银行 数据仓库技术 应用

数据仓库
星环数据仓库解决方案具备超高性能、高可扩展、极简易用、高性价比等特性。面对高速增长的数据规模,传统的数据仓库负荷严重超出。不扩容会影响性能与稳定性,但是扩容却十分昂贵。星环数据仓库解决方案广泛应用于金融、政企、交通、能源、电信等多个领域,可以满足大数据时代企业构建各类数据仓库的需求。

银行 数据仓库技术 应用 更多内容

行业资讯
银行数据仓库
银行数据仓库银行进行数据管理与分析的核心系统,具有重要作用和独特的架构及应用特点:作用支持决策制定:整合银行内部各类业务数据,为管理层提供全面、准确且及时的数据洞察,助力制定战略决策。风险管理场景构建数据集市,提供定制化的数据服务,满足各部门的个性化分析需求。数据存储与管理技术:基于大规模并行处理(MPP)架构的数据仓库平台,或者采用云数据仓库解决方案,以应对海量数据的存储和高效处理需求。同时,结合数据压缩、索引优化、分区存储等技术手段,提高数据存储效率和查询性能。ETL与数据质量管理:配备强大的ETL(抽取、转换、加载)工具和流程,确保数据从不同数据源准确、高效地抽取并转换为符合数据仓库要求的数据格式,加载到相应的数据层。同时,建立完善的数据质量管理体系,从数据完整性、准确性、一致性、及时性等多个维度进行监控和评估,通过数据质量规则定义、数据质量监控工具应用以及定期的数据质量报告生成,及时发现和解决数据质量问题,保障数据仓库数据的可靠性和可用性。,统一数据格式和编码规则;DWS层在DWD层基础上,根据银行常见的分析主题进行进一步的汇总和聚合操作,生成高度汇总的数据,方便管理层快速获取关键指标数据;ADS层则根据不同的业务部门或特定的业务应用
数据仓库开始向智能化方向发展,包括自动化数据建模、智能数据清洗、自动化ETL流程等技术,提升数据仓库的建设效率和数据分析能力。数据仓库应用案例金融业:银行通过构建数据仓库整合交易系统、信贷管理系统、风险数据仓库技术应用是一个广泛的话题,涉及到数据存储、管理和分析等多个方面。以下是一些关键点,结合了最新的搜索结果:数据仓库技术数据仓库:随着云计算的普及,数据仓库正向云端迁移,提供弹性扩展、按需付费和简化维护的优势。实时数据仓库:企业对实时数据处理的需求增加,数据仓库开始向实时化方向发展,支持数据的实时分析和监控。大数据数据仓库融合:数据仓库与大数据平台的融合,拓展了数据仓库应用范围,实现对结构化、半结构化和非结构化数据的统一管理和分析。数据湖与数据仓库的结合:数据技术数据仓库相结合,实现数据的全生命周期管理,提供更强大的数据管理能力,这种结合被称为“数据湖仓”。智能化与自动化管理系统等数据,设计数据模型,通过ETL工具抽取数据,利用BI工具和数据挖掘技术进行疾病趋势分析、药品使用效率分析、医疗服务质量评估等。制造业:制造公司通过构建数据仓库整合生产管理系统、质量
行业资讯
数据仓库应用
数据仓库在现代企业中具有广泛的应用,以下是一些主要的应用场景和行业案例:应用场景商业智能与分析:数据仓库是进行商业智能分析和报告的核心平台,能够汇总不同来源的数据,为企业用户提供全面的信息,支持基于。行业案例电商行业:电商企业利用数据仓库整合用户行为、销售和库存数据,进行个性化推荐和精准营销,从而提升用户体验和销售业绩。金融行业:银行和金融机构通过数据仓库进行客户行为分析、风险管理和合规性监控提供最新的数据分析结果,帮助企业及时做出决策。智能化与自动化:数据仓库将与人工智能和机器学习技术结合,提供更深入的数据挖掘和智能决策支持。数据的决策和预测性分析。客户关系管理:通过将客户数据导入数据仓库,企业可以深入了解客户行为,制定相应的营销策略,提高客户满意度。企业资源规划:数据仓库帮助企业监控资源、供应链和生产,支持更有根据的决策,帮助预测市场趋势并优化投资组合。医疗行业:医疗机构使用数据仓库分析患者数据和治疗效果,以提升医疗质量和降低运营成本,同时进行科研数据分析,支持疾病预测与预防研究。制造业:制造企业利用数据仓库监控
行业资讯
数据仓库技术
