国内 多模态数据库
OLAP 语法和存储过程,兼容 MySQL、Oracle 等多种数据库方言,并与国内外主流数据库和工具高度兼容,为用户提供全面的数据库开发支持,具备高扩展、高性能、高安全、高可用、高兼容、易运维等特性,已助力政府、金融、医疗、交通等多个行业用户实现自主创新升级。Transwarp ArgoDB是星环科技自主研发的分布式数据库,融合了高并发事务处理和实时分析能力,横向灵活扩展满足业务的弹性变化需求。ArgoDB 在兼容主流 SQL 标准的基础上,扩展支持
国内 多模态数据库 更多内容

行业资讯
多模态数据存储
多模态数据存储指的是存储同时包含多种类型数据的系统。多模态数据可以包含文字、图像、音频、视频等多种形式的信息。在多模态数据存储中,需要考虑如何有效地存储和访问这些不同类型的数据。多模数据库ArgoDB“一库多用“TranswarpArgoDB是星环科技自主研发的分布式数据库,基于多模型统一架构支持关系型存储,宽表存储、搜索引擎、事件存储、图存储、键值存储、时序数据存储等10种数据模型,多模态分析、联邦计算、数据仓库、实时数仓、湖仓集一体等场景。2019年8月,ArgoDB成为全球第四个通过TPC-DS基准测试并经过TPC官方审计的数据库产品。在架构上,多模态数据库ArgoDB基于存算解耦,实现了多模态数据库的“四个统一”:统一的SQL编译引擎,支持SQL99/2003标准语法,兼容TD,Oracle,DB2等多种方言,对不同模式的数据提供统一接口,将多个操作访问入口变为一个入口,将多种数据库数据库ArgoDB满足多种数据模型处理场景和复杂业务需求。ArgoDB提供多模分析、实时数据处理、存算解耦、混合负载、数据联邦、异构服务器混合部署等先进技术能力,一站式满足OLAP、AETP、多模型融合

行业资讯
多模态向量索引
分布式向量数据库,基于分布式特性,可以对文档、图片、音视频等多源、海量数据转化后的多维向量进行统一存储和管理。通过多进程架构与GPU加速技术,充分发挥并行检索能力,实现毫秒级高性能数据检索,结合相似度检索等技术,帮助用户快速挖掘数据价值。多模态向量索引是一种用于在多模态数据集中检索相似项的技术。多模态数据集包含不同类型的数据,如文本、图像和音频等。多模态向量索引的目的是将不同类型的数据映射到一个向量空间中,然后使用向量相似性度量方法(如余弦相似度)来计算各种类型的数据之间的相似性。在实际应用中,我们常常面对的是多模态数据,这些数据由不同类型或来源的信息组成,如文本、图像、音频、视频等。如何将这些不同模态的数据映射到统一或兼容的的商品分类到统一或兼容的区域,并实现跨类型或联合类型的服务,同样是一个既有趣又具挑战性的问题。星环分布式向量数据库-TranswarpHippo星环分布式向量数据库Hippo作为一款企业级云原生向量空间,并实现跨模态或联合模态的检索,是一个既有趣又具挑战性的问题。这就像在超市中,商品不仅包括食品、饮料、日用品和电器等不同类型,还有中文、英文、日文、韩文等不同来源的标签。如何将这些不同类型和来源

行业资讯
多模态 大模型
多模态大模型是指将文本、图像、视频、音频等多模态信息联合起来进行训练的模型。这种模型可以处理和分析多种类型的数据,例如文本、图像、视频和音频,从而更全面地理解和利用各种信息。多模态大模型的训练通常采用深度学习技术,通过对大量多模态数据进行学习,模型能够从数据中提取出更丰富、更复杂的信息。多模态大模型在许多领域都有应用,例如自然语言处理、计算机视觉、音频处理等。可以用于文本和图像的语义理解、视频的分类和识别、音频的情感分析和语音识别等任务。通过多模态大模型,我们可以更好地理解和处理复杂的多模态数据,提高人工智能的应用性能。大模型持续开发和训练工具为了满足企业应用大语言模型的需求,星环科技率先、向量数据库或图数据库产品,将不同大语言模型、传统机器学习和其他流程等编排成符合企业实际领域和业务需求的任务。”且“敏捷可持续迭代”的人工智能应用。针对大语言模型及其衍生数据、模型和应用方面的问题,SophonLLMOps工具链需要完成从通用大语言模型的训练和微调、模型上架到模型持续运营及提升迭代的全流程任务

