国产数据库知识图谱

数据库知识图谱之间有着紧密的联系,但它们是两个不同的概念,具体如下:图数据库定义:图数据库是一种数据库管理系统,用于存储和查询图形数据结构,其核心数据模型是图,由节点(代表实体)和边(代表实体整合:可以涵盖不同领域的知识,实现不同领域数据知识的整合和关联。支持知识推理:基于图结构和语义关系,能够进行知识推理和推导,发现新的知识和关联。关系存储与管理:图数据库可以用于存储和管理知识图谱数据知识图谱可以在图数据库中表示为一组节点和关系,图数据库的强调关系的特性非常适合用于查询和遍历复杂的知识图谱数据。应用方向:知识图谱是图数据库关联最为紧密、场景最广泛的应用方向之一。图数据库知识图谱提供高效的存储和查询支持,使其能够更好地进行信息检索和智能问答等应用。技术优势:图数据库的高效关系查询和分析能力,为知识图谱的构建和应用提供了强大的技术支撑,使得知识图谱能够更好地发挥其价值。图数据库知识图谱提供了底层的存储和查询支持,而知识图谱则是图数据库知识管理和应用领域的重要应用形式,两者相辅相成,共同推动了数据管理和知识应用的发展。

国产数据库知识图谱 更多内容

知识图谱和图数据库之间存在密切的关系,具体如下:知识图谱定义:知识图谱是一种用于表示和组织知识的图形结构,由一组实体(节点)和它们之间的语义关系(边)组成的知识库。作用:将知识结构化地表示为图,使得管理知识图谱数据知识图谱可以在图数据库中表示为一组节点和关系,图数据库的强调关系的特性非常适合用于查询和遍历复杂的知识图谱数据。应用方向:知识图谱是图数据库关联最为紧密、场景最广泛的应用方向之一。图数据库知识图谱提供高效的存储和查询支持,使其能够更好地进行信息检索和智能问答等应用。技术优势:图数据库的高效关系查询和分析能力,为知识图谱的构建和应用提供了强大的技术支撑,使得知识图谱能够更好地发挥其价值。相互促进:知识图谱的发展推动了图数据库技术的创新和应用,而图数据库的进步也为知识图谱的构建和应用提供了更加强大和灵活的工具。不同领域的知识可以相互关联,便于进行知识的存储、检索、推理和应用,广泛应用于智能问答、推荐系统、知识管理等领域。图数据库定义:图数据库是一种专门用于存储和查询图形数据结构的数据库管理系统,以图作为
中信证券基于图数据库构建知识图谱平台中信证券基于星环科技国产分布式图数据库StellarDB,替代国外开源图数据库产品,打造了全新的企业级知识图谱平台。该平台具备百亿级别的大规模分布式图计算能力,拥有丰富的可视化效果和API接入能力,搭建端到端全流程图机器学习框架,支撑集团画像、风险传播、连环担保、产业链分析、数据血缘、洗钱风险分析、ETF基金产品推荐和政策投研分析等金融应用场景。平台实现了一站式运维管理、调度管理和权限管理等,性能也提升了数倍,在金控报送方面节省时间成本约30%。
科技近期也推出了结合知识图谱、图数据库和向量大模型的问答系统,企业基于具体的行业知识语料,可快速构建更精通特定行业知识的领域大模型,打造具备高效人机交互的业务应用。在赋予大模型拥有“长期记忆”的同时知识图谱是一种用于组织和表示知识的图形数据结构。知识图谱将现实世界的实体、概念、关系和属性以图形化方式进行建模的技术。知识图谱可以帮助人们更好地理解和获取知识,从而进行智能推理、问题解答和决策支持等多种应用。知识图谱工具是用于创建、管理和查询知识图谱的软件工具。知识图谱工具通常提供一系列功能,包括知识图谱的建模、数据导入、查询与分析等。知识图谱工具可以帮助用户使用图形化界面或编程接口来操作和使用出发,沉淀了金融、保险等场景的图数据模型、规则模型和算法模型,可以帮助用户快速解决不同场景下的业务问题。知识图谱的目的在于将结构化数据、非结构化数据以及这些数据、实体之间的关联关系进行存储和表达。星环知识图谱,从而实现对知识图谱的有效管理和利用。星环知识图谱平台-Sophon星环科技在知识图谱领域深耕多年,有着深厚的技术沉淀和积累,自主研发的知识图谱平台Sophon是一款覆盖知识全生命周期,集知识
