国内隐私计算做得比较好的
Sophon P²C是一款分布式隐私计算平台,集隐私计算、加密网络通信等多种功能,为多方安全建模提供完整的解决方案。以隐私保护为前提,Sophon P²C解决了跨组织协作时无法安全利用各方数据的困境。平台提供多种开箱即用的工具,方便用户在联邦框架下进行数据处理、分析、特征工程等工作,并快速建立机器学习和深度学习模型。加密网络通信模块负责节点间大量多批次加密信息的传输,多种加密安全手段和优异的通信架构,确保平台在大数据量下也能获得卓越的性能。Sophon P²C的多种联邦学习算法适用于各类垂直业务场景,为跨企业AI协作提供安全可靠的平台支持。
Sophon P²C是一款分布式隐私计算平台,集隐私查询、隐私计算、加密通信等多种功能,能够为多方安全建模提供完整的解决方案。其以隐私保护为前提,能够帮助用户解决跨组织协作时无法安全利用各方数据的困境。
国内隐私计算做得比较好的 更多内容

行业资讯
隐私计算算法
隐私计算算法是一系列技术手段,旨在在保护数据隐私的同时,允许对数据进行有效计算和分析。以下是一些关键的隐私计算算法及其应用:差分隐私算法:差分隐私是一种密码学手段,通过添加随机噪声来隐藏单个数据点的。隐私保护的进化计算算法:例如,隐私保护的遗传算法和隐私保护的粒子群优化算法等,这些算法在不泄露个体数据的前提下,通过隐私计算技术寻找最优解。基于个性化隐私保护的协同过滤算法:这种算法结合差分隐私技术,通过随机翻转机制保护隐私敏感评分,然后使用贝叶斯估计方法重建项目间的联合分布,以提高推荐系统的准确性。不共享原始数据的情况下共同训练机器学习模型,从而保护用户数据隐私。同态加密算法:同态加密允许对加密数据进行计算,计算结果解密后与在原始数据上进行相同计算的结果相同,从而实现数据在使用过程中的隐私保护信息,使得攻击者无法通过数据分析结果识别出任何个体信息。其核心思想是在数据查询过程中引入随机性,以保护个体隐私。数据脱敏算法:数据脱敏是在保留数据可用性和统计性的基础上,通过失真等变换降低数据敏感度,以实现隐私保护。匿名化算法:匿名化技术通过“去识别化”实现隐私保护。常见的匿名化模型包括K匿名化、(α,k)-匿名、L-多样性和T-接近性。联邦学习算法:联邦学习是一种分布式学习方法,允许多个参与方在

行业资讯
数据隐私计算是什么?
数据隐私计算是指在对数据进行处理或计算时,采取保护数据隐私、防止数据泄露的安全计算技术。在数据私计算中,可以利用加密技术、掩蔽技术、随机化技术等多种手段,使得原始数据在进行计算前被转换为一种形式保证个人隐私信息不被泄漏。数据隐私计算是一个重要的数据安全领域,可以在保证个人隐私安全的内核层面上实现数据共享和计算的有效方法。星环分布式隐私计算平台-SophonP²C星环分布式隐私计算平台,使得攻击者无法获取、分析和利用数据。数据隐私计算可以在保护数据隐私的同时实现数据的共享、处理和计算,保障数据的安全和隐私同时也能够保证其在相关方面的合法有效性。数据隐私计算技术适用于多种场景,例如金融风控、医疗诊疗、公共安全等领域。在金融领域,由于涉及到个人的账户、财产等隐私信息,采用数据隐私计算可以实现对个人隐私信息的保护,同时也能发挥金融数据优势,提升金融监管和风控的能力。在医疗领,数据隐私计算可以保护医疗数据的隐私,保证病人就诊和医生诊疗过程的隐私信息不被泄漏,同时也可以为诊疗提供全面的数据支持。在公共安全领域,数据隐私计算技术可以实现人员追踪、异常检测等功能,提升公共安全监测水平,同时也