技术可以帮助企业进行更准确的业务分析和预测,从而提高企业绩效和效益。星环数据仓库解决方案星环数据仓库解决方案具备超高性能、高可扩展、易用、高性价比等特性。星环数据仓库解决方案广泛应用于金融、政企、交通、能源、电信等多个领域,可以满足大数据时代企业构建各类数据仓库的需求。。数据仓库通常采用星型模型或雪花模型进行数据架构,以方便进行多维分析和查询。数据仓库技术是一种用于帮助企业集成、存储和分析大量数据技术。通过将大量的数据从不同的数据源中提取、转换和加载到一个数据存储库中,然后对这些数据进行分析和报告,以帮助企业实现更好的业务决策。数据仓库技术可以帮助企业:提高数据质量:数据仓库技术可以帮助企业对收集到的数据进行清理和转换,提高数据的质量和准确性。提高数据的可用性:通过数据仓库技术,企业可以将数据从不同的数据源中整合起来,提高数据的可用性和分析能力。优化决策过程:数据仓库技术可以帮助企业实现准确的数据分析和报告,从而改善企业的决策过程。提高企业绩效:数据仓库数据仓库是一个为企业提供决策支持的数据存储系统。数据仓库是一个战略集合,可以提供所有类型的数据支持,包括历史数据、实时数据、汇总数据等。数据仓库的目的是通过分析和报告数据来帮助企业做出明智的商业决策
数据仓库技术栈涵盖了从数据收集、存储、处理、分析到最终呈现的整个链条上的各种技术和工具。以下是构建数据仓库时常见的技术栈组成部分:数据源层:包括各种业务系统、数据库、文件、外部数据接口等,这是数据仓库的输入端。数据接入层:用于从数据源中提取数据并加载到数据仓库中。ETL层:负责数据的抽取、转换和加载。ETL工具是数据仓库设计的核心组成部分,它们决定了数据提取的时间、方法、转换类型以及数据验证和净化的简单性。数据存储层:负责存储经过ETL处理后的数据数据通常以星型模式或雪花型模式等形式组织,以支持高效的查询和分析。数据仓库层:按照不同的主题和层次(如明细层、轻度汇总层、高度汇总层等)对数据进行组织和存储。数据集市层:针对特定业务部门或业务需求,从数仓中提取和定制的数据集合,以满足特定的分析和决策需求。数据分析层:用于对数据进行分析和挖掘。数据访问层:提供用户访问数据仓库的接口。用户可以(On-LineAnalyticalProcessing):专用于维度建模数据的分析,然后通过BI将OLAP的结果以图表的方式展现出来。云服务和计算资源:基于云的数据仓库架构利用云计算资源来存储、管理和分析数据,以实现
行业资讯
数据仓库技术
数据仓库技术是一系列用于存储、管理和分析大量数据的方法和工具的集合,它们支持企业的决策制定和业务运营。以下是数据仓库技术的几个关键方面:ETL技术:ETL(是数据仓库的核心技术之一,涉及数据的抽取、转换和加载三个步骤。通过ETL技术,企业能够将分散在不同系统中的数据整合到数据仓库中,并进行数据清洗和转换,以确保数据的一致性和准确性。OLAP技术:OLAP是一种用于数据仓库的查询和分析技术。它支持规律和关联关系,为决策提供支持。数据聚合:数据聚合是指将分散的数据整合到一起,使数据更具关联性和整体性,这是数据仓库技术中的一个关键过程。数据清洗:数据清洗是指对数据进行清洗、转换和标准化,确保数据质量和准确性,这是建立数据仓库时的一个重要步骤。数据存储结构:数据仓库通过采用先进的数据存储结构(如列式存储)、索引技术和查询优化算法,能够显著提升数据查询的效率。数据可视化和展现:数据仓库通常与客户端访问,防止数据泄露和滥用。数据历史和时间维度:数据仓库通常存储企业的历史数据,支持时间维度的分析。用户可以通过数据仓库分析数据的历史变化和趋势,支持决策和预测。支持高级数据分析:在数据仓库的基础上,企业可以部署更高级的数据分析工具和技术,如数据科学和人工智能(AI)算法,以发现数据中的隐藏模式和趋势。
