宽表数据库 企业排行榜

实时NoSQL数据库
Transwarp Hyperbase是星环科技自主研发的实时NoSQL数据库。Hyperbase支持百万级高并发、毫秒级低延时业务需求,可以在普通廉价服务器集群上高效支持企业的高并发精确查询与范围查询、流处理应用、全文搜索以及高并发非结构化数据检索,同时支持以标准SQL为接口的高效数据访问,帮助用户快速开发历史数据查询、业务在线检索等应用。

宽表数据库 企业排行榜 更多内容

语料开发工具排行榜语料开发工具排行榜是评估各类数据处理软件的专业指南,通过多维度的评测体系,为用户提供客观、全面的选型参考。权威的排行榜通常从技术能力、用户体验、性价比等6大维度进行系统评估,帮助。数据保护评估加密和访问控制措施。审计功能检查日志记录的完整性。认证资质验证是否符合行业标准。隐私政策审查数据使用条款。安全项占5%权重。性价比是最终考量。许可模式分析购买选项的灵活性。总拥有成本计算3-5年的使用费用。投资回报评估效率提升和成本节约。性价比因素占5%评分。
2018数博会分论坛——大数据融合实体经济资源对接投资洽谈会上,首席数据官联盟秘书长石峰在该环节发布了2018《中国大数据企业排行榜》V5.0(第五版),V5.0排行榜延续以往版本的大体架构,从国内、国外、数据产业、行业分析、产业地图、排行、融资、法律法规等多个维度描绘了全球大数据产业发展现状及展望。星环科技入选该榜单,并位列基础技术平台第一名。这也是星环科技连续第三年位列《中国大数据企业排行榜》基础技术平台的第一名。(详细榜单见下图)星环科技成立五年来,始终坚持在大数据基础软件领域走自出研发的道路,累计帮助1000多家公司迈入大数据时代。2018年星环科技成为全球第一个通过TPC-DS测试的厂商,并获得的多方认可。星环科技会继续走在时代前沿,在大数据和人工智能领域深耕细作,为大家带来更好的产品。
日前,墨天轮公布了2022年度数据库奖项评选获奖名单,星环科技荣获“年度图数据库”。“2022年度图数据库”评选标准是通过墨天轮排行榜排名、生态建设、专利数、顶会论文数、市场份额、入选国际权威报告等38个综合指标遴选出来,奖项代表了该产品在图数据库中具有强大的号召力和凝聚力。星环科技致力于打造企业级大数据基础软件,围绕数据的集成、存储、治理、建模、分析、挖掘和流通等数据全生命周期提供基础软件与传播分析等场景发挥着重要作用。同时,作为国内领先的企业级大数据基础软件公司,星环科技是国内同时具备图数据库、知识图谱平台、图挖掘应用开发能力的企业,其全栈自研的图技术能力可以助力企业快速挖掘图数据价值,推动业务高效高质量发展。未来,星环科技将继续在图技术领域深耕,为企业提供查询速度更快、分析能力更强、稳定性更高的图数据库产品。服务,构建明日数据世界。自成立以来,星环科技一直致力于国产化数据库的自主研发,在推动国产数据库产业发展的过程中发挥了重要作用。在图数据库领域,星环科技自主研发了分布式图数据库StellarDB,兼容
数据平台排行榜在当今信息爆炸的时代,大数据技术已成为推动社会进步和商业创新的核心动力。各类大数据平台如雨后春笋般涌现,为不同规模的企业和组织提供了处理海量数据的能力。本文将从功能特性、应用场景和构建,拥有活跃的开发者社区和丰富的插件生态系统。这些开源解决方案降低了企业采用大数据技术的门槛,同时也促进了技术创新和知识共享。值得注意的是,开源并不意味着功能上的妥协,相反,一些开源平台在性能上已经底层基础设施的维护,只需按需付费即可使用强大的数据处理能力。这种模式特别适合资源有限但又需要处理大规模数据的中小企业。