近日,零壹财经•零壹智库发布国内首个系统研究隐私计算在金融领域应用的报告——《开启新纪元:隐私计算在金融领域应用发展报告(2021)》,星环科技荣登隐私计算厂商图谱,并成为国内唯一一家拥有大数据背景的入选企业。此次报告由零壹财经·零壹智库作为研究机构,由中国科技体制改革委员会数字经济发展研究小组、深圳市信用促进会、横琴数链数字金融研究院联合发布,旨在遴选出一批具有代表性的隐私计算厂商,树立引领等。一旦大数据平台宕机,组织中诸多核心业务将无法开展,造成的损失不可估量。作为大数据和人工智能基础软件平台供应商,星环科技一直非常重视企业用户的数据安全问题。今年3月,星环科技发布了隐私计算和联邦学习技术,可以保障数据在加密状态下被采集、传输、存储、计算、共享和流通,中间的数据不会被攻击和被泄露。星环科技的联邦学习平台SophonP²C拥有隐私计算、加密网络通信等多种功能,为多方安全建模提供完整的解决方案。以隐私保护为前提,SophonP²C从根本上解决了跨组织协作时无法安全利用各方数据的困境,真正实现了“原始数据不流通,分析模型流通”。星环科技隐私计算平台SophonP²C架构图安全性方面

行业资讯
联邦计算和隐私计算的区别
联邦计算与隐私计算是两个不同但又相互关联的概念,以下是它们的主要区别:概念定义联邦计算:通常是指联邦学习这一分布式机器学习技术,旨在解决在多个参与方数据不共享的情况下进行联合建模和训练的问题。多个较多或数据量较大的情况下。但随着技术的不断优化,其性能也在逐步提升。隐私计算:不同技术性能差异较大。例如,同态加密计算复杂度高,性能相对较差;可信执行环境在硬件支持下性能较好,但可能受到硬件资源的限制;多方安全计算性能也会因具体算法和场景而异。总体来说,隐私计算在追求隐私保护的同时,往往需要在一定程度上牺牲部分性能。数据处理方式联邦计算:侧重于对数据的分布式处理和模型训练,数据在本地进行预处理和模型参与方在本地训练模型,然后通过加密等技术交换模型参数或梯度信息,不断迭代优化模型,最终得到一个联合模型,而原始数据始终不离开本地。隐私计算:是一个更广泛的概念,涵盖了多种在保护数据隐私的前提下进行数据处理和计算的技术,旨在实现数据“可用不可见”,即数据在不泄露隐私的情况下被用于计算和分析等操作。除了联邦学习外,还包括多方安全计算、可信执行环境、同态加密、差分隐私等多种技术。技术原理联邦计算:主要基于

行业资讯
隐私计算算法
隐私计算算法是在不暴露原始数据的情况下对数据进行分析和处理的一系列技术方法,以下是一些常见的隐私计算算法:安全多方计算算法混淆电路算法:将计算电路转化为加密形式,参与方通过交互加密信息来模拟电路的计算过程,从而在不泄露各自数据的情况下得到计算结果。秘密分享算法:把数据或计算结果分割成多个份额,分发给不同的参与方,只有当足够数量的参与方合作时才能恢复出原始数据或正确的计算结果。同态加密算法加法同态加密算法:允许在密文上直接进行加法运算,计算结果解密后与在明文上进行相同加法运算的结果相同。例如,在处理加密的金融交易数据时,可以对加密后的金额进行加法运算,而无需解密数据。乘法同态加密算法:支持在密文上进行乘法运算,解密后的结果与明文乘法运算结果一致。差分隐私算法拉普拉斯机制:通过向查询结果中添加服从拉普拉斯分布的噪声来实现差分隐私保护。噪声的大小与隐私预算有关,隐私预算越小,添加的噪声越大,对隐私的保护程度越高,但对数据可用性的影响也越大。指数机制:用于处理在离散数据集合上的选择问题,根据数据的敏感度和隐私预算,为每个数据元素分配一个选择概率,通过随机采样的方式从数据集中选择元素,从而保护数据隐私。