技术能够与企业现有技术进行集成和协同。常见数据仓库技术:关系型数据库管理系统:适用于大规模的数据仓库应用场景。大数据平台:提供了分布式存储、计算和处理海量数据的能力,适用于处理大规模的半结构化和非在选择数据仓库技术时,企业需要考虑多个因素以确保选型符合业务需求和未来发展。以下是一些关键的考虑因素和常见数据仓库技术的概述:选型考虑因素:数据规模:评估企业数据规模的大小,以确定合适的数据仓库技术工具。成本效益:评估数据仓库技术的成本效益,以确保所选技术的性价比合理。技术支持:评估供应商的技术支持和服务水平,以确保企业能够顺利实施和运维数据仓库。已有技术:评估企业已有的技术和基础设施,以确保所选结构化数据数据仓库系统(DW):集成了关系型数据库、多维OLAP和数据挖掘等功能,适用于复杂的数据仓库应用场景。云数据仓库趋势:随着云计算的普及,云数据仓库因其弹性扩展、按需付费、维护简单等优势而越来越受欢迎。实时数据仓库:企业对实时数据处理的需求不断增加,数据仓库也开始向实时化方向发展。实时数据仓库能够帮助企业及时捕获业务动态,支持即时决策和快速响应。
行业资讯
数据仓库开发
损坏时能够快速恢复数据。团队协作与沟通:建立高效的团队协作机制,加强跨部门沟通与合作,确保数据仓库的维护和管理工作能够顺利进行并达到预期效果。关键技术应用数据仓库的建立离不开一系列关键技术的支持,包括数据仓库开发是一个涉及多个步骤和关键技术的复杂过程。以下是数据仓库开发的一些核心步骤和技术要点:需求分析与数据建模:深入理解业务需求,与业务部门沟通,明确数据仓库需要解决的业务问题,并收集相关数据优化:定期对数据仓库的性能进行监控和分析,发现潜在的性能瓶颈并进行优化。同时,关注新技术的发展和行业动态,及时升级和替换过时的技术和组件。数据备份与恢复:建立完善的数据备份和恢复机制,确保在数据丢失或ETL技术、大数据处理技术、在线分析处理(OLAP)技术和机器学习等,这些技术共同作用,确保数据的有效存储、管理与分析。工具平台:数据仓库开发依赖于工具平台,包括存储系统、计算系统等,这些是数据仓库的基础。发展趋势:数据仓库正朝着云化、实时化、智能化和自动化方向发展。云数据仓库、实时数据仓库数据湖与数据仓库的融合、智能化与自动化功能是未来发展的关键技术
行业资讯
数据仓库方案
层:涉及数据的存储技术数据分析层:支持OLAP分析和机器学习算法。数据应用层:数据仓库应用层面,如报表生成和数据展示。数据仓库设计OLTP与OLAP:数据仓库主要服务于OLAP场景,而非事务型应用以下是一些数据仓库方案的关键点和技术架构:数据仓库建设方案总体架构:数据仓库架构从层次结构上分为数据采集、数据存储、数据分析、数据服务等几个方面的内容。数据采集:负责从各业务系统中汇集信息数据,支撑常规机器学习算法。数据仓库技术架构数据仓库技术架构通常包括以下五个主要部分:数据源层:包含企业内外部的各种数据源。ETL层:负责将数据源层的数据进行抽取、转换和加载,确保数据的准确性和时效性。数据存储OLTP。数据仓库功能:满足OLAP场景下的数据管理需求,包括数据的统一化存储和规范化处理。数据仓库应用:满足企业中所有数据的统一化存储,通过规范化的数据处理来实现企业的数据分析应用数据仓库设计步骤、转换后加载到数据仓库中。性能优化:通过索引、分区、物化视图等技术手段,优化数据仓库的查询性能。安全性与权限管理:确保数据仓库的安全性,设置合理的用户权限和访问控制策略。测试与部署:对设计的数据仓库进行充分的测试,确保其功能正常、性能稳定后,进行部署和上线。
图数据库有许多适用场景,常见的应用场景有:社交媒体:社交媒体中的用户和关系可以建模为图结构。用图数据库来管理和查询这些社交数据,可以实现更精确的社交关系分析。金融:在金融领域中,图数据库可以用于合规风控、反欺诈、投资和信贷决策等众多场景。例如,通过在图中存储和分析不同实体(如银行账户、信用卡、电话、邮箱、运单等)之间的关系,可以准确识别欺诈降低风险。物流和运输:物流和运输领域也是图数据库的应用场景之一。例如,通过在图中存储城市、仓库、货物、运输路线等信息,可以进行物流管理、运输计划优化、货物追踪等任务。生命科学:在生命科学领域,图数据库可以用于存储和分析复杂的基因、蛋白质、代谢物等数据,帮助科学家发现新的治疗方法和疾病机制。游戏:游戏开发者可以使用图数据库来管理玩家角色、各种装备、地图、任务等复杂的游戏数据,实现更好的游戏体验。图数据库的灵活性和高效性使其在多个领域都有着广泛的应用。星环分布式图数据库StellarDB星环科技致力于打造企业级大数据基础软件,围绕数据的集成、存储、治理、建模、分析、挖掘和流通等数据全生命周期提供基础软件与服务,在图计算领域深耕多年,自主研发了分布式图数据...
