够帮助用户解决跨组织协作时无法安全利用各方数据的困境。
隐私计算商业应用 更多内容

行业资讯
隐私计算应用案例
隐私计算可以使用在多个应用场景中,以下是一些典型的隐私计算应用案例:医疗保健:医疗数据是非常敏感的,因此在医疗保健领域广泛应用隐私计算技术。例如,医院可以使用差分隐私技术保护患者隐私,同时进行,包括敏感的个人数据。因此,隐私计算可以应用于保护用户隐私。例如,在训练模型时,可以使用差分隐私技术来保护用户数据。城市规划:城市规划需要处理大量的人口和交通数据,这些数据都是非常敏感的。因此,隐私计算。例如,在广告投放时可以使用差分隐私技术来保护用户数据隐私。隐私计算在医疗保健、金融、人工智能、城市规划和电子商务等领域都有广泛的应用,可以保证数据隐私和安全性,同时保证数据共享和分析的效果。星环科技数据挖掘和病例分析。金融领域:隐私计算可以用于保护客户隐私和金融机构之间的数据共享。例如,可以利用安全多方计算技术完成多个机构之间的客户数据共享,而不会泄露客户隐私。人工智能:人工智能需要处理大量的数据可以用来保护这些数据。例如,可以使用安全多方计算技术来合作分析人口和交通路线数据,以进行城市规划。电子商务:电子商务需要处理大量的用户购物数据,这些数据也是非常敏感的。因此,隐私计算可以用于保护用户隐私
2021年,中国信通院云大所联合隐私计算联盟发布《隐私计算白皮书(2021年)》,全面展示了隐私计算发展状况。经过一年多的发展,隐私计算在政策、技术、应用等方面上均迎来了新的进展。《隐私计算白皮书(2022年)》将全面展现行业成就及发展新态势,希望为产业界应用隐私计算技术提供参考指导,推动隐私计算行业健康发展,让隐私计算在数据要素市场建设过程中发挥更大的价值。本研究报告亮点如下:纵览发展历程,明确当前进展根据隐私计算技术出现、发展、落地到广泛应用的不同特点,梳理隐私计算发展阶段,明确当下发展阶段并研判未来发展前景。把握技术前沿,洞察发展趋势作为数据安全流通的关键技术,隐私计算技术向推动应用落地的方向持续发展,可用性和可信性进一步增强。通过对技术发展的前沿进行整理和分析,洞察隐私计算技术发展趋势,为落地应用搭建桥梁。聚焦应用实际,凸显应用优势在广泛调研的基础上全面梳理隐私计算在实际数据流通中的新应用情况,深度剖析隐私计算发挥巨大价值的内在逻辑,更加清晰地回答"隐私计算与传统数据流通技术相比有何优势""哪些特定创新场景只有隐私计算能够解决"等问题,进一步明确隐私计算优势,促进隐私计算应用

行业资讯
隐私计算应用场景
隐私计算能够在保护数据隐私的前提下,实现数据的共享和计算,为多个领域的应用场景提供了强大的支持。在联合营销领域,隐私计算的应用为跨行业数据融合提供了解决方案。随着营销业务的智能化发展,用户画像的构建用户画像,实现资源的优势互补,还能根据建模结果制定更精准的营销策略,实现双赢的联合营销目的。联合风控是隐私计算在金融领域的另一个重要应用场景。金融机构在风控过程中需要综合考虑客户的多个维度数据,但不,从而综合提升金融机构的风控能力。在智慧医疗领域,隐私计算技术的应用也具有重要意义。医学研究、基因分析等工作需要依赖大量数据的积累,但这些数据往往分散在不同的医疗机构和业务系统内,难以实现互通互联。隐私计算技术可以在保护数据隐私的前提下,实现医学数据的安全统计分析和医学模拟仿真和预判。这不仅有助于推动临床科研成果的产出,还可以进行跨机构的精准防疫、基因分析、临床医学研究等应用,提升医疗服务的质量和变得越来越重要。然而,不同机构间的用户数据往往是相互割裂的,难以形成完整的用户画像。通过隐私计算技术,不同机构可以在不输出原始数据的基础上,共享各自的用户数据进行营销模型计算。这样不仅可以构建更立体的