行业资讯
多模态数据库
存储管理,对使用者屏蔽不同数据源的数据存储,降低业务数据管理难度。通过ArgoDB一体化多模数据库架构实现全数据,全场景,全融合,大限度降低企业TCO,打造面向数据模态融合扩展的湖仓集一体化平台。此外,基于ArgoDB打造的湖仓集一体方案可以无缝衔接AI技术,帮助业务挖掘更多数据价值。各种类型的数据进行集中存储、查询和处理,满足对结构化、半结构化和非结构化数据的统一管理需求。TranswarpArgoDB是星环科技自主研发的分布式数据库,基于多模型统一架构支持关系型存储,宽表存储先进技术能力,一站式满足OLAP、AETP、多模型融合分析、联邦计算、数据仓库、实时数仓、湖仓集一体等场景。2019年8月,ArgoDB成为全球第四个通过TPC-DS基准测试并经过TPC官方审计的数据库产品。在架构上,ArgoDB基于存算解耦,实现了多模数据库的“四个统一”:统一的SQL编译引擎,支持SQL99/2003标准语法,兼容TD,Oracle,DB2等多种方言,对不同模式的数据提供统一接口,将多个操作访问入口变为一个入口,将多种数据库语言变为一种语言,降低开发和迁移成本,简化用户操作。统一的计算引擎,将多套计算引擎变为一套引擎,将多份计算资源变为一份资源,提供高性能的分析计算和执行效率

行业资讯
多模态数据治理
多模态数据治理是指对多种类型、多种来源、多种结构的数据进行有效的管理、存储、处理、分析和应用的过程。以下是多模态数据治理的主要步骤和策略:数据采集与预处理:多模态大数据处理流程的第一步是数据采集,包括文本、图片、视频和音频等不同模态的数据。预处理可能包括数据清洗、去重、归一化等操作,以提升数据的整体质量。数据融合与特征提取:将多源多模态数据整合为统一的数据视图,并进行特征提取,如文本向量、图片的视觉向量、音频的频谱特征等。数据分析与建模:利用数据处理技术和数据分析方法,对多模态数据进行清洗、转换、整合等操作,挖掘数据的价值,为业务提供数据支持。模型训练与优化:训练模型以识别多模态数据中的模式和关联,不断优化模型以提高准确性和效率。结果可视化与应用:将分析结果通过图表、图形或其他视觉格式展示,以便于理解和解释,并将这些结果应用于实际业务中。安全与隐私保护:在多模态数据治理过程中,保护数据的隐私和安全是至关重要的,需要制定数据安全策略,防止数据泄露、篡改和滥用。数据分类与标准化:对多模态数据进行分类,明确数据的类型、格式、来源等信息,制定数据标准化策略,实现数据的规范化管理。数据存储与

行业资讯
多模态大模型
多模态大模型指的是将本、图像、视频、音频等多模态信息联合起来进行训练和处理的深度学习模型。通过对这些不同媒介数据进行联合分析,该模型可以提高数据的处理和分析效率,从而获得更加准确和全面的信息。多模态的数据类型,大幅提高成果的精度和准确性。例如,可以将多种媒介数据组合在一起,以形成更加可视化的结果。这样就使得我们能够更加全面地了解数据和信息。此外,多模态大型还可以减少数据的重复性,节省时间和资源。大模型时代的到来,给软件开发行业带来了巨大的变革,企业需要一个工具链来开发大模型。星环科技作为国内领先的大数据基础软件开发商,积极应对以ChatGPT为代表的人工智能带来的新挑战,打造数据管理平台的多业务效果对齐的全链路流程,结合自研向量数据库Hippo和分布式图数据库StellarDB,能够赋予大模型“长期记忆”,打破通用大模型的时空限制,用户可以快速便捷地构建深谙企业自有专业领域知识的垂直各行各业,与生态伙伴共同打造国产化大数据技术生态,推动数字经济的可持续发展。无涯是一款面向金融量化领域、超大规模参数量的生成式大语言模型,融合了舆情、资金、人物、空间、上下游等多模态信息,具备强大的