行业资讯
隐私计算是什么?
隐私计算是一种在数据处理和分析过程中保护数据隐私的技术体系,旨在确保数据在被使用、共享和分析时,数据所有者的隐私信息不被泄露,同时又能充分发挥数据的价值。隐私计算是指在保护数据本身不对外泄露的前提下技术手段,确保数据在整个计算过程中始终处于加密状态或经过隐私处理,即使数据在不同主体之间传输和共享,也不会泄露敏感信息。去中心化与分布式:许多隐私计算技术采用去中心化或分布式的架构,避免数据集中存储和处理的区别数据处理方式:传统计算通常是在明文数据上进行处理,数据的隐私性难以得到保障,而隐私计算则是在加密或经过隐私处理的数据上进行计算,确保数据在计算过程中不被泄露。数据所有权和控制权:传统计算中,数据,实现数据的分析和计算,涉及密码学、分布式计算、人工智能等多学科交叉融合,涵盖多方安全计算、联邦学习、同态加密、零知识证明等多种技术。特点数据隐私保护:这是隐私计算的核心特点,通过加密、匿名化等带来的风险,数据可以在多个参与方之间进行协同计算,而无需将数据汇总到一个中心节点。可验证性:在保护隐私的同时,隐私计算通常提供一定的验证机制,使得计算结果的正确性和可靠性能够得到验证,确保各方能够信任

行业资讯
国内隐私计算公司
星环科技是国内一家专业的隐私计算公司,致力于为企业提供安全可靠的数据隐私保护解决方案。星环科技分布式隐私计算平台SophonP²C星环科技分布式隐私计算平台SophonP²C集多方安全计算、联邦学习等多种功能,为隐私计算提供完整的解决方案,以隐私保护为前提,解决了跨组织协作时无法安全利用各方数据的困境。平台支持联邦学习、多方安全计算、匿踪查询等功能;性能方面,联邦学习与多方安全计算可达亿级数据量,助力数据要素安全流通和价值迸发,实现数字经济时代下的跨企业和行业的AI协作。星环科技的隐私计算技术已落地如数据流通、政务民生、金融营销等垂直业务场景,为跨企业数据协作提供安全可信的平台支持。在政务曾获信通院多方安全计算性能专项测评证书、联邦学习基础能力专项测评证书、卓信大数据联邦学习安全评估专项证书,以及信通院星河案例隐私计算优秀案例等多项认证和荣誉。随着数据隐私保护意识的不断增强和隐私法规的完善,隐私计算将成为未来数据处理的重要方式。星环科技在隐私计算领域将继续发挥重要作用,为用户和企业提供更加安全可靠的数据隐私保护服务。

行业资讯
国内哪家大数据分析服务平台比较好?
国内哪家大数据分析服务平台比较好?在数字化转型浪潮中,大数据分析服务平台已成为企业提高竞争力的重要工具。面对市场上琳琅满目的选择,如何评估和挑选适合自身需求的大数据分析服务平台,成为许多企业和个人用户关注的问题。本文将从功能特点、技术实力、行业适配性等维度,为您解析国内大数据分析服务平台的现状与选择标准。平台核心功能比较优秀的大数据分析平台通常具备数据采集、存储、处理、分析和可视化等全链条能力。在数据采集方面,部分平台支持多源异构数据接入,包括结构化数据库、非结构化文档、实时流数据等。数据处理环节,有效的分布式计算框架和智能算法是关键,能够快速完成海量数据的清洗、转换和计算。分析能力是平台的展示效果上仍有差异。技术架构与性能表现平台的技术底层直接影响其性能表现。基于云计算架构的平台通常具有更好的弹性扩展能力,能够根据业务需求灵活调整资源。内存计算、列式存储等技术创新显著提高了大数据处理的效率,使复杂分析任务能够在更短时间内完成。数据安全机制也不容忽视。优质平台会实施端到端加密、多因素认证和细粒度权限控制,并符合国内数据安全法规要求。在系统稳定性方面,高可用架构和灾备方案能够保障业务
猜你喜欢