行业资讯
隐私计算应用
隐私计算是一种能够在保护数据隐私的前提下,实现数据共享和分析的技术。它在多个行业中有广泛的应用,以下是一些主要的应用场景:金融行业风险控制联合风控:金融机构可以利用隐私计算技术,将自身和外部数据数据,隐私计算技术可以实现运营商之间的数据共享,赋能不同行业的场景应用。例如,通过隐私计算平台,运营商可以共享用户的行为数据,帮助其他行业进行市场分析和用户画像。能源行业数据共享能源数据共享:隐私计算联合起来进行分析,从而有效识别信用等级、降低多头信贷、欺诈等风险。例如,通过隐私计算平台,多家银行可以共享客户的信用记录,而不暴露具体数据,从而更准确地评估客户的信用风险。反洗钱:隐私计算可以帮助金融机构提高反洗钱甄别能力,通过联合分析多家机构的数据,识别可疑交易行为,而不泄露客户的隐私信息。营销精准营销:金融机构可以利用隐私计算技术,对客户数据进行分析,生成精准的用户画像,从而实现个性化的营销推荐。例如,银行可以通过隐私计算平台,分析客户的消费习惯和偏好,推荐适合的金融产品。数据共享跨机构数据共享:隐私计算平台可以实现金融机构之间的数据共享,而不泄露原始数据。例如,金融行业隐私计算平台由多家国有

行业资讯
隐私计算应用场景
隐私计算在众多领域都有着广泛且重要的应用场景。金融领域联合风控:银行、证券、保险等金融机构之间,可利用隐私计算技术在不泄露各自客户敏感信息(如资产状况、交易记录等)的前提下,共同进行风险评估和信用供应链流程,但又担心商业机密泄露。隐私计算技术能实现这些数据在加密状态下的共享和协同分析,帮助企业提高供应链的透明度、响应速度和整体运营效率。设备数据共享与故障诊断:工业生产中有大量设备产生实时评级。例如,通过多方安全计算或联邦学习,整合多方数据来更精准地判断客户的信贷违约风险,提高信贷决策的科学性,降低不良贷款率。反洗钱监测:不同金融机构的数据汇聚后,借助隐私计算能在加密状态下分析交易行为模式,识别可疑洗钱活动。各机构无需公开客户的具体交易流水等隐私数据,仅通过隐私计算的协同分析机制,发现异常资金流向和交易特征,助力监管机构有效打击洗钱犯罪。金融市场预测:投资机构、金融研究机构等可在保护自身数据隐私的基础上,共享部分市场数据、宏观经济数据等,运用隐私计算技术进行数据挖掘和分析,共同构建更准确的金融市场预测模型,为投资者提供更具前瞻性的投资建议。医疗健康领域医疗数据共享与科研:医疗机构

行业资讯
隐私计算 mpc
MPC即安全多方计算,是隐私计算的一个重要分支。基本原理秘密分享:将需要计算的数据在多个参与方之间进行秘密分割,每个参与方只持有数据的一部分份额,单独的份额无法获取完整数据信息。计算协议:参与方基于各自的秘密份额,按照特定的计算协议进行交互计算。在计算过程中,通过加密、混淆等技术确保各方数据隐私不被泄露。如利用同态加密技术对密文进行计算,或通过不经意传输协议实现隐私数据的交换。结果重构:当计算完成后,各方将计算结果的份额进行汇总和重构,得到最终的计算结果。这个过程中同样要保证不泄露各方的隐私数据。核心技术混淆电路:将计算任务转化为布尔电路,然后对电路进行加密和混淆处理,使得参与方在不知道对方输入数据的情况下进行计算。例如在隐私保护的拍卖场景中,可以用混淆电路实现出价的比较和获胜者的确定。同态加密:允许直接对密文进行特定的代数运算,运算结果解密后与对明文进行相同运算的结果一致。不经意传输验证者泄露任何有用信息的情况下,使验证者相信某个论断是正确的。在区块链隐私交易等场景中,可用于证明交易的合法性而不泄露交易的具体内容。应用场景金融领域:在联合信贷风险评估中,多家金融机构可以在不泄露