选择合适的大数据平台需要考虑多方面因素,包括数据规模、处理时效要求、团队技术栈和预算限制等。没有放之四海而皆准的选择,关键在于找到匹配当前需求和未来发展的解决方案。技术优势等维度,对当前主流的大数据平台进行客观梳理,帮助读者了解这一领域的发展现状。从技术架构来看,大数据平台大致可分为三类:批处理平台、流处理平台和混合处理平台。批处理平台擅长处理静态的历史数据,适合需要深度分析的场景;流处理平台则专注于实时数据流的处理,能够快速响应变化;而混合处理平台结合了两者的优势,提供了更为灵活的数据处理方案。开源生态在大数据平台发展中扮演着重要角色。许多平台基于开源框架
复杂多变的数据成为各单位机构面临的一大难题。基于上述的挑战,星环推出了TranswarpHyperbaseNoSQL数据库,用来满足企业级用户经济灵活高效地管理数据的需求。Hyperbase能够随着信息时代的到来,数据已逐渐成为金融、企业、政府、运营商等单位机构的重要决策依据。以传统关系型数据库为代表的技术由于性能,成本,可扩展性等缺陷,很难满足爆炸式数据增长的需要,如何经济高效地管理海量迁移工具,不仅能大幅度降低企业级用户数据应用变更和数据平台迁移的实施成本,还满足了用户在统一的数据平台上同时支撑新老业务的需求,大幅度降低了企业的运维成本。轻易地通过在集群中增加或者减少硬件数量来实现性能的伸缩,从而进一步提升集群的运行速度以及处理能力,轻松应对百万级高并发的查询业务。Hyperbase支持以标准SQL为接口的高效数据访问,并提供高效的数据
简单、更便捷的进行大数据分析。为了满足更多用户在存储以及高并发点查方面的需求,此次TDH社区版推出了星环科技自主研发的NoSQL数据库TranswarpHyperbase。TranswarpHyperbase介绍Hyperbase是什么TranswarpHyperbase是星环科技自主研发的NoSQL数据库,支撑百万级高并发、毫秒级低延时业务需求。支持结构化数据,及文本、图像、视频、对象等实时处理应用的需求。传统的通用关系型数据库无法应对在数据规模剧增时导致的系统扩展性和性能问题(分库分也不能很好解决),很难实现横向扩展,纵向扩展的空间也比较有限。Hyperbase能够轻易地通过在集群中增加或者Hyperbase关系数据库已经流行很多年,尽管Hadoop可以很好地解决大规模数据的离线批量处理问题,但是,受限于MapReduce编程框架的高延迟数据处理机制,使得Hadoop无法满足大规模数据减少硬件数量来实现性能的伸缩,提升集群的运行速度以及处理能力,轻松应对百万级高并发的查询业务。不同于传统的关系型数据库,Hyperbase采用列式存储模式,每个列族都由几个文件保存,不同列族的文件是
分布式图数据库StellarDBTranswarpStellarDB是星环科技自主研发的企业级分布式图数据库,提供高性能的图存储、计算、分析、查询和展示服务。StellarDB支持原生图存储,千亿点图算法,千万级子图计算效率达到行业先进水平。企业级功能:支持用户权限认证、集群状态监控、日志审计、数据加密、计算资源管控、备份恢复等完备的企业级数据库功能。强大的可视化能力:StellarDB的可视化图数据库的排名和领域、应用场景、性能要求等不同而不同,且随着技术的不断发展和市场的变化,排名和评价也可能随之变化。因此,在选择图数据库时,需要结合具体需求、实际情况和可行性进行综合考虑和评估。星环、推荐引擎、社交网络分析、知识图谱等应用。StellarDB被国际权威研究分析机构Gartner列入2022年发布的《中国数据库市场指南》中,于2020年首批通过了中国信息通信研究院《图数据库基础能力界面支持2D和3D的图可视化展示,集成批量导入、备份恢复、状态监控、参数配置、重建副本等图数据库常用功能。