行业资讯
数据安全实践案例
近年来,企业数据安全问题的重要性被提上了前所未有的高度。星环科技提供了从云基础设施、数据平台、数据资源、数据应用的数据安全能力。覆盖数据生命周期的各个阶段,涉及数据的收集、存储、使用、加工以及开放流通。全方位保障企业的数据安全,支撑业务合法合规的开展。星环科技凭借全面的数据安全能力助力某支付机构构建安全防线的落地实践。该支付机构拥有大量数据资产,目前机构面临着较大的挑战,需要加强数据安全管理,为此,机构决定与星环科技合作,利用星环科技的技术来提升数据安全管理能力,共同打造一个基于隐私计算的数据服务平台DaaS。根据客户需求,星环科技在基础设施层提供了基于容器的云原生操作系统TCOS,可以为用户提供独立的数据与计算环境,减少数据对外暴露的风险。在数据平台层,星环科技大数据基础平台TDH新版本增强了安全技术,支持行列级权限控制、动态脱敏等。在数据资产层,星环科技借助两款新产品:数据安全管理平台Defensor帮助企业构建整个数据安全管理域及数据流通平台Navier:包含隐私计算平台SophonP²C和数据交易门户datamall,提供包括联邦学习和差分隐私等技术能力。该支付机构的数据管理平...

行业资讯
图数据库的应用场景
图数据库的应用场景非常广泛,可以应用于各个行业。以下是一些常见的应用场景:金融:在金融领域,图数据库可以帮助银行、保险公司等企业处理复杂的数据结构,支持欺诈检测、交易路由、投资组合分析等操作。社交网络:图数据库可以存储和处理社交网络中的复杂关系图谱和大量用户数据,支持好友推荐、社区发现、个性化内容推荐等操作。物流:在物流领域,图数据库可以帮助企业优化路径规划、物流运输等操作,加速发货、配送时间并提高效率。制造业:图数据库可以支持企业处理复杂的设备关系结构图,进行维修保养、设备性能分析、生产计划优化等操作。能源行业:在能源领域,图数据库可以处理复杂的电网、管道等结构图谱,并支持多种能源趋势分析和紧急事件监测等操作。电商:图数据库可以应用于电商业务中,存储和处理复杂的商品与用户之间的关系,支持个性化推荐、购物车分析、用户行为预测等操作。图数据库可以在各个领域中应用,并且在处理复杂的数据结构和大量的数据时比传统数据库具有更高的性能和效率。星环分布式图数据库StellarDB星环科技致力于打造企业级大数据基础软件,围绕数据的集成、存储、治理、建模、分析、挖掘和流通等数据全生命周期提供基础软件与...

行业资讯
电力行业数字化转型服务商
星环科技致力于打造企业级大数据基础软件,具备大数据与云基础平台、分布式关系型数据库、数据开发与智能分析工具的软件产品矩阵,多年来深耕电力领域,覆盖电力产业“发-输-变-配-用”五大环节,为推动电力行业数字化转型做出了重要贡献。在国网上海电力智能配用电大数据应用系统建设项目中,基于星环科技大数据基础平台TDH构建的智能配用电大数据应用系统汇集了浦东1210平方千米的236万户的用电数据,高负荷738万千瓦,年用电量329亿度,占上海全网四分之一。集成的内外部数据源有10个,整个数据量到现在已经接近8个T了,台账的数据总量有29.14万条。在多元数据集成及大数据平台基础之上,应用系统实现了用电查询,电力地图等基础功能及用户用电行为分析,节电用电预测网架优化和错峰调度等业务应用。基于多源异构数据的关联解析,和海量用电负荷实际数据存储、索引,实现了用电查询的基础应用,包括230万用户,26000个台区,4000余中压馈线的基本台账及用电数据的快速查询,并可以进行用户用电画像、地图定位、供电范围等数据的查询,服务响应时间在三秒以内。此前,星环科技还曾凭借《星环科技电力智慧供应链智能决策平台建设方...

行业资讯
图计算平台代表厂商
星环科技作为一家企业级大数据基础软件开发商,在图计算领域深耕多年,有着深厚的技术积淀和丰富的实践经验。星环科技自主研发的分布式图数据库StellarDB,兼容openCypher查询语言,提供海量图数据的存储和分析能力,支持原生图存储结构,支持万亿边PB级数据存储。同时,StellarDB具备毫秒级点边查询能力,10+层的深度链路分析能力,提供近40种的图分析算法,具备数据2D和3D展示能力。StellarDB克服了海量关联图数据存储的难题,通过集群化存储和丰富算法,实现了传统数据库无法提供的低延时多层关系查询,目前已经用于金融、政府、交通等众多行业,用于反洗钱、风险控制、营销等多种场景。同时StellarDB还获得了多项行业权威认可:入选信通院2022大数据十大关键词“图计算平台”代表厂商;通过了中国信通院图数据库和图计算平台基础能力两项专项测评;入选著名咨询机构Gartner《中国数据库市场指南》、《工具:中国数据库管理系统供应商甄选》报告等,彰显了其产品技术领先性。如今,5G、物联网、AI等技术的发展应用让数据呈指数倍增长,为图数据库发展提供了更广阔的应用空间。顺势而为,乘势而上...