行业资讯
隐私计算典型应用场景
隐私计算是一种能够在保护数据隐私的前提下,实现多方数据的共享、处理和分析的计算技术。隐私计算的应用领域非常广泛,下面介绍几个典型的隐私计算应用场景。医疗健康领域:在医疗健康领域,隐私计算可以在保护患者个人信息不被泄露的同时,实现多数据的共享、处理和分析。财务领域:在财务领域,隐私计算可以应用于建立完整的数据验证和对账系统,从而保障账目数据的真实性和完整性。电子商务和广告领域:在电子商务和广告领域应用。隐私计算技术在医疗、金融、电子商务、智能交通、物流配送、人工智能等多个领域都得到了广泛的应用,通过保护隐私信息,实现数据的安全共享、处理和分析,帮助企业和个人实现更高效、更精准、更安全的数据处理和应用服务。星环科技分布式隐私计算平台SophonP²C星环科技分布式隐私计算平台SophonP²C集多方安全计算、联邦学习等多种功能,为隐私计算提供完整的解决方案,以隐私保护为前提,解决了跨组织协作时测评证书、卓信大数据联邦学习安全评估专项证书,以及信通院星河案例隐私计算优秀案例等多项认证和荣誉。随着隐私技术产品的技术能力和应用模式越发成熟,隐私计算将有助于构建数据流通的基础设施,在保证安全的前提下有效持续释放数据要素价值,促进数字经济高质量发展。

行业资讯
隐私计算常见应用有哪些?
随着数字技术的快速发展,隐私计算作为一种新兴技术,正日益受到广泛关注。能够在保护个人隐私的前提下,实现数据的安全共享和高效利用。隐私计算的应用场景十分广泛,涵盖了政务、金融、医疗、广告等多个领域。在政务领域,隐私计算的应用主要体现在政务数据开放共享、智慧城市、联合安防、应急管理及响应等方面。通过隐私计算技术,政府部门可以在不泄露个人隐私信息的前提下,实现数据的跨部门共享和协同办公,提升政府服务迅速、准确地获取所需数据,共同应对突发事件。金融领域是隐私计算应用的另一个重要领域。在信贷风险评估、金融反欺诈、反洗钱、征信、保险定价等方面,隐私计算都发挥着不可或缺的作用。通过隐私计算技术,金融机构可以在保护客户隐私的同时,利用多方数据进行风险评估和欺诈检测,提高金融业务的安全性和效率。此外,在征信和保险定价方面,隐私计算也有助于实现更加精准的风险评估和定价策略。在医疗领域,隐私计算的应用同样共享和高效利用提供了可能。通过隐私计算,医疗机构可以在保护患者隐私的前提下,实现数据的共享和协同研究,推动医疗技术的进步和创新。广告领域也是隐私计算的重要应用场景之一。在精准营销和客户画像方面,隐私
猜你喜欢

星环科技图数据库StellarDB是国产高性能图数据库,采用分布式架构和原生图计算引擎,支持超大规模数据管理和高效的图计算。TranswarpStellarDB具有以下特点:原生图存储:StellarDB为数据存储设计了专有的图存储结构,优化查询性能,通过高效的压缩算法减少磁盘和内存的使用量。根据分区策略,图数据均匀分布于集群各节点。优越的性能:存储引擎和计算引擎结合,使计算引擎可以利用数据locality提升计算性能,拥有卓越的数据读写能力,支持大规模并行处理,毫秒级的查询响应。高扩展性:完全的分布式架构,具有良好的可扩展性,支持在线扩容和升级。拥有万亿级图数据处理能力,支持数据多副本,提供集群高可用和高可靠。灵活的查询方式:计算引擎支持灵活易懂的图查询语言TranswarpExtended-OpenCypher,拥有丰富的图操作语法。同时提供SQL支持,多模场景灵活切换。深度分析能力:支持10层及以上的图深度遍历和复杂分析。丰富的算法库:内置丰富的算法库,几十种图算法开箱即用,优化的分布式并行图算法,千万级子图计算效率达到行业先进水平。企业级功能:支持用户权限认证、集群状态监控、日...