银行图数据库的应用场景:反洗钱:图数据库可以将可疑交易数据存储于其中,帮助银行更快速地提取、分析与关系,识别出潜在的洗钱行为。客户关系管理:银行图数据库可以将客户的不同信息(如交易记录、信用评级、客户所在地和行业等)进行整合,并将这些信息在一个数据仓库中呈现出来。这使得银行能够更加精准地分析客户需求,提供更加符合客户需求、更加优质的服务。风险管理:银行是一个与风险息息相关的行业。图数据库可以帮助银行对相关风险进行整合和分析。通过解析大量的金融数据,图数据库可以找出潜在的风险点,提前控制风险。数字化转型:图数据库能够将社交网络、收集的数据等信息关联起来,并创造性地开拓新业务模式。除了与客户密切相关的业务领域,图数据库还能够在支持业务流程优化方面发挥重要作用。营销:银行可以使用图数据库来收集客户数据、行为数据等,这样可以更加精确地预测客户习惯,对客户进行更加细致的营销和服务。银行图数据库有着广泛的应用场景,可以在多个角度上支持银行的业务发展,提高服务的质量和效率。星环分布式图数据库StellarDB星环科技致力于打造企业级大数据基础软件,围绕数据的集成、存储、治理、建模、分析、挖掘和流通等...
星环科技分布式隐私计算平台SophonP²C集多方安全计算、联邦学习等多种功能,为隐私计算提供完整的解决方案,以隐私保护为前提,解决了跨组织协作时无法安全利用各方数据的困境。平台支持联邦学习、多方安全计算、匿踪查询等功能;性能方面,联邦学习与多方安全计算可达亿级数据量,助力数据要素安全流通和价值迸发,实现数字经济时代下的跨企业和行业的AI协作。星环科技的隐私计算技术已落地如数据流通、政务民生、金融营销等垂直业务场景,为跨企业数据协作提供安全可信的平台支持。在政务民生场景,SophonP²C通过纵向联邦学习联合居民用电数据与用水数据,生成群租房预测名单。在联合建模过程中,全程明文数据不出,有效保护了居民用水用电的数据隐私信息。联合训练模型比本地单独用电数据训练的模型AUC提升20%以上,赋能政务决策高效的处理分析能力,为政府有效排查群租房,消除群租房造成的消防、安全隐患,打造和谐、安全、美丽的生活环境作出了突出贡献,为政务决策、民生建设发挥信息化支撑保障作用。在精准营销场景,通过纵向联邦学习,车企安全引入了多方数据,丰富用户特征维度,对用户行为进行统计分析。在联合建模过程中,全程明文数据...