2018年8月19日,工信部信息中心与亿欧智在2018“创客中国”互联网+大数据创新创业大赛暨产业投资峰会上联合发布了“未来·影响力”中国产业创新。星环科技入选中国产业创新“具投资价值50强”。据了解,“具投资价值50强”单是结合了各互联网企业的资本实力、商业能力、团队能力、品牌美誉度等指标,发现那些值得投资的企业,是对高成长企业投资价值的测定。作为一家专注于提供企业级容器云计算、大数据收状况、标杆客户等具有重要参考价值的信息,1064家企业样本经过首轮筛选,终形成“潜力”和“投资”各200家企业的筛选池。再通过严格的初评和复评,汇聚了多位专家、行业领袖及投资机构的专业意见,终缔造了本次“未来·影响力”中国产业创新“潜力”和“投资”!“未来·影响力”中国产业创新企业的研究报告指出,以大数据、云计算、人工智能为主的新技术成为产业创新的重要推动力,并服务实体经济正在成为产业创新升级的重要风向标和力量。入选中国产业创新“具投资价值50强”榜单,对于星环来说,既是鼓励又是动力,星环将一如既往地坚持以领先的技术为先导,在大数据和人工智能领域深耕细作,为企业提供灵活、高效
被一起查询的相关数据。当前DB-Engine中NoSQL数据库的排名如下表,可以看到受欢迎的主要是Cassandra、HBase和Azure上的CosmosDB。接下来我们将介绍一下HBase的情况。HBase是一个面向列的分布式NoSQL数据库,是GoogleBigtable框架的开源实现,能够响应随机、实时的数据检索需求。HBase主要的存储和处理对象是大,存储模式可以兼容本地存储机制确保数据库容错能力。通常的适用场景为:面向多版本、稀疏的、半结构化和结构化的数据高并发写入/查询的OLTP业务。HBase的数据模型由不同的逻辑概念构成,包括:、行、行键、列、列族、单元、时间戳。。Document类似于关系型数据中行的概念,一个Document包含每一个Field中与之相应的数据值。Type类似数据库中的级别概念,而Index是Elasticsearch中大的数据单位,与SQL的对于写密集型应用,每天写入量巨大,数据增长量无法预估,且对性能和可靠性要求非常高,普通关系型数据库无法满足其需求。对于全文搜索和数据分析这类对查询性能要求极高的场景也是如此。为了进一步满足上面两类
行业资讯
数据湖
数据湖是一种以原始格式存储大量数据的存储库,它具有灵活、可扩展等特点,可支持多种类型数据的存储和分析。数据湖是一个集中存储大量原始数据的系统,这些数据可以是结构化数据(如关系型数据库中的表)、半结构化数据和非结构化数据(如文本文件、图像、视频等),数据湖允许企业以原始格式存储数据,直到需要使用时再进行处理和分析。特点存储容量大:能够存储海量数据,满足企业不断增长的数据存储需求。可以轻松扩展存储容量,支持PB级甚至EB级数据的存储。数据多样性:支持各种类型的数据,包括传统的关系型数据、日志文件、传感器数据、社交媒体数据等,打破了传统数据仓库只能处理结构化数据的限制。灵活性高:数据以原始格式存储,不需要在存储时进行预定义的模式或结构设计,企业可以根据不同的业务需求随时对数据进行各种分析和处理,具有很强的灵活性。支持多用户并发访问:可以同时支持多个用户和应用程序对数据的并发访问,不同的用户和团队可以根据自己的需求对数据进行探索和分析,提高了数据的共享和协作效率。架构数据采集层:负责从各种数据源收集数据,并将其传输到数据湖中。数据源可以包括数据库、文件系统、云存储、物联网设备等。存储层:是数据...