数据库知识图谱之间有紧密的关系,可以说图数据库是支持知识图谱建模和查询的一种技术实现方式。图数据库是一种专门用于存储和处理图形数据数据库系统。它基于图的数据模型,将实体、属性和关系以节点和边的形式存储,并提供了高效的图查询和图算法操作,适用于处理大规模和复杂的关系型数据。图数据库可以用于构建知识图谱的底层存储和操作平台。知识图谱是一种用图形方式表示知识的结构,包含实体、属性和关系的信息,并通过本体论对知识进行丰富的语义建模。知识图谱可以利用图数据库的存储和查询能力,快速构建和查询实体之间的关系、属性之间的关联,并支持复杂的推理和分析操作。图数据库提供了高效的图查询和图操作能力,能够方便地对知识图谱进行增删改查操作,并支持复杂的图算法和推理操作。知识图谱则利用图数据库的存储和查询能力,将知识以图的形式进行表示和管理,通过图数据库提供的图查询和算法操作,实现对知识图谱的灵活、高效的查询和分析。图数据库知识图谱构建和查询的一种重要技术支持,两者紧密相关,并相互促进。星环知识图谱平台-Sophon星环科技自主研发的知识图谱平台Sophon是一款覆盖知识全生命周期,集知识的采集、建模
具有高度关联性和复杂关系的数据知识图谱平台则是建立在图数据库之上的应用层平台。它利用图数据库的存储能力和图分析功能,来构建和管理知识图谱知识图谱是一种用于表示和存储知识的结构化图形,它将实体、关系和属性等知识元素组织来,形成一个具有层次结构和语义关联的知识图谱知识图谱平台可以支持知识图谱的构建、查询、推理和可视化等功能,帮助用户更好地理解和利用知识。图数据库知识图谱平台都是用于处理图形数据知识的技术,但图数据库更偏重于底层的数据存储和处理,而知识图谱平台则更加注重于知识的组织、管理和应用。图数据库可以作为知识图谱平台的基础设施,提供数据存储和查询的支持,而知识图谱平台则是在图数据库openCypher,并具备2D/3D图展示能力,可以帮助用户快速开发欺诈检测、推荐引擎、社交网络分析、知识图谱等应用。星环知识图谱平台-Sophon星环科技自主研发的知识图谱平台Sophon是一款覆盖知识全生命周期,集知识的采集、建模、融合、存储、计算及应用为一体的知识图谱产品。平台支持低代码图谱构建、智能化知识抽取、多模态知识存储与融合、多形式知识计算和推理以及多维度的图谱分析。除了具备链路完备性,平台
行业资讯
领域知识图谱
领域知识图谱是面向某一特定领域的知识图谱,强调知识的深度,通常需要基于该行业的数据库进行构建。领域知识图谱可以帮助人们更好地理解某一特定领域的知识结构和内在联系,支持推理和分析,为研究和应用提供有,匹配问句实体,能够提供更准确的答案。辅助大数据分析:在数据分析与决策过程中,知识图谱可以帮助理清各个因素之间的内在联系,提供更准确的决策支持。推荐计算:知识图谱可以用于推荐系统,通过概念层匹配,对用户价值的参考。领域知识图谱的应用范围非常广泛,如:辅助搜索:知识图谱可以提供更精准的语义搜索,通过关键词扩展和实体链接,能够搜索到更全面的信息。辅助问答:知识图谱可以用于问答系统,通过对问题的语义解析行为进行分析,能够提供更个性化的推荐。可解释性人工智能:知识图谱可以帮助实现可解释性人工智能,通过对知识的表达和推理,能够更好地理解人工智能的决策过程。物联网设备互联:知识图谱可以帮助实现物联网设备的互联互通,通过统一的语义模型,能够更好地实现不同设备之间的信息交互。星环知识图谱平台-Sophon星环科技自主研发的知识图谱平台Sophon是一款覆盖知识全生命周期,集知识的采集、建模、融合、存储、计算
,能够提供更丰富和深入的知识表示。知识图谱通常以图数据库的形式存储,并通过图数据库查询语言进行访问和查询。知识库知识图谱的一种实现方式,知识图谱则更加注重于知识之间的结构和关联。知识图谱可以通过知识库知识库知识图谱是两个相关但不同的概念。知识库(KnowledgeBase)是指存储和组织知识的集合。它可以包含结构化和非结构化的信息,如事实、规则、定义、术语等。知识库通常用于存储特定领域的知识中的信息构建而成,但不同的知识库可能对应不同的知识图谱结构。知识库通常用于存储和管理知识的具体内容,而知识图谱则更注重于知识的结构和组织方式。星环知识图谱平台-Sophon星环科技自主研发的知识图谱,以便人们可以查找和使用这些知识知识图谱(KnowledgeGraph)是一种用于表示和组织知识的图状结构。它基于图论的概念,将知识表示为实体、属性和关系的网络。知识图谱通过将不同实体之间的关系建模平台Sophon是一款覆盖知识全生命周期,集知识的采集、建模、融合、存储、计算及应用为一体的知识图谱产品。平台支持低代码图谱构建、智能化知识抽取、多模态知识存储与融合、多形式知识计算和推理以及多维度的