行业资讯
省市级碳排放监测服务平台建设方案
双碳目标下,全国碳排放监测服务平台启动建设力争2030年前实现碳达峰、2060年前实现碳中和,我国明确提出“双碳”目标,充分彰显了在构建人类命运共同体进程中的大国担当。国家电网公司主动担当重要使命,提出“实现双碳目标,能源是主战场,电力是主力军,电网是排头兵”的战略部署,率先行动,发布《全国碳排放监测服务平台建设工作方案》。“双碳”目标的实现离不开科技支撑。《全国碳排放监测服务平台建设工作方案》指出,全国碳排放监测服务平台建设的总体目标是以电网数字化赋能和助力国家碳达峰碳中和,实现“电力看双碳”,“双碳看经济”,为国家碳排放统计核算体系建设、宏观调控政策制定、经济社会全面绿色转型发展等工作提供决策支持。平台建设需要解决以下问题:以数字化平台技术解决各省的地市、区县、重点行业碳排放数据维度不全面、核算方法不完善、碳核算体系不统一等方面的问题;强化数据应用,发挥好决策支撑作用,深挖电力大数据价值,开展“电力看环保”“电力看经济”等大数据应用。积极响应号召,星环科技打造碳排放监测服务平台解决方案星环科技作为大数据基础软件领域的代表性企业,有着高度的责任感和使命感,为响应“全国碳排放监测服务平...

行业资讯
数据中台推荐供应商
作为一家企业级大数据基础软件开发商,星环科技很早就在数据中台领域布局,结合星环科技全系产品的相关组件实现数据中台能力建设。星环科技把数据中台建设归纳为三中心、六能力、两个体系,这当中都会有星环科技产品作为支撑,从而保证企业能够快速实现,并搭建起数据中台,满足企业未来发展变化。其中,三中心分别是存储中心、分析探索中心、业务赋能中心;六能力包括数据汇聚能力、数据整合能力、智能分析能力、实时计算能力、统一访问能力、统一服务能力;两个体系则是安全和运维保障体系与数据和分析支撑体系。三中心、六能力、两个保障体系都构建在一个云底座之上,满足企业私有化或者混合云多云的部署形态,同时灵活组件式的可插拔式部署形态,能够帮助企业更迅速的起步,按规划分步完善数据中台建设。除了提供基础组件和相应的工具帮助客户快速构建数据中台之外,星环科技还提供咨询实施服务,可以为企业提供量身定制的“数据云基础设施+咨询服务的端到端产品+服务”的综合解决方案。在星环科技的咨询服务产品体系中,包括为企业构建中台的架构规划、应用规划,以及帮助企业实施建设数据底座、数据中台、数据仓库,以及数据治理服务,也包括了数据的分析、业务分析、...

行业资讯
什么是分布式时空数据库?
时空数据库时空数据库是一种针对时空数据处理的数据库系统。它以时间和空间为基础,整合了空间信息和时间信息,能够对时空数据进行存储、查询和分析。时空数据库广泛应用于交通运输、城市规划、GIS等领域。分布式时空数据库分布式时空数据库是一种对时空数据进行存储和处理的数据库系统,通过分布式存储和分布式计算等技术,可以实现对大规模时空数据的高效处理和分析。与传统的集中式数据库系统不同,分布式时空数据库将数据存储在多个存储节点上,并将计算任务分配给多个计算节点来完成,从而极大地提高了时空数据的处理能力和可靠性。分布式时空数据库的出现,使得处理大规模时空数据成为了可能,也更好地满足了各个领域对时空数据深度分析的需求。星环分布式时空数据库-TranswarpSpactureSpacture是星环科技自主研发的一款面向空间、时空数据的存储与管理,集计算与存储为一体的分布式数据库产品,支持大规模矢量数据、时空轨迹数据的存储与计算,具有完备的数据查询、分析和挖掘能力,可用于时空查询分析、时空模式挖掘、时空轨迹聚类等时空轨迹数据分析场景,广泛应用于交通物流、城市管理、位置服务等场景。

