隐私计算 银行业应用

星环隐私计算平台
Sophon P²C是一款分布式隐私计算平台,集隐私计算、加密网络通信等多种功能,为多方安全建模提供完整的解决方案。以隐私保护为前提,Sophon P²C解决了跨组织协作时无法安全利用各方数据的困境
隐私计算
Sophon P²C是一款分布式隐私计算平台,集隐私查询、隐私计算、加密通信等多种功能,能够为多方安全建模提供完整的解决方案。其以隐私保护为前提,能够帮助用户解决跨组织协作时无法安全利用各方数据的困境。

隐私计算 银行业应用 更多内容

、匹配性原则、持续性原则和有效性原则。这意味着数据治理需要覆盖数据的全生命周期,适应业务规模和风险状况,并持续有效地推动数据真实准确客观地反映实际情况,并有效应用于经营管理。监管数据纳入治理:银行业评估机制:建立数据治理自我评估机制,明确评估周期、流程、结果应用、组织保障等要素的相关要求。评估内容应覆盖数据治理架构、数据管理、数据安全、数据质量和数据价值实现等方面,并按年度向银行业监督管理机构报送银行业数据治理是指银行业金融机构通过建立组织架构,明确董事会、监事会、高级管理层及内设部门等职责要求,制定和实施系统化的制度、流程和方法,确保数据统一管理、高效运行,并在经营管理中充分发挥价值的动态过程。以下是银行业数据治理的几个关键点:数据治理纳入公司治理范畴:银行业金融机构应将数据治理纳入公司治理,建立自上而下、协调一致的数据治理体系。遵循基本原则:银行业金融机构数据治理应遵循全覆盖原则与标准,依法合规采集、应用数据,依法保护客户隐私,划分数据安全等级,明确访问和拷贝等权限,监控访问和拷贝等行为,完善数据安全技术,定期审计数据安全。数据资料统一管理:建立全面严密的管理流程、归档制度
、匹配性原则、持续性原则和有效性原则。这意味着数据治理需要覆盖数据的全生命周期,适应业务规模和风险状况,并持续有效地推动数据真实准确客观地反映实际情况,并有效应用于经营管理。监管数据纳入治理:银行业评估机制:建立数据治理自我评估机制,明确评估周期、流程、结果应用、组织保障等要素的相关要求。评估内容应覆盖数据治理架构、数据管理、数据安全、数据质量和数据价值实现等方面,并按年度向银行业监督管理机构报送银行业数据治理是指银行业金融机构通过建立组织架构,明确董事会、监事会、高级管理层及内设部门等职责要求,制定和实施系统化的制度、流程和方法,确保数据统一管理、高效运行,并在经营管理中充分发挥价值的动态过程。以下是银行业数据治理的几个关键点:数据治理纳入公司治理范畴:银行业金融机构应将数据治理纳入公司治理,建立自上而下、协调一致的数据治理体系。遵循基本原则:银行业金融机构数据治理应遵循全覆盖原则与标准,依法合规采集、应用数据,依法保护客户隐私,划分数据安全等级,明确访问和拷贝等权限,监控访问和拷贝等行为,完善数据安全技术,定期审计数据安全。数据资料统一管理:建立全面严密的管理流程、归档制度
、匹配性原则、持续性原则和有效性原则。这意味着数据治理需要覆盖数据的全生命周期,适应业务规模和风险状况,并持续有效地推动数据真实准确客观地反映实际情况,并有效应用于经营管理。监管数据纳入治理:银行业评估机制:建立数据治理自我评估机制,明确评估周期、流程、结果应用、组织保障等要素的相关要求。评估内容应覆盖数据治理架构、数据管理、数据安全、数据质量和数据价值实现等方面,并按年度向银行业监督管理机构报送银行业数据治理是指银行业金融机构通过建立组织架构,明确董事会、监事会、高级管理层及内设部门等职责要求,制定和实施系统化的制度、流程和方法,确保数据统一管理、高效运行,并在经营管理中充分发挥价值的动态过程。以下是银行业数据治理的几个关键点:数据治理纳入公司治理范畴:银行业金融机构应将数据治理纳入公司治理,建立自上而下、协调一致的数据治理体系。遵循基本原则:银行业金融机构数据治理应遵循全覆盖原则与标准,依法合规采集、应用数据,依法保护客户隐私,划分数据安全等级,明确访问和拷贝等权限,监控访问和拷贝等行为,完善数据安全技术,定期审计数据安全。数据资料统一管理:建立全面严密的管理流程、归档制度