行业资讯
银行图数据库应用场景有哪些?
银行图数据库的应用场景:反洗钱:图数据库可以将可疑交易数据存储于其中,帮助银行更快速地提取、分析与关系,识别出潜在的洗钱行为。客户关系管理:银行图数据库可以将客户的不同信息(如交易记录、信用评级、客户所在地和行业等)进行整合,并将这些信息在一个数据仓库中呈现出来。这使得银行能够更加精准地分析客户需求,提供更加符合客户需求、更加优质的服务。风险管理:银行是一个与风险息息相关的行业。图数据库可以帮助银行对相关风险进行整合和分析。通过解析大量的金融数据,图数据库可以找出潜在的风险点,提前控制风险。数字化转型:图数据库能够将社交网络、收集的数据等信息关联起来,并创造性地开拓新业务模式。除了与客户密切相关的业务领域,图数据库还能够在支持业务流程优化方面发挥重要作用。营销:银行可以使用图数据库来收集客户数据、行为数据等,这样可以更加精确地预测客户习惯,对客户进行更加细致的营销和服务。银行图数据库有着广泛的应用场景,可以在多个角度上支持银行的业务发展,提高服务的质量和效率。星环分布式图数据库StellarDB星环科技致力于打造企业级大数据基础软件,围绕数据的集成、存储、治理、建模、分析、挖掘和流通等...

行业资讯
图数据库有哪些特点?
图数据库是现代数据库系统中的一种,它主要的特点就是使用了图论的概念来进行数据管理。传统的关系型数据库通常是基于表和列的结构进行数据管理,而图数据库则是构建了节点和边的图形结构,可以更好的表示现实世界中的复杂关系。下面是图数据库的几个主要特点:1.基于图形结构:图数据库是基于图形结构来进行数据管理的。它通过节点和边来构建数据的表示形式,使得数据之间的关系和结构更加直观和清晰。这对于处理关联复杂、数据关系复杂的场景具有重要意义。2.高效地关系查询和分析:图数据库具有高效的关系查询和分析能力。对于一个大规模的图,传统的SQL查询方式显然不能满足查询时间的要求。而图数据库则可以通过图数据库内部的算法来进行实时的查询和分析。尤其是针对一些复杂的图分析算法,图数据库更能够快速地获得结果,提高查询速度。3.可扩展性:由于采用了分布式的技术设计,使图数据库的可扩展性极佳。当需要管理的数据量增加时,图数据库可以通过简单的集群扩展方式来实现性能的提升。而且,图数据库的分布式能力也可以让其在多个节点上进行操作,提高了系统的容错能力和加载能力。4.元素和关系度量:图数据库具有丰富的元素数据和关系数据量度方式。...

行业资讯
数据要素安全流通服务
数据要素是数字经济发展的关键生产要素,是数字经济发展的基础。加快培育数据要素市场是全面建设社会主义现代化国家的一项基础性工作,对推动经济高质量发展、建设数字中国和数字强省、促进经济社会数字化转型具有重要意义。星环科技致力于打造企业级大数据基础软件,围绕数据全生命周期提供基础软件与服务。基于在大数据、分布式数据库、隐私计算、数据安全流通领域的多年积累,星环科技研发了数据要素流通全过程的一系列工具,在各方数据不出域的前提下,为数据资源方和数据消费方提供数据交付服务。2021年星环科技成为上海数据交易所首批签约数商。2022年9月星环科技曾受邀出席“深数交”数据合规活动,分享数据安全出境解决方案。2022年12月星环科技与中国东信旗下北部湾大数据交易中心达成了战略合作。星环科技在产品的各层级上都完善了安全技术,从而可以给用户提供体系化的数据安全防护能力,助力企业高效、合规的开展数据流通业务。在基础设施层,星环科技提供基于容器的云原生操作系统TCOS,它不仅能够提供容器隔离和镜像扫描,还新增了漏洞检测以及面向业务的微隔离安全技术,从而可以为用户开辟一个独立的数据与计算环境,外部的服务未经授权无...