知识图谱就是图数据库吗?在信息技术快速发展的今天,"知识图谱"和"图数据库"这两个术语经常被同时提及,导致不少人产生困惑:它们是一回事吗?知识图谱是否就是图数据库的另一种说法?事实上,虽然两者,通常还融合了本体论和推理能力,能够支持更复杂的知识发现和应用。核心区别分析从本质上看,图数据库强调的是数据的存储和查询技术,而知识图谱侧重的是知识的组织和表示方式。图数据库是实现知识图谱的一种可能技术手段,但不是唯一选择。知识图谱也可以使用其他数据库形式存储,如关系型数据库。在功能层面上,图数据库主要提供数据存储和基础查询功能,而知识图谱则包含更丰富的语义层次,通常具备本体定义、推理引擎、知识融合等功能。知识图谱往往构建在图数据库之上,但增加了语义理解和逻辑推理能力。数据复杂度方面,图数据库处理的主要是原始数据关系,而知识图谱处理的是经过提炼和加工的知识知识图谱中的数据通常经过清洗、融合和标准化处理,具有更高的质量和一致性。应用场景对比图数据库广泛应用于需要有效处理关系数据的场景,如社交网络分析、欺诈检测、网络安全等。在这些应用中,关系的快速遍历和模式匹配是关键需求。知识图谱则更多
的新知识知识存储和查询:将构建好的知识图谱存储在数据库中,并设计高效的查询算法,以便快速准确地查询和获取知识。在构建知识图谱时,需要考虑诸如数据质量、数据规模、知识更新等问题,以及如何选择适当的算法知识图谱是一种以符号形式描述现实世界中概念和概念之间关系的知识库。它通过节点(实体)和边(关系)的形式,来表示现实世界中各种实体以及它们之间的联系。知识图谱构建过程知识图谱的构建过程一般包括以下处理等技术,识别和提取实体之间的关系,这些关系可以包括分类关系、组成关系、属性关系等。知识表示:将识别出的实体和关系用符号表示出来,构成知识图谱的节点和边。知识推理:利用知识图谱进行推理,可以推导出更多和工具来构建知识图谱。星环知识图谱平台-Sophon星环科技自主研发的知识图谱平台Sophon是一款覆盖知识全生命周期,集知识的采集、建模、融合、存储、计算及应用为一体的知识图谱产品。平台支持低代码快速解决不同场景下的业务问题。目前,星环科技Sophon已经在金融等多个行业成功落地,在反洗钱、反欺诈、疫情防控、公共安全、企业级营销、保险知识智能问答等场景有着广泛的应用。同时星环科技在推动知识图谱
垂直领域知识图谱产品主要用于面向特定领域知识应用需求,通过构建和应用知识图谱解决对应领域的专业问题。目前,知识图谱在智慧医疗与智慧金融领域已取得了一系列成功实践,被应用于辅助医生、药物发现、临床科研、风险防控、内部监管、投资研究、保险理赔等众多实际业务场景,并涌现出了一批知识图谱产品或服务平台。星环科技自主研发的知识图谱平台Sophon正是一款覆盖知识全生命周期,集知识的采集、建模、融合、存储、计算及应用为一体的知识图谱产品。平台支持低代码图谱构建、智能化知识抽取、多模态知识存储与融合、多形式知识计算和推理以及多维度的图谱分析。除了具备链路完备性,平台还从业务场景出发,沉淀了金融、保险等场景的图数据模型、规则模型和算法模型,可以帮助用户快速解决不同场景下的业务问题。目前,星环科技Sophon已经在金融等多个行业成功落地,在反洗钱、反欺诈、疫情防控、公共安全、企业级营销、保险知识智能问答等场景有着广泛的应用。同时星环科技在推动知识图谱技术创新和成功落地的过程中,也获得了多项荣誉和权威认可:入选Gartner《MarketGuideforArtificialIntelligenceStar...