星环科技致力于打造企业级大数据基础软件,基于在大数据、分布式数据库、隐私计算、数据安全流通领域有着多年积累,研发了数据要素流通全过程的一系列工具,在各方数据不出域的前提下,为数据资源方和数据消费方提供数据交付服务。2022年9月星环科技曾受邀出席“深数交”数据合规活动,分享数据安全出境解决方案。2021年星环科技成为上海数据交易所首批签约数商。2022年12月星环科技与中国东信旗下北部湾大数据交易中心达成了战略合作。伴随数字经济蓬勃发展,融入全球数据跨境流动的趋势不可避免。数据出境安全治理受到广泛重视,为进一步规范数据出境活动,保护个人信息权益,维护国家安全和社会公共利益,促进数据跨境安全,国家互联网信息办公室发布了《数据出境安全评估办法》。国内运营的外企(尤其是零售、化工等)、新能源汽车以及生态企业(含自动驾驶等)、国际化企业与出海企业、跨境电商和物流、有融资需求的基于数字化做业务创新的创业公司等是国内迫切需要落实数据安全出境的企业。然而企业在落地数据出境安全方面存在一些实际困难,主要体现在:错综复杂的数据如何分类分级,如何识别重要数据;重要数据如何存储和管理,才能达到相关法律法规的...
时空数据库(Spacial-temporaldatabase)是一种专门用于存储和管理时空数据的数据库管理系统,它是传统关系型数据库的一个扩展,可以实现对时空数据进行有效管理和处理。时空数据是指带有时空坐标或时间戳的数据,例如地图、气象数据、交通、城市规划等。因此,时空数据库可以用于多种应用程序,如地理信息系统、航空航天、气象预报、GPS导航等。时空数据库与传统数据库不同的是,它提供了额外的功能和数据类型,例如点、线、面等空间对象和时间序列数据类型。此外,时空数据库还支持空间查询和时空查询,例如常见的缓冲区查询,使得用户可以在时空范围内进行查询和分析。这种数据库可以对时空数据进行高效的存储、查询、更新和分析,并通过插件技术集成其他地理信息数据源。星环分布式时空数据库-SpactureSpacture是星环科技自主研发的一款面向空间、时空数据的存储与管理,集计算与存储为一体的分布式数据库产品,支持大规模矢量数据、时空轨迹数据的存储与计算,具有完备的数据查询、分析和挖掘能力,可用于时空查询分析、时空模式挖掘、时空轨迹聚类等时空轨迹数据分析场景,广泛应用于交通物流、城市管理、位置服务等场景。
图数据库是现代数据库系统中的一种,它主要的特点就是使用了图论的概念来进行数据管理。传统的关系型数据库通常是基于表和列的结构进行数据管理,而图数据库则是构建了节点和边的图形结构,可以更好的表示现实世界中的复杂关系。下面是图数据库的几个主要特点:1.基于图形结构:图数据库是基于图形结构来进行数据管理的。它通过节点和边来构建数据的表示形式,使得数据之间的关系和结构更加直观和清晰。这对于处理关联复杂、数据关系复杂的场景具有重要意义。2.高效地关系查询和分析:图数据库具有高效的关系查询和分析能力。对于一个大规模的图,传统的SQL查询方式显然不能满足查询时间的要求。而图数据库则可以通过图数据库内部的算法来进行实时的查询和分析。尤其是针对一些复杂的图分析算法,图数据库更能够快速地获得结果,提高查询速度。3.可扩展性:由于采用了分布式的技术设计,使图数据库的可扩展性极佳。当需要管理的数据量增加时,图数据库可以通过简单的集群扩展方式来实现性能的提升。而且,图数据库的分布式能力也可以让其在多个节点上进行操作,提高了系统的容错能力和加载能力。4.元素和关系度量:图数据库具有丰富的元素数据和关系数据量度方式。...
数据要素是数字经济发展的关键生产要素,是数字经济发展的基础。加快培育数据要素市场是全面建设社会主义现代化国家的一项基础性工作,对推动经济高质量发展、建设数字中国和数字强省、促进经济社会数字化转型具有重要意义。星环科技致力于打造企业级大数据基础软件,围绕数据全生命周期提供基础软件与服务。基于在大数据、分布式数据库、隐私计算、数据安全流通领域的多年积累,星环科技研发了数据要素流通全过程的一系列工具,在各方数据不出域的前提下,为数据资源方和数据消费方提供数据交付服务。2021年星环科技成为上海数据交易所首批签约数商。2022年9月星环科技曾受邀出席“深数交”数据合规活动,分享数据安全出境解决方案。2022年12月星环科技与中国东信旗下北部湾大数据交易中心达成了战略合作。星环科技在产品的各层级上都完善了安全技术,从而可以给用户提供体系化的数据安全防护能力,助力企业高效、合规的开展数据流通业务。在基础设施层,星环科技提供基于容器的云原生操作系统TCOS,它不仅能够提供容器隔离和镜像扫描,还新增了漏洞检测以及面向业务的微隔离安全技术,从而可以为用户开辟一个独立的数据与计算环境,外部的服务未经授权无...