银行业数字化转型是指银行在数字化技术的基础上进行的全面升级,以提高效率、创造新的产品和服务,并为客户提供更好的用户体验。数字化转型的核心是让客户通过银行的数字化渠道获得更、更高效的服务。通过数字化渠道,银行可提供在线贷款、在线开户、自助存款和提款等一系列服务,从而更加方便和高效地服务客户。数字化转型还将改变银行的管理模式和业务流程,使银行管理更加精细化和高效化。银行业数字化转型是推动银行业升级的必然趋势,对于银行而言,数字化转型不仅是一项挑战,更是一个机遇。银行业要加强技术创新,提升数字化服务水平,才能满足客户的需求、适应行业变革,实现可持续发展。星环科技助力银行业数字化转型星环科技为企业产品进行数字化转型,赋能合作伙伴为客户打造包括数据湖、数据仓库、数据云、智能分析、实时计算等方面的应用和解决方案,同时,星环科技加强产品研发和创新,为客户和合作伙伴提供更好用更强大的工具;加强生态建设,联合客户和合作伙伴,为各个行业进行数字化转型,树立典型案例和标杆案例,为全行业进行数字化转型提供参考。进行数字化转型提供数据全生命周期的处理工具,包括大数据平台、分布式数据库、数据开发和智能分析工具、以及容器化的资源管理平台。为企业数字化转型提供“底座”或者“引擎”。星环科技在二十多个行业的客户使用这些
银行业数字化转型是指银行在数字化技术的基础上进行的全面升级,以提高效率、创造新的产品和服务,并为客户提供更好的用户体验。数字化转型的核心是让客户通过银行的数字化渠道获得更、更高效的服务。通过数字化渠道,银行可提供在线贷款、在线开户、自助存款和提款等一系列服务,从而更加方便和高效地服务客户。数字化转型还将改变银行的管理模式和业务流程,使银行管理更加精细化和高效化。银行业数字化转型是推动银行业升级的必然趋势,对于银行而言,数字化转型不仅是一项挑战,更是一个机遇。银行业要加强技术创新,提升数字化服务水平,才能满足客户的需求、适应行业变革,实现可持续发展。星环科技助力银行业数字化转型星环科技为企业产品进行数字化转型,赋能合作伙伴为客户打造包括数据湖、数据仓库、数据云、智能分析、实时计算等方面的应用和解决方案,同时,星环科技加强产品研发和创新,为客户和合作伙伴提供更好用更强大的工具;加强生态建设,联合客户和合作伙伴,为各个行业进行数字化转型,树立典型案例和标杆案例,为全行业进行数字化转型提供参考。进行数字化转型提供数据全生命周期的处理工具,包括大数据平台、分布式数据库、数据开发和智能分析工具、以及容器化的资源管理平台。为企业数字化转型提供“底座”或者“引擎”。星环科技在二十多个行业的客户使用这些
银行业数字化转型是指银行在数字化技术的基础上进行的全面升级,以提高效率、创造新的产品和服务,并为客户提供更好的用户体验。数字化转型的核心是让客户通过银行的数字化渠道获得更、更高效的服务。通过数字化渠道,银行可提供在线贷款、在线开户、自助存款和提款等一系列服务,从而更加方便和高效地服务客户。数字化转型还将改变银行的管理模式和业务流程,使银行管理更加精细化和高效化。银行业数字化转型是推动银行业升级的必然趋势,对于银行而言,数字化转型不仅是一项挑战,更是一个机遇。银行业要加强技术创新,提升数字化服务水平,才能满足客户的需求、适应行业变革,实现可持续发展。星环科技助力银行业数字化转型星环科技为企业产品进行数字化转型,赋能合作伙伴为客户打造包括数据湖、数据仓库、数据云、智能分析、实时计算等方面的应用和解决方案,同时,星环科技加强产品研发和创新,为客户和合作伙伴提供更好用更强大的工具;加强生态建设,联合客户和合作伙伴,为各个行业进行数字化转型,树立典型案例和标杆案例,为全行业进行数字化转型提供参考。进行数字化转型提供数据全生命周期的处理工具,包括大数据平台、分布式数据库、数据开发和智能分析工具、以及容器化的资源管理平台。为企业数字化转型提供“底座”或者“引擎”。星环科技在二十多个行业的客户使用这些
近日,中国信通院正式发布《金融行业大规模预训练模型技术和应用评估方法第1部分:银行业》标准。星环科技凭借在大规模预训练模型领域的积累和洞察,积极参与了《金融行业大规模预训练模型技术和应用评估方法第1模型维护方面的实践经验,为模型的持续优化和迭代提供了一些策略和方法。《金融行业大规模预训练模型技术和应用评估方法第1部分:银行业》标准是银行业大模型标准,主要用于规范银行业大模型在客服、营销、反诈、办公、审查等场景的应用,明确银行业大模型在数据资源、开发部署、运维管理和服务应用方面的技术能力,为银行业大模型技术研发者和选型者提供评估参考规范,推动银行业大模型健康发展。当前以大模型为代表的新一代部分:银行业》标准的制定工作。在标准编制过程中,不仅提供了关于技术透明度的相关见解,关注模型的可解释性和公正性,还针对事后审核机制进行了讨论,提供了金融模型的监管和风控的相关部分建议。此外,还分享了在人工智能技术正成为打造新质生产力的重要引擎,为金融、制造、交通、政务等众多行业企业数字化转型和高质量发展带来新的动能。星环科技通过自主研发,可以向用户提供一站式企业级大模型生产及应用全流程开发工具链,让大