行业资讯
多模态模型,什么是多模态模型?
什么是多模态模型?多模态模型是指能够处理和融合多种不同类型数据的模型。这些数据可以包括文本、图像、音频、视频等不同模态的数据。多模态模型在许多应用领域中都发挥着重要作用,例如自然语言处理(NLP)、计算机视觉(CV)、音频处理、健康医疗等等。在多模态模型中,不同模态的数据被融合在一起,以便同时处理和分析它们。这种融合可以在不同的层面上实现,例如在特征级别或表示级别上。通过将不同模态的数据结合自己的大模型,星环科技推出了机器学习模型全生命周期管理的工具平台SophonLLMOps,支持从数据接入开发、提示工程、大模型微调、上架部署到应用编排和业务效果对齐的全链路流程,结合自研向量数据库Hippo和分布式图数据库StellarDB,能够赋予大模型“长期记忆”,打破通用大模型的时空限制,用户可以快速便捷地构建深谙企业自有专业领域知识的垂直行业大模型,从而让每个人都拥有个性化AI助理。同时星环在一起,多模态模型可以获得更好的性能和更丰富的信息。多模态模型的优势在于可以充分利用各种模态的信息,以获得更准确、更全面的结果。同时,多模态模型还可以提高模型的泛化性能,减少过拟合的问题。为帮助企业构建

行业资讯
多模态数据存储与计算平台
进行分析、处理。关键技术解析数据存储技术不同模态的数据因其自身特性,适用的存储方式也有所不同。文本数据由于结构化程度相对较高,通常适合存储在关系型数据库或文档型数据库中。而图像、音频这类非结构化数据解锁多模态数据存储与计算平台:AI时代的“超级大脑”多模态数据存储与计算平台是什么?在数字化时代,数据的类型愈发丰富多样。多模态数据,便是包含了文本、图像、音频、视频等多种类型信息的数据。从社交媒体上的图文分享,到电影中的音视频内容,多模态数据在生活中随处可见。例如,你在短视频平台上刷到的一个美食制作视频,其中有食材展示的图像、主播讲解的音频、下方的文字介绍以及动态的视频画面,这就是典型的多模态数据。多模态数据存储与计算平台,简单来说,就是一个能够整合这些不同类型的多模态数据,并为其提供存储和计算服务的平台。它就像是一个超级数据管家,把各种杂乱无章的数据有序地管理起来,还能根据需求对这些数据文本建立索引,当用户输入关键词搜索时,能够迅速从海量网页中找到相关内容。数据计算技术处理多模态数据离不开各种强大的数据计算技术,深度学习和机器学习便是其中的佼佼者。在图像识别领域,基于深度学习的卷积

行业资讯
多模态大语言模型
多模态大语言模型是一种能够结合多种输入模态的语言模型。传统的语言模型只能以单一的语言文本为输入进行建模,而多模态大语言模型同时考虑图像、音频视频等多种不同的输入模态。多模态大语言模型不仅可以处理文本数据,还可以处理图像、音频、视频等多种媒体形式的数据,因此具有更全面的信息理解和生成能力,并能够在不同媒体之间进行跨模态的转换和推理。多模态大语言模型的基本原理是将不同媒体形式的数据进行编码,并通过共享的语义空间进行交互和融合。具体而言,模型通过将文本、图像、音频等数据输入到不同的编码器中,将其转化为向量表示。然后,通过共享的语义空间,将不同媒体的向量进行交互和融合,从而实现多模态信息的理解和生成。多模态大语言模型还依赖于LLM丰富的知识储备以及强大的推理和泛化能力来解决多模态问题。星环科技大模型训练工具,帮助企业打造自己的专属大模型星环科技在行业内首先提出行业大模型应用创新场景,推出相应的企业构建自己的行业大模型。除此之外,星环科技在行业首先推出了两大行业大模型:服务于金融行业的星环金融大模型无涯,以及大数据分析大模型SoLar“求索”。
猜你喜欢