时空数据库(Spacial-temporaldatabase)是一种专门用于存储和管理时空数据的数据库管理系统,它是传统关系型数据库的一个扩展,可以实现对时空数据进行有效管理和处理。时空数据是指带有时空坐标或时间戳的数据,例如地图、气象数据、交通、城市规划等。因此,时空数据库可以用于多种应用程序,如地理信息系统、航空航天、气象预报、GPS导航等。时空数据库与传统数据库不同的是,它提供了额外的功能和数据类型,例如点、线、面等空间对象和时间序列数据类型。此外,时空数据库还支持空间查询和时空查询,例如常见的缓冲区查询,使得用户可以在时空范围内进行查询和分析。这种数据库可以对时空数据进行高效的存储、查询、更新和分析,并通过插件技术集成其他地理信息数据源。星环分布式时空数据库-SpactureSpacture是星环科技自主研发的一款面向空间、时空数据的存储与管理,集计算与存储为一体的分布式数据库产品,支持大规模矢量数据、时空轨迹数据的存储与计算,具有完备的数据查询、分析和挖掘能力,可用于时空查询分析、时空模式挖掘、时空轨迹聚类等时空轨迹数据分析场景,广泛应用于交通物流、城市管理、位置服务等场景。
数据要素是数字经济发展的关键生产要素,是数字经济发展的基础。加快培育数据要素市场是全面建设社会主义现代化国家的一项基础性工作,对推动经济高质量发展、建设数字中国和数字强省、促进经济社会数字化转型具有重要意义。星环科技致力于打造企业级大数据基础软件,围绕数据全生命周期提供基础软件与服务。基于在大数据、分布式数据库、隐私计算、数据安全流通领域的多年积累,星环科技研发了数据要素流通全过程的一系列工具,在各方数据不出域的前提下,为数据资源方和数据消费方提供数据交付服务。2021年星环科技成为上海数据交易所首批签约数商。2022年9月星环科技曾受邀出席“深数交”数据合规活动,分享数据安全出境解决方案。2022年12月星环科技与中国东信旗下北部湾大数据交易中心达成了战略合作。星环科技在产品的各层级上都完善了安全技术,从而可以给用户提供体系化的数据安全防护能力,助力企业高效、合规的开展数据流通业务。在基础设施层,星环科技提供基于容器的云原生操作系统TCOS,它不仅能够提供容器隔离和镜像扫描,还新增了漏洞检测以及面向业务的微隔离安全技术,从而可以为用户开辟一个独立的数据与计算环境,外部的服务未经授权无...
星环科技致力于打造企业级大数据基础软件,基于在大数据、分布式数据库、隐私计算、数据安全流通领域有着多年积累,研发了数据要素流通全过程的一系列工具,在各方数据不出域的前提下,为数据资源方和数据消费方提供数据交付服务。2022年9月星环科技曾受邀出席“深数交”数据合规活动,分享数据安全出境解决方案。2021年星环科技成为上海数据交易所首批签约数商。2022年12月星环科技与中国东信旗下北部湾大数据交易中心达成了战略合作。伴随数字经济蓬勃发展,融入全球数据跨境流动的趋势不可避免。数据出境安全治理受到广泛重视,为进一步规范数据出境活动,保护个人信息权益,维护国家安全和社会公共利益,促进数据跨境安全,国家互联网信息办公室发布了《数据出境安全评估办法》。国内运营的外企(尤其是零售、化工等)、新能源汽车以及生态企业(含自动驾驶等)、国际化企业与出海企业、跨境电商和物流、有融资需求的基于数字化做业务创新的创业公司等是国内迫切需要落实数据安全出境的企业。然而企业在落地数据出境安全方面存在一些实际困难,主要体现在:错综复杂的数据如何分类分级,如何识别重要数据;重要数据如何存储和管理,才能达到相关法律法规的...