行业资讯
国产数据库有哪些?
在国产数据库产品方面,星环科技坚持自主研发与技术创新,打造了自主可控的高性能分布式数据库ArgoDB和分布式交易型数据库KunDB,以及分布式图数据库StellarDB等产品。KunDB具备较强的SQL兼容性,同时具备高可用、高并发、在线扩缩容、数据强一致性等能力,适用于操作型业务、高并发业务等场景。ArgoDB具备完整的SQL兼容性,同时具备高扩展、高可靠、多模型、存算解耦等能力,一站式满足数据仓库、实时数据仓库、数据集市、OLAP、联邦计算等场景。通过不断的打磨和对业务场景不断的落地实践,ArgoDB和KunDB已成为具有完全自主知识产权的成熟的国产数据库,能够为更多的客户提供高性能、高可靠、成熟的数据库产品服务,帮助用户应对智能数据时代海量数据的分析与探索。分布式图数据库StellarDB兼容openCypher查询语言,提供海量图数据的存储和分析能力,支持原生图存储结构,支持万亿边PB级数据存储。同时,StellarDB具备毫秒级点边查询能力,10+层的深度链路分析能力,提供近40种的图分析算法,具备数据2D和3D展示能力。星环科技StellarDB在金融、政府和社交网络等领域...

行业资讯
企业级AI能力运营平台
为解决AI落地难的问题,星环科技从用户需求端出发,研发了一款基于云原生架构的企业级AI能力运营平台SophonMLOps,助推AI模型落地。SophonMLOps是基于云原生架构构建的企业级AI能力运营平台,聚焦于机器学习模型全生命周期中的模型管理、模型部署、模型监控预警、模型评估和模型迭代等关键环节。通过统一纳管、统一运维、统一应用、统一监控、统一评估、统一解释,赋予企业客户易用、高效且安全可靠的AI能力运营服务,协助客户规模化管理日益增长的机器学习模型,提升模型使用效率,降低模型集成管理成本,控制模型生产环境风险。SophonMLOps针对企业AI运营的痛点,围绕企业AI模型接入、运营管理、持续训练的全生命周期,分别提供规模化集成管理、高效模型推理、模型监控预警、模型性能评估、隐私安全保障等功能,为企业的AI日常运营插上翅膀。SophonMLOps打通了AI的全生命周期,为企业的各类用户角色搭建了统一的AI协作平台。对于企业而言,MLOps规模化集成管理了多源异构的机器学习模型,并提供高效且保障隐私安全的模型推理、监控预警及性能评估服务;对用户而言,能感受到操作上的快捷,AI应用与...

行业资讯
数据中台建设
随着行业和技术领域的变化日新月异,从数据仓库、动态数仓,到数据湖,从新一代湖仓一体技术到可插拔数据库,概念的引入虽然简单,但如何做到更有效,更复杂的数据资产管理就考验着对生产能力和工艺过程的管理能力。星环科技认为数据中台是一种能力、是一种组织上的策略而不仅仅是一种技术架构,它是在信息化基础上建立的可编织和可复用的数据可分析能力,从而支撑企业数字化转型。星环科技的数据中台三中心、六能力、两个体系星环科技很早就在数据中台领域布局,结合星环科技全系产品的相关组件实现数据中台能力建设。星环科技把数据中台建设归纳为三中心、六能力、两个体系,这当中都会有星环科技产品作为支撑,从而保证企业能够快速实现,并搭建起数据中台,满足企业未来发展变化。数据存储、分析探索、业务赋能三中心第一,帮助企业构建存储中心,提升数据的汇聚和整合能力;第二,构建数据分析探索中心,专注于智能分析能力和实时计算能力的提升,推动智能推荐能力和全链路实时监测和保障能力;第三,构建业务赋能中心,提供统一的访问能力实现跨平台联邦,统一的访问层控制,确保数据安全可用,同时搭建统一的服务能力,面向多场景的服务应用支撑。安全和运维、数据和分...