行业资讯
国产数据库有哪些?
在国产数据库产品方面,星环科技坚持自主研发与技术创新,打造了自主可控的高性能分布式数据库ArgoDB和分布式交易型数据库KunDB,以及分布式图数据库StellarDB等产品。KunDB具备较强的SQL兼容性,同时具备高可用、高并发、在线扩缩容、数据强一致性等能力,适用于操作型业务、高并发业务等场景。ArgoDB具备完整的SQL兼容性,同时具备高扩展、高可靠、多模型、存算解耦等能力,一站式满足数据仓库、实时数据仓库、数据集市、OLAP、联邦计算等场景。通过不断的打磨和对业务场景不断的落地实践,ArgoDB和KunDB已成为具有完全自主知识产权的成熟的国产数据库,能够为更多的客户提供高性能、高可靠、成熟的数据库产品服务,帮助用户应对智能数据时代海量数据的分析与探索。分布式图数据库StellarDB兼容openCypher查询语言,提供海量图数据的存储和分析能力,支持原生图存储结构,支持万亿边PB级数据存储。同时,StellarDB具备毫秒级点边查询能力,10+层的深度链路分析能力,提供近40种的图分析算法,具备数据2D和3D展示能力。星环科技StellarDB在金融、政府和社交网络等领域...

行业资讯
数据中台推荐供应商
作为一家企业级大数据基础软件开发商,星环科技很早就在数据中台领域布局,结合星环科技全系产品的相关组件实现数据中台能力建设。星环科技把数据中台建设归纳为三中心、六能力、两个体系,这当中都会有星环科技产品作为支撑,从而保证企业能够快速实现,并搭建起数据中台,满足企业未来发展变化。其中,三中心分别是存储中心、分析探索中心、业务赋能中心;六能力包括数据汇聚能力、数据整合能力、智能分析能力、实时计算能力、统一访问能力、统一服务能力;两个体系则是安全和运维保障体系与数据和分析支撑体系。三中心、六能力、两个保障体系都构建在一个云底座之上,满足企业私有化或者混合云多云的部署形态,同时灵活组件式的可插拔式部署形态,能够帮助企业更迅速的起步,按规划分步完善数据中台建设。除了提供基础组件和相应的工具帮助客户快速构建数据中台之外,星环科技还提供咨询实施服务,可以为企业提供量身定制的“数据云基础设施+咨询服务的端到端产品+服务”的综合解决方案。在星环科技的咨询服务产品体系中,包括为企业构建中台的架构规划、应用规划,以及帮助企业实施建设数据底座、数据中台、数据仓库,以及数据治理服务,也包括了数据的分析、业务分析、...

行业资讯
图数据库的应用场景
图数据库的应用场景非常广泛,可以应用于各个行业。以下是一些常见的应用场景:金融:在金融领域,图数据库可以帮助银行、保险公司等企业处理复杂的数据结构,支持欺诈检测、交易路由、投资组合分析等操作。社交网络:图数据库可以存储和处理社交网络中的复杂关系图谱和大量用户数据,支持好友推荐、社区发现、个性化内容推荐等操作。物流:在物流领域,图数据库可以帮助企业优化路径规划、物流运输等操作,加速发货、配送时间并提高效率。制造业:图数据库可以支持企业处理复杂的设备关系结构图,进行维修保养、设备性能分析、生产计划优化等操作。能源行业:在能源领域,图数据库可以处理复杂的电网、管道等结构图谱,并支持多种能源趋势分析和紧急事件监测等操作。电商:图数据库可以应用于电商业务中,存储和处理复杂的商品与用户之间的关系,支持个性化推荐、购物车分析、用户行为预测等操作。图数据库可以在各个领域中应用,并且在处理复杂的数据结构和大量的数据时比传统数据库具有更高的性能和效率。星环分布式图数据库StellarDB星环科技致力于打造企业级大数据基础软件,围绕数据的集成、存储、治理、建模、分析、挖掘和流通等数据全生命周期提供基础软件与...