联邦学习与隐私计算是紧密相关且相互促进的两个概念,以下是它们之间的详细关系及相关情况:联系目标一致:都旨在解决在数据隐私保护前提下的数据处理与分析问题。在大数据时代,数据分散在不同的机构或个人手中,而这些数据往往包含敏感信息。联邦学习和隐私计算都致力于在不泄露隐私数据的情况下,实现数据的价值挖掘和共享,打破数据孤岛,促进数据的流通和协同使用。技术融合:联邦学习是隐私计算的重要技术分支和应用场景之一。在联邦学习的过程中,会运用到多种隐私计算技术来确保数据的安全性和隐私性,如加密技术、差分隐私技术等。相互促进:隐私计算技术的发展为联邦学习提供了更强大的隐私保护手段,使其能够在更广泛的场景中应用。而联邦学习的实践也推动了隐私计算技术的不断创新和完善,为隐私计算技术提供了更多实际应用需求和挑战,促使其在性能、安全性等方面不断优化。区别概念侧重:联邦学习侧重于机器学习模型的训练和优化,强调在多个数据拥有方之间进行协同学习,通过交换模型参数而不是原始数据来实现模型的训练和更新。隐私计算则是一个更广泛的概念,涵盖了多种技术和方法,旨在对隐私数据进行全生命周期的保护,包括数据的存储、传输、处理和共享等...
隐私计算是一种在保护数据隐私的前提下实现数据价值挖掘和流通的技术体系,涵盖多方安全计算、联邦学习、同态加密、零知识证明等多种技术手段。定义与背景定义:隐私计算是指在不泄露数据隐私的情况下,对数据进行分析、计算和共享的一系列技术和方法的统称。它允许不同的参与方在数据不出本地的情况下,通过加密、分布式等技术手段进行协同计算,实现数据的互联互通和价值最大化,同时确保数据的隐私和安全得到有效保护。背景:随着数字化进程的加速,数据已成为企业和社会发展的重要资产,但数据的隐私泄露风险也日益增加。在数据共享和协同处理过程中,如何既充分发挥数据的价值,又保护数据所有者的隐私,成为亟待解决的问题,隐私计算应运而生。关键技术多方安全计算:多个参与方在不泄露各自数据隐私的情况下,通过特定的加密协议和算法进行协同计算。例如,在多方数据求和、数据比较等场景中,各方数据在加密状态下进行交互和计算,最终得到正确的结果,而任何一方都无法获取其他方的原始数据。联邦学习:一种机器学习技术,多个参与方在本地训练机器学习模型,然后将模型参数进行加密聚合,得到全局模型。在这个过程中,数据始终留在本地,不会被传输到其他方,从而保...
数据湖是一个集中存储海量原始数据的存储库,旨在存储企业所有类型和来源的数据,为企业提供全面的数据资产视图,并支持灵活的数据处理和分析。数据湖是一种存储企业各种原始数据的大型仓库,这些数据包括结构化数据、半结构化数据和非结构化数据。数据湖允许企业以原始格式存储数据,而无需在存储时进行预定义的模式或结构设计,用户可以根据不同的业务需求随时对数据进行各种分析和处理。核心特点海量存储:具备强大的存储能力,可轻松应对PB级甚至EB级数据的存储需求,能够存储企业从各个业务系统、设备以及外部数据源收集而来的大量数据。数据多样性:支持各种类型和格式的数据,打破了传统数据存储系统对数据格式的限制,使得企业能够将不同来源、不同结构的数据统一存储在一个地方。灵活性与敏捷性:数据以原始形态存储,不依赖于特定的模式或模型,用户可以根据具体的业务问题和分析需求,灵活选择不同的分析工具和技术对数据进行处理和探索,无需受限于预先设定的结构。支持多用户并发访问:可以同时支持多个用户和应用程序对数据的并发访问,不同的用户和团队可以根据自己的需求对数据进行探索和分析,提高了数据的共享和协作效率。关键技术分布式存储技术:通常...