行业资讯
国产化替代升级实践
新时代需要新技术,企业应抓住机遇实现旧平台的改造升级数据库技术经过不断的发展,已经从以Oracle、IBM为代表的集中式数据库,演进到分布式、多模型、云原生的形态,并在很多场景应用落地,带来了真实的业务价值。当前得益于国家政策的大力扶持以及国内市场环境的快速发展,国产软件加速发展,国产化替代进程正在不断加速。自主可控是国产化替代的核心,同时也是一个阶段性的目标。我们不应该满足于此,应该抓住国产化改造的机遇,用新技术去替代老技术,实现自主可控的同时,完成旧系统的改造升级,这也是信创的主旨。星环科技致力于打造企业级大数据基础软件,围绕数据全生命周期提供基础软件与服务,在分布式技术、多模型技术、数据云技术等方面有很多技术突破。比如大数据基础平台TDH是全球首个通过TPC-DS基准测试的产品;提出了创新的多模型统一技术架构,支持业内主流的10种数据模型,Gartner®发布的中国数据库技术发展趋势报告引用星环科技多模型联合分析用例,论证了多模型融合分析的趋势和价值。基于多年积累的分布式技术、多模型统一技术、数据云技术等,星环科技打造了分布式数据库ArgoDB、分布式交易型数据库KunDB、分布...

行业资讯
金融、医疗知识图谱平台
垂直领域知识图谱产品主要用于面向特定领域知识应用需求,通过构建和应用知识图谱解决对应领域的专业问题。目前,知识图谱在智慧医疗与智慧金融领域已取得了一系列成功实践,被应用于辅助医生、药物发现、临床科研、风险防控、内部监管、投资研究、保险理赔等众多实际业务场景,并涌现出了一批知识图谱产品或服务平台。星环科技自主研发的知识图谱平台Sophon正是一款覆盖知识全生命周期,集知识的采集、建模、融合、存储、计算及应用为一体的知识图谱产品。平台支持低代码图谱构建、智能化知识抽取、多模态知识存储与融合、多形式知识计算和推理以及多维度的图谱分析。除了具备链路完备性,平台还从业务场景出发,沉淀了金融、保险等场景的图数据模型、规则模型和算法模型,可以帮助用户快速解决不同场景下的业务问题。目前,星环科技Sophon已经在金融等多个行业成功落地,在反洗钱、反欺诈、疫情防控、公共安全、企业级营销、保险知识智能问答等场景有着广泛的应用。同时星环科技在推动知识图谱技术创新和成功落地的过程中,也获得了多项荣誉和权威认可:入选Gartner《MarketGuideforArtificialIntelligenceStar...

行业资讯
基于数据安全网关的跨境安全流通方案
星环科技致力于打造企业级大数据基础软件,基于在大数据、分布式数据库、隐私计算、数据安全流通领域有着多年积累,研发了数据要素流通全过程的一系列工具,在各方数据不出域的前提下,为数据资源方和数据消费方提供数据交付服务。2022年9月星环科技曾受邀出席“深数交”数据合规活动,分享数据安全出境解决方案。2021年星环科技成为上海数据交易所首批签约数商。2022年12月星环科技与中国东信旗下北部湾大数据交易中心达成了战略合作。伴随数字经济蓬勃发展,融入全球数据跨境流动的趋势不可避免。数据出境安全治理受到广泛重视,为进一步规范数据出境活动,保护个人信息权益,维护国家安全和社会公共利益,促进数据跨境安全,国家互联网信息办公室发布了《数据出境安全评估办法》。国内运营的外企(尤其是零售、化工等)、新能源汽车以及生态企业(含自动驾驶等)、国际化企业与出海企业、跨境电商和物流、有融资需求的基于数字化做业务创新的创业公司等是国内迫切需要落实数据安全出境的企业。然而企业在落地数据出境安全方面存在一些实际困难,主要体现在:错综复杂的数据如何分类分级,如何识别重要数据;重要数据如何存储和管理,才能达到相关法律法规的...