新时代需要新技术,企业应抓住机遇实现旧平台的改造升级数据库技术经过不断的发展,已经从以Oracle、IBM为代表的集中式数据库,演进到分布式、多模型、云原生的形态,并在很多场景应用落地,带来了真实的业务价值。当前得益于国家政策的大力扶持以及国内市场环境的快速发展,国产软件加速发展,国产化替代进程正在不断加速。自主可控是国产化替代的核心,同时也是一个阶段性的目标。我们不应该满足于此,应该抓住国产化改造的机遇,用新技术去替代老技术,实现自主可控的同时,完成旧系统的改造升级,这也是信创的主旨。星环科技致力于打造企业级大数据基础软件,围绕数据全生命周期提供基础软件与服务,在分布式技术、多模型技术、数据云技术等方面有很多技术突破。比如大数据基础平台TDH是全球首个通过TPC-DS基准测试的产品;提出了创新的多模型统一技术架构,支持业内主流的10种数据模型,Gartner®发布的中国数据库技术发展趋势报告引用星环科技多模型联合分析用例,论证了多模型融合分析的趋势和价值。基于多年积累的分布式技术、多模型统一技术、数据云技术等,星环科技打造了分布式数据库ArgoDB、分布式交易型数据库KunDB、分布...
垂直领域知识图谱产品主要用于面向特定领域知识应用需求,通过构建和应用知识图谱解决对应领域的专业问题。目前,知识图谱在智慧医疗与智慧金融领域已取得了一系列成功实践,被应用于辅助医生、药物发现、临床科研、风险防控、内部监管、投资研究、保险理赔等众多实际业务场景,并涌现出了一批知识图谱产品或服务平台。星环科技自主研发的知识图谱平台Sophon正是一款覆盖知识全生命周期,集知识的采集、建模、融合、存储、计算及应用为一体的知识图谱产品。平台支持低代码图谱构建、智能化知识抽取、多模态知识存储与融合、多形式知识计算和推理以及多维度的图谱分析。除了具备链路完备性,平台还从业务场景出发,沉淀了金融、保险等场景的图数据模型、规则模型和算法模型,可以帮助用户快速解决不同场景下的业务问题。目前,星环科技Sophon已经在金融等多个行业成功落地,在反洗钱、反欺诈、疫情防控、公共安全、企业级营销、保险知识智能问答等场景有着广泛的应用。同时星环科技在推动知识图谱技术创新和成功落地的过程中,也获得了多项荣誉和权威认可:入选Gartner《MarketGuideforArtificialIntelligenceStar...
星环科技图数据库StellarDB是国产高性能图数据库,采用分布式架构和原生图计算引擎,支持超大规模数据管理和高效的图计算。TranswarpStellarDB具有以下特点:原生图存储:StellarDB为数据存储设计了专有的图存储结构,优化查询性能,通过高效的压缩算法减少磁盘和内存的使用量。根据分区策略,图数据均匀分布于集群各节点。优越的性能:存储引擎和计算引擎结合,使计算引擎可以利用数据locality提升计算性能,拥有卓越的数据读写能力,支持大规模并行处理,毫秒级的查询响应。高扩展性:完全的分布式架构,具有良好的可扩展性,支持在线扩容和升级。拥有万亿级图数据处理能力,支持数据多副本,提供集群高可用和高可靠。灵活的查询方式:计算引擎支持灵活易懂的图查询语言TranswarpExtended-OpenCypher,拥有丰富的图操作语法。同时提供SQL支持,多模场景灵活切换。深度分析能力:支持10层及以上的图深度遍历和复杂分析。丰富的算法库:内置丰富的算法库,几十种图算法开箱即用,优化的分布式并行图算法,千万级子图计算效率达到行业先进水平。企业级功能:支持用户权限认证、集群状态监控、日...