数据安全与隐私计算紧密相关、相互促进,共同为数据的安全利用与隐私保护提供保障。数据安全是隐私计算的基础和目标数据安全涵盖了数据的保密性、完整性和可用性等多方面要求,旨在防止数据被未经授权的访问、泄露、篡改或破坏。隐私计算的出现正是为了在数据处理和共享过程中更好地满足这些数据安全需求,尤其是在涉及多源数据融合、跨域数据协作等复杂场景下,确保数据的保密性和完整性不受损害。隐私计算是数据安全的技术支撑和创新手段隐私计算为数据安全提供了一系列先进的技术手段,包括多方安全计算、联邦学习、同态加密、零知识证明等。这些技术在不同程度上解决了数据在流通和使用过程中的隐私保护问题,使得数据能够在安全的环境中被充分挖掘和利用。二者协同发展推动数据价值释放与合规应用随着数字化进程的加速,数据已成为企业和社会发展的重要资产,但数据安全问题一直是制约数据流通和共享的关键因素。隐私计算技术的不断发展和应用,为数据安全提供了更有效的解决方案,使得数据能够在安全的前提下实现跨机构、跨领域的流通和共享,从而充分释放数据的价值。
数据要素与隐私计算存在紧密的联系,隐私计算为数据要素的安全流通和价值释放提供了关键技术支撑,二者相互促进、共同发展。隐私计算是面向隐私信息全生命周期保护的计算理论和方法,涉及信息搜集者、发布者和使用者在信息产生、感知、发布、传播、存储、处理、使用、销毁等全生命周期过程的所有计算操作。它包括支持海量用户、高并发、高效能隐私保护的系统设计理论与架构,旨在实现数据的“可用不可见”。数据要素市场化:数据作为一种新型生产要素参与分配,隐私计算在数据要素市场化进程中扮演核心基础技术的角色。它帮助建立有序可控的共享机制,促进数据要素市场的蓬勃发展。数据要素只有在安全、高效的流通中才能充分发挥价值,隐私计算可以在保障数据流通过程计算安全性、赋能不同行业场景释放数据价值、适配数据要素流通多种应用模式上发挥价值。技术应用:隐私计算技术可以应用于数据的收集、脱敏、存储、使用、交换、删除、存证与取证等环节,涵盖隐私信息全生命周期的操作过程。它通过融合密码学、人工智能、安全硬件等跨学科技术体系形成一套可以保障数据流通安全合规的基础设施。数据安全与隐私保护:隐私计算实现了在数据流通过程中对国家安全、商业机密、个人...
行业资讯
多方安全计算
多方安全计算(SecureMulti-PartyComputation,简称MPC)是隐私计算的一个重要分支。多方安全计算允许多个参与方在不泄露各自隐私数据的情况下,共同完成对数据的计算和分析任务。其目标是在保护数据隐私的前提下,实现数据的共享和协同处理,以挖掘数据的价值。主要基于密码学技术,如同态加密、不经意传输、秘密共享等。通过这些技术,将数据进行加密或转换,使得在计算过程中,参与方只能看到加密后的结果或与自己相关的部分信息,而无法获取其他方的隐私数据。技术特点隐私保护性:多方安全计算能够确保参与方的隐私数据在整个计算过程中不被泄露,即使在存在恶意参与者的情况下,也能保证数据的安全性。去中心化:不需要依赖可信的第三方来处理数据,各参与方之间通过密码学协议进行交互和协作,实现数据的分布式计算。可验证性:计算结果可以被参与方进行验证,确保计算的正确性和完整性。灵活性:可以支持各种类型的计算任务,如算术运算、比较运算、逻辑运算等,适用于不同的应用场景。应用场景金融领域联合风控:多家金融机构可以在不共享客户敏感信息的情况下,联合进行风险评估和信用评分,提高风控的准确性和效率。隐私保护的投资...