行业资讯
电力行业数字化转型服务商
星环科技致力于打造企业级大数据基础软件,具备大数据与云基础平台、分布式关系型数据库、数据开发与智能分析工具的软件产品矩阵,多年来深耕电力领域,覆盖电力产业“发-输-变-配-用”五大环节,为推动电力行业数字化转型做出了重要贡献。在国网上海电力智能配用电大数据应用系统建设项目中,基于星环科技大数据基础平台TDH构建的智能配用电大数据应用系统汇集了浦东1210平方千米的236万户的用电数据,高负荷738万千瓦,年用电量329亿度,占上海全网四分之一。集成的内外部数据源有10个,整个数据量到现在已经接近8个T了,台账的数据总量有29.14万条。在多元数据集成及大数据平台基础之上,应用系统实现了用电查询,电力地图等基础功能及用户用电行为分析,节电用电预测网架优化和错峰调度等业务应用。基于多源异构数据的关联解析,和海量用电负荷实际数据存储、索引,实现了用电查询的基础应用,包括230万用户,26000个台区,4000余中压馈线的基本台账及用电数据的快速查询,并可以进行用户用电画像、地图定位、供电范围等数据的查询,服务响应时间在三秒以内。此前,星环科技还曾凭借《星环科技电力智慧供应链智能决策平台建设方...

行业资讯
数据安全实践案例
近年来,企业数据安全问题的重要性被提上了前所未有的高度。星环科技提供了从云基础设施、数据平台、数据资源、数据应用的数据安全能力。覆盖数据生命周期的各个阶段,涉及数据的收集、存储、使用、加工以及开放流通。全方位保障企业的数据安全,支撑业务合法合规的开展。星环科技凭借全面的数据安全能力助力某支付机构构建安全防线的落地实践。该支付机构拥有大量数据资产,目前机构面临着较大的挑战,需要加强数据安全管理,为此,机构决定与星环科技合作,利用星环科技的技术来提升数据安全管理能力,共同打造一个基于隐私计算的数据服务平台DaaS。根据客户需求,星环科技在基础设施层提供了基于容器的云原生操作系统TCOS,可以为用户提供独立的数据与计算环境,减少数据对外暴露的风险。在数据平台层,星环科技大数据基础平台TDH新版本增强了安全技术,支持行列级权限控制、动态脱敏等。在数据资产层,星环科技借助两款新产品:数据安全管理平台Defensor帮助企业构建整个数据安全管理域及数据流通平台Navier:包含隐私计算平台SophonP²C和数据交易门户datamall,提供包括联邦学习和差分隐私等技术能力。该支付机构的数据管理平...

行业资讯
图计算平台代表厂商
星环科技作为一家企业级大数据基础软件开发商,在图计算领域深耕多年,有着深厚的技术积淀和丰富的实践经验。星环科技自主研发的分布式图数据库StellarDB,兼容openCypher查询语言,提供海量图数据的存储和分析能力,支持原生图存储结构,支持万亿边PB级数据存储。同时,StellarDB具备毫秒级点边查询能力,10+层的深度链路分析能力,提供近40种的图分析算法,具备数据2D和3D展示能力。StellarDB克服了海量关联图数据存储的难题,通过集群化存储和丰富算法,实现了传统数据库无法提供的低延时多层关系查询,目前已经用于金融、政府、交通等众多行业,用于反洗钱、风险控制、营销等多种场景。同时StellarDB还获得了多项行业权威认可:入选信通院2022大数据十大关键词“图计算平台”代表厂商;通过了中国信通院图数据库和图计算平台基础能力两项专项测评;入选著名咨询机构Gartner《中国数据库市场指南》、《工具:中国数据库管理系统供应商甄选》报告等,彰显了其产品技术领先性。如今,5G、物联网、AI等技术的发展应用让数据呈指数倍增长,为图数据库发展提供了更广阔的应用空间。顺势而为,乘势而上...

行业资讯
省市级碳排放监测服务平台建设方案
双碳目标下,全国碳排放监测服务平台启动建设力争2030年前实现碳达峰、2060年前实现碳中和,我国明确提出“双碳”目标,充分彰显了在构建人类命运共同体进程中的大国担当。国家电网公司主动担当重要使命,提出“实现双碳目标,能源是主战场,电力是主力军,电网是排头兵”的战略部署,率先行动,发布《全国碳排放监测服务平台建设工作方案》。“双碳”目标的实现离不开科技支撑。《全国碳排放监测服务平台建设工作方案》指出,全国碳排放监测服务平台建设的总体目标是以电网数字化赋能和助力国家碳达峰碳中和,实现“电力看双碳”,“双碳看经济”,为国家碳排放统计核算体系建设、宏观调控政策制定、经济社会全面绿色转型发展等工作提供决策支持。平台建设需要解决以下问题:以数字化平台技术解决各省的地市、区县、重点行业碳排放数据维度不全面、核算方法不完善、碳核算体系不统一等方面的问题;强化数据应用,发挥好决策支撑作用,深挖电力大数据价值,开展“电力看环保”“电力看经济”等大数据应用。积极响应号召,星环科技打造碳排放监测服务平台解决方案星环科技作为大数据基础软件领域的代表性企业,有着高度的责任感和使命感,为响应“全国碳排放监测服务平...