知识图谱在银行业应用主要包括以下几个方面:金融风控和合规:银可以利用知识图谱来构建客户关系图,将客户的个人信息、交易记录、贷款信息等结构化和非结构化数据进行整合和分析,从而提供更准确的风险评估和合网络等多维度数据进行整合和分析,从而更准确地评估客户的信用风险,提高信贷决策的准确性和效率。通过应用知识图谱技术,银行能够更全面、准确地了解客户和市场,提供个性化的金融服务,提高风控能力和业务效率、建模、融合、存储、计算应用为一体的知识图谱产品。平台支持低代码图谱构建、智能化知识抽取、多模态知识存储与融合、多形式知识计算和推理以及多维度的图谱分析。除了具备链路完备性,平台还从业务场景出发,沉淀了规管理,例如发现关联交易和反洗钱行为。客户关系管理:知识图谱可以帮助银行建立客全貌,将客户的个人信息、资金流动、交易偏好等多种数据进行关联和分析,从而更好地了解客户需求,提供个性化的服务和产品推荐,增强客户满意度和忠诚度。产品推荐和营销:通过构建产品知识图谱,银行可以根据客户的历史交易、偏好和风险承受能力,为客户提供符合其需求的产品推荐,提高销售效率和销售额。智能投资顾问:基于知识图谱的智能投资
产品文档
10 Hippo 运维
运维管理界面WebserverWebserver是Hippo提供运维监控的界面。默认访问地址为:4567"class="bare">http://<webserver_ip>:4567。或者在Manager管理界面我们可以通过下图所示的查看链接这里进行跳转。图15.登录HippoWebserverWebserver主要由下面几个部分构成。概况图16.概况该页面展示了Hippo集群的基本信息,包括:Masterstatus:当前的ActiveMaster,MasterGroup,MasterAddress,Master的健康状态TabletServerStatus:TabletServerAddress,健康状态,逻辑机架和数据中心信息,容量使用以及Tablet个数TabletNum:当前集群表的个数Version:Hippo版本信息库表图17.库表页面以库和表的概念集群存储的各类数据信息。库信息:库名库创建时间库内各类表的信息:点击某个库,可以看到库下所有表的信息,主要包括:••表的ID••表的名字••表的状态••表的Tablet数量••表的Engine类型••表的副本数•...
产品文档
5.18 全文检索
Hippo在1.2版本提供了全文索引能力,兼容ElasticSearch6.7.2语法,在底层架构上复用了公司产品TranswarpScope的一部分特性,支持以Java/HTTPRestful的形式通过Hippo的HTTPServer接口进行全文索引的创建、查询、使用等各类需求,通过该能力的支持,可以更好的实现向量与全文的混合检索。通过将向量检索加全文检索的联合召回,可以降低漏检和误检的概率,能够实现比单独使用向量或全文更高的精度。同时,一套数据库系统可避免部署多套系统带来的架构复杂、开发运维成本高等问题。具体的使用方法除了访问端口需要将端口从8902调整为9200外,均可参考《TranswarpScope手册》4.TranswarpScopeAPI介绍。
产品文档
3.3 Cluster
OverviewAclusterisaHippoCloudinstanceassociatedwithspecificcomputingresources.Youcancreaterelatedtables,insertcorrespondingdata,andcompleteproductexperiencewithinacluster.Beforeyouusethedemoenvironment,youneedtocreateacluster.CreateClusterYouneedtogotothespecificproject.Iftherearenoclustersunderthecurrentproject,youcanclickthe'Createcluster'buttonbelowtheclustercreationguidancepagetoentertheclustercreation.Ifthereareclustersunderthecurrentproject,youcanclickthe'+Cluster'buttonabovetheclusterlist...