数据入湖是指将企业内外部的各种数据汇聚到数据湖中进行统一存储和管理的过程。数据来源涵盖企业内部的业务系统数据,如客户关系管理系统(CRM)、企业资源计划系统(ERP)、办公自动化系统等产生的结构化数据;也包括来自网络的日志数据、社交媒体数据,以及物联网设备产生的传感器数据等半结构化和非结构化数据。入湖方式批量导入:对于一些已经存在的历史数据或定期产生的批量数据,通常采用批量导入的方式将数据加载到数据湖中。可以使用ETL工具、数据迁移工具等,按照一定的时间周期或数据量进行批量抽取、转换和加载。实时接入:对于实时性要求较高的数据,如物联网数据、实时日志数据等,需要通过实时数据接入技术将数据实时地传输到数据湖中。常见的实时接入方式包括使用消息队列(如Kafka)进行数据缓存和传输,然后由数据湖的实时处理组件进行消费和存储。数据同步:对于一些需要与源数据保持实时或准实时同步的数据,采用数据同步技术实现数据入湖。可以通过数据库的复制技术、数据同步中间件等,将源数据的变化及时同步到数据湖中。关键技术数据抽取与转换:在数据入湖过程中,需要对不同来源、不同格式的数据进行抽取和转换,使其符合数据湖的存储...
行业资讯
大数据湖
大数据湖是在数据湖概念基础上,结合大数据技术特点和需求而发展起来的一种更加强大、灵活的数据存储和分析架构。海量数据存储:能够轻松应对海量数据的存储需求,可存储PB级甚至EB级的数据,涵盖各种类型的数据,包括结构化数据、半结构化数据和非结构化数据。高可扩展性:基于分布式架构,能够方便地进行水平扩展,随着数据量的增加,可以通过添加节点的方式快速扩展存储和计算能力。数据多样性支持:不仅支持传统的关系型数据,还能存储各种非传统数据类型,如文本、图像、视频、音频、日志文件、社交媒体数据等,为企业提供全面的数据视角。灵活性与敏捷性:数据以原始格式存储,不需要预先定义严格的数据模型,用户可以根据不同的业务需求随时对数据进行各种分析和处理,快速响应业务变化。架构与组件存储层:通常采用分布式文件系统或对象存储系统作为底层存储,具有高可靠性、高吞吐量和容错性,确保数据的安全存储和高效访问。数据管理层:包括元数据管理、数据目录、数据血缘等功能。元数据管理记录数据的来源、格式、含义等信息,方便用户查找和理解数据;数据目录提供数据的分类和索引,便于数据的搜索和发现;数据血缘则跟踪数据的流转和处理过程,确保数据的...
隐私计算在金融行业具有极其重要的地位和广泛的应用前景。应用场景信贷风控联合建模:金融机构之间可以通过联邦学习等隐私计算技术,在不共享敏感数据的情况下,联合建立信贷风险评估模型。数据查询与验证:在信贷审批过程中,金融机构需要查询外部数据源来获取客户的更多信息,如征信报告、税务记录等。隐私计算技术可确保在查询和验证这些数据时,客户的隐私信息不被泄露,同时保证数据的真实性和完整性。精准营销客户画像构建:金融机构通过多方安全计算等技术,与其他企业合作构建更全面的客户画像。营销效果评估:在营销活动中,隐私计算可用于评估不同营销渠道和策略的效果。通过对客户反馈数据的加密分析,金融机构可以了解客户对不同营销活动的响应情况,而不会泄露客户的隐私信息,从而优化营销方案。金融监管数据报送与共享:金融机构需要向监管部门报送大量的业务数据,隐私计算技术可确保数据在报送过程中的安全和隐私保护。同时,监管部门之间也可以通过隐私计算实现数据共享,提高监管效率和协同监管能力。风险监测与预警:利用隐私计算技术,监管部门可以在不直接获取金融机构敏感数据的情况下,对金融市场的风险进行实时监测和预警。例如,通过多方安全计算对...