行业资讯
企业级AI能力运营平台
为解决AI落地难的问题,星环科技从用户需求端出发,研发了一款基于云原生架构的企业级AI能力运营平台SophonMLOps,助推AI模型落地。SophonMLOps是基于云原生架构构建的企业级AI能力运营平台,聚焦于机器学习模型全生命周期中的模型管理、模型部署、模型监控预警、模型评估和模型迭代等关键环节。通过统一纳管、统一运维、统一应用、统一监控、统一评估、统一解释,赋予企业客户易用、高效且安全可靠的AI能力运营服务,协助客户规模化管理日益增长的机器学习模型,提升模型使用效率,降低模型集成管理成本,控制模型生产环境风险。SophonMLOps针对企业AI运营的痛点,围绕企业AI模型接入、运营管理、持续训练的全生命周期,分别提供规模化集成管理、高效模型推理、模型监控预警、模型性能评估、隐私安全保障等功能,为企业的AI日常运营插上翅膀。SophonMLOps打通了AI的全生命周期,为企业的各类用户角色搭建了统一的AI协作平台。对于企业而言,MLOps规模化集成管理了多源异构的机器学习模型,并提供高效且保障隐私安全的模型推理、监控预警及性能评估服务;对用户而言,能感受到操作上的快捷,AI应用与...

行业资讯
数据中台建设
随着行业和技术领域的变化日新月异,从数据仓库、动态数仓,到数据湖,从新一代湖仓一体技术到可插拔数据库,概念的引入虽然简单,但如何做到更有效,更复杂的数据资产管理就考验着对生产能力和工艺过程的管理能力。星环科技认为数据中台是一种能力、是一种组织上的策略而不仅仅是一种技术架构,它是在信息化基础上建立的可编织和可复用的数据可分析能力,从而支撑企业数字化转型。星环科技的数据中台三中心、六能力、两个体系星环科技很早就在数据中台领域布局,结合星环科技全系产品的相关组件实现数据中台能力建设。星环科技把数据中台建设归纳为三中心、六能力、两个体系,这当中都会有星环科技产品作为支撑,从而保证企业能够快速实现,并搭建起数据中台,满足企业未来发展变化。数据存储、分析探索、业务赋能三中心第一,帮助企业构建存储中心,提升数据的汇聚和整合能力;第二,构建数据分析探索中心,专注于智能分析能力和实时计算能力的提升,推动智能推荐能力和全链路实时监测和保障能力;第三,构建业务赋能中心,提供统一的访问能力实现跨平台联邦,统一的访问层控制,确保数据安全可用,同时搭建统一的服务能力,面向多场景的服务应用支撑。安全和运维、数据和分...

行业资讯
什么是分布式时空数据库?
时空数据库时空数据库是一种针对时空数据处理的数据库系统。它以时间和空间为基础,整合了空间信息和时间信息,能够对时空数据进行存储、查询和分析。时空数据库广泛应用于交通运输、城市规划、GIS等领域。分布式时空数据库分布式时空数据库是一种对时空数据进行存储和处理的数据库系统,通过分布式存储和分布式计算等技术,可以实现对大规模时空数据的高效处理和分析。与传统的集中式数据库系统不同,分布式时空数据库将数据存储在多个存储节点上,并将计算任务分配给多个计算节点来完成,从而极大地提高了时空数据的处理能力和可靠性。分布式时空数据库的出现,使得处理大规模时空数据成为了可能,也更好地满足了各个领域对时空数据深度分析的需求。星环分布式时空数据库-TranswarpSpactureSpacture是星环科技自主研发的一款面向空间、时空数据的存储与管理,集计算与存储为一体的分布式数据库产品,支持大规模矢量数据、时空轨迹数据的存储与计算,具有完备的数据查询、分析和挖掘能力,可用于时空查询分析、时空模式挖掘、时空轨迹聚类等时空轨迹数据分析场景,广泛应用于交通物流、城市管理、位置服务等场景。