查看Master节点通过以下命令,查看集群Master节点信息:curl-ushiva:shiva-XGET'localhost:8902/hippo/v1/_cat/master?v'返回结果:epochtimestampactive.master.hostactive.master.portmaster.group169079683909:47:19172.29.203.18926841172.29.203.189:26841,172.29.203.189:26851,172.29.203.189:26861查看数据节点curl-ushiva:shiva-XGET'localhost:8902/hippo/v1/_cat/nodes?v'//查看所有节点curl-ushiva:shiva-XGET'localhost:8902/hippo/v1/_cat/nodes/{node}?v'//{node}表示待匹配的节点地址,支持以*通配,支持指定多个pattern,多个pattern以逗号分割返回结果:
产品文档
2 Quick Start
ThistutorialwillguideyouthroughthefollowingtaskswithinHippoCloud:EstablishingatablePerusingthetableIncorporatingdataExecutingsearchoperationsEliminatingrowsDissolvingthetableBeforeyoustartInthisguide,wewillbeutilizingthePythonAPI.Priortocommencement,ensurethatyouhave:RegisteredforaHippoCloudaccount.SubscribedtothecomplimentaryplanandestablishedatrialclusterwithinHippoCloud,orsubscribedtothestandard/enterpriseplansandconstructedadedicatedcluster.IfyouanticipateemployingPythonfordevelopment,ascert...
产品文档
5.7 查询类操作
过滤条件表达式Hippo当前支持如下表达式,可用于标量或向量查询。表46.过滤条件表达式表达式描述and当前版本支持and,不支持or/not==等值<小于⇐小于等于>大于>=大于等于inin[1,2,3]notinnot_in[1,2,3]like'_'表示匹配任一字符,'%'表示匹配任意字符,'\'为转义符向量相似性检索本节描述如何进行向量相似度搜索。Hippo中的向量相似性搜索计算查询向量与表中向量的距离,返回最相似的结果集。通过指定标量过滤条件,用户可以进行向量与标量的混合搜索。curl-ushiva:shiva-XGET'localhost:8902/hippo/v1/{table}/_search?pretty'-H'Content-Type:application/json'-d'{"output_fields":["book_id"],"search_params":{"anns_field":"book_intro","topk":2,"params":{"nprobe":10},"embedding_index":"ivf_flat_index"}...
产品文档
8 性能分析
本节测试主要描述了Hippo1.0在关键测试上的一些性能表现,该份测试同样也是Hippo的基准测试,后续版本发布也会在不同版本上进行该测试进行对比分析。术语表142.Hippo性能测试术语TermDescriptionnq一次搜索请求中搜索的向量个数topk一次请求中对于要检索的每个向量(依赖nq),所能检索到最近距离的向量个数RT一次请求从发起到接受响应的时间]QPS请求在每秒内成功执行的次数dataset测试所用数据集,不同数据集表示不同的业务场景测试集群配置硬件配置表143.性能测试硬件配置硬件规范Nodes3CPUIntel®Xeon®Gold5218RCPU@2.10GHzMemory16*\16GBRDIMM,3200MT/sDISKNVMeSSD2T*4GPUNONE软件配置表144.性能测试软件配置软件版本Hippov1.2TranswarpManagerTDH9.3.0测试集表145.性能测试数据集数据集名称数据集介绍向量维度向量总数查询数量数据总量距离类型Sift-128-euclidean该数据集是基于Texmex的数据集整理,使用SIFT算法得到的图片特征向量。...
产品文档
1 Introduction
OverviewUnstructureddatamanagementismoreimportantthaneverduetotheriseofbigdata.Managingandgleaningbusinessvaluefromunstructureddataisofutmostimportancetoenterprisestoday.Advancementsinmachinelearning,aswellasdeeplearning,technologiesnowenableorganizationstoefficientlyaddressunstructureddataandimprovequalityassuranceefforts.Inthefieldofartificialintelligenceormachinelearning,embeddingsandvectordatabaseshavebecomeincreasinglyimportantfortacklingawiderangeofproblems.Thesetechniquesareusedtorepresen...
产品文档
5.3 写入类操作
本节介绍Hippo表写入相关操作。Hippo会返回写入成功数据的下标以及总共写入成功的数据条数,如果出现行级错误(比如主键冲突),Hippo会返回具体的行级错误。插入本节介绍如何向Hippo中插入数据。curl-ushiva:shiva-XPUT'localhost:8902/hippo/v1/{table}/_bulk?database_name={database_name}&pretty'-H'Content-Type:application/json'-d'{"fields_data":[{"field_name":"book_id","field":[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74...
产品文档
5.10 任务相关
在Hippo中,比较耗时的操作如激活、加载向量索引实际上是一个分布式任务,用户可以通过任务相关接口查看、删除任务。查看任务curl-ushiva:shiva-XGET"localhost:8902/hippo/v1/_jobs?pretty"-H'Content-Type:application/json'-d'{"job_ids":["fc6feff4f303455a9347f9aab323dfc8"],"action_patterns":["hippo*"]}';返回结果:{"jobs":[{"job_id":"810935a1d91a46b7af2ec35013454fed","job_status":"SHIVA_JOB_SUCCESS","embedding_number":100,"task_results":[{"id":"54ab52493dfb4bab9fb7742d850c64c4","status":"TASK_SUCCESS","server":"172.29.40.26:27841","embedding_number":100,"execute_time":...