行业资讯
分布式隐私计算平台
星环科技分布式隐私计算平台SophonP²C集多方安全计算、联邦学习等多种功能,为隐私计算提供完整的解决方案,以隐私保护为前提,解决了跨组织协作时无法安全利用各方数据的困境。平台支持联邦学习、多方安全计算、匿踪查询等功能;性能方面,联邦学习与多方安全计算可达亿级数据量,助力数据要素安全流通和价值迸发,实现数字经济时代下的跨企业和行业的AI协作。星环科技的隐私计算技术已落地如数据流通、政务民生、金融营销等垂直业务场景,为跨企业数据协作提供安全可信的平台支持。在政务民生场景,SophonP²C通过纵向联邦学习联合居民用电数据与用水数据,生成群租房预测名单。在联合建模过程中,全程明文数据不出,有效保护了居民用水用电的数据隐私信息。联合训练模型比本地单独用电数据训练的模型AUC提升20%以上,赋能政务决策高效的处理分析能力,为政府有效排查群租房,消除群租房造成的消防、安全隐患,打造和谐、安全、美丽的生活环境作出了突出贡献,为政务决策、民生建设发挥信息化支撑保障作用。在精准营销场景,通过纵向联邦学习,车企安全引入了多方数据,丰富用户特征维度,对用户行为进行统计分析。在联合建模过程中,全程明文数据...

行业资讯
什么是时空数据库?
时空数据库(Spacial-temporaldatabase)是一种专门用于存储和管理时空数据的数据库管理系统,它是传统关系型数据库的一个扩展,可以实现对时空数据进行有效管理和处理。时空数据是指带有时空坐标或时间戳的数据,例如地图、气象数据、交通、城市规划等。因此,时空数据库可以用于多种应用程序,如地理信息系统、航空航天、气象预报、GPS导航等。时空数据库与传统数据库不同的是,它提供了额外的功能和数据类型,例如点、线、面等空间对象和时间序列数据类型。此外,时空数据库还支持空间查询和时空查询,例如常见的缓冲区查询,使得用户可以在时空范围内进行查询和分析。这种数据库可以对时空数据进行高效的存储、查询、更新和分析,并通过插件技术集成其他地理信息数据源。星环分布式时空数据库-SpactureSpacture是星环科技自主研发的一款面向空间、时空数据的存储与管理,集计算与存储为一体的分布式数据库产品,支持大规模矢量数据、时空轨迹数据的存储与计算,具有完备的数据查询、分析和挖掘能力,可用于时空查询分析、时空模式挖掘、时空轨迹聚类等时空轨迹数据分析场景,广泛应用于交通物流、城市管理、位置服务等场景。

行业资讯
常见的图数据库应用场景有哪些?
图数据库有许多适用场景,常见的应用场景有:社交媒体:社交媒体中的用户和关系可以建模为图结构。用图数据库来管理和查询这些社交数据,可以实现更精确的社交关系分析。金融:在金融领域中,图数据库可以用于合规风控、反欺诈、投资和信贷决策等众多场景。例如,通过在图中存储和分析不同实体(如银行账户、信用卡、电话、邮箱、运单等)之间的关系,可以准确识别欺诈降低风险。物流和运输:物流和运输领域也是图数据库的应用场景之一。例如,通过在图中存储城市、仓库、货物、运输路线等信息,可以进行物流管理、运输计划优化、货物追踪等任务。生命科学:在生命科学领域,图数据库可以用于存储和分析复杂的基因、蛋白质、代谢物等数据,帮助科学家发现新的治疗方法和疾病机制。游戏:游戏开发者可以使用图数据库来管理玩家角色、各种装备、地图、任务等复杂的游戏数据,实现更好的游戏体验。图数据库的灵活性和高效性使其在多个领域都有着广泛的应用。星环分布式图数据库StellarDB星环科技致力于打造企业级大数据基础软件,围绕数据的集成、存储、治理、建模、分析、挖掘和流通等数据全生命周期提供基础软件与服务,在图计算领域深耕多年,自主研发了分布式图数据...