星环科技图数据库StellarDB是国产高性能图数据库,采用分布式架构和原生图计算引擎,支持超大规模数据管理和高效的图计算。TranswarpStellarDB具有以下特点:原生图存储:StellarDB为数据存储设计了专有的图存储结构,优化查询性能,通过高效的压缩算法减少磁盘和内存的使用量。根据分区策略,图数据均匀分布于集群各节点。优越的性能:存储引擎和计算引擎结合,使计算引擎可以利用数据locality提升计算性能,拥有卓越的数据读写能力,支持大规模并行处理,毫秒级的查询响应。高扩展性:完全的分布式架构,具有良好的可扩展性,支持在线扩容和升级。拥有万亿级图数据处理能力,支持数据多副本,提供集群高可用和高可靠。灵活的查询方式:计算引擎支持灵活易懂的图查询语言TranswarpExtended-OpenCypher,拥有丰富的图操作语法。同时提供SQL支持,多模场景灵活切换。深度分析能力:支持10层及以上的图深度遍历和复杂分析。丰富的算法库:内置丰富的算法库,几十种图算法开箱即用,优化的分布式并行图算法,千万级子图计算效率达到行业先进水平。企业级功能:支持用户权限认证、集群状态监控、日...
新时代需要新技术,企业应抓住机遇实现旧平台的改造升级数据库技术经过不断的发展,已经从以Oracle、IBM为代表的集中式数据库,演进到分布式、多模型、云原生的形态,并在很多场景应用落地,带来了真实的业务价值。当前得益于国家政策的大力扶持以及国内市场环境的快速发展,国产软件加速发展,国产化替代进程正在不断加速。自主可控是国产化替代的核心,同时也是一个阶段性的目标。我们不应该满足于此,应该抓住国产化改造的机遇,用新技术去替代老技术,实现自主可控的同时,完成旧系统的改造升级,这也是信创的主旨。星环科技致力于打造企业级大数据基础软件,围绕数据全生命周期提供基础软件与服务,在分布式技术、多模型技术、数据云技术等方面有很多技术突破。比如大数据基础平台TDH是全球首个通过TPC-DS基准测试的产品;提出了创新的多模型统一技术架构,支持业内主流的10种数据模型,Gartner®发布的中国数据库技术发展趋势报告引用星环科技多模型联合分析用例,论证了多模型融合分析的趋势和价值。基于多年积累的分布式技术、多模型统一技术、数据云技术等,星环科技打造了分布式数据库ArgoDB、分布式交易型数据库KunDB、分布...
星环科技分布式隐私计算平台SophonP²C集多方安全计算、联邦学习等多种功能,为隐私计算提供完整的解决方案,以隐私保护为前提,解决了跨组织协作时无法安全利用各方数据的困境。平台支持联邦学习、多方安全计算、匿踪查询等功能;性能方面,联邦学习与多方安全计算可达亿级数据量,助力数据要素安全流通和价值迸发,实现数字经济时代下的跨企业和行业的AI协作。星环科技的隐私计算技术已落地如数据流通、政务民生、金融营销等垂直业务场景,为跨企业数据协作提供安全可信的平台支持。在政务民生场景,SophonP²C通过纵向联邦学习联合居民用电数据与用水数据,生成群租房预测名单。在联合建模过程中,全程明文数据不出,有效保护了居民用水用电的数据隐私信息。联合训练模型比本地单独用电数据训练的模型AUC提升20%以上,赋能政务决策高效的处理分析能力,为政府有效排查群租房,消除群租房造成的消防、安全隐患,打造和谐、安全、美丽的生活环境作出了突出贡献,为政务决策、民生建设发挥信息化支撑保障作用。在精准营销场景,通过纵向联邦学习,车企安全引入了多方数据,丰富用户特征维度,对用户行为进行统计分析。在联合建模过程中,全程明文数据...
图数据库有许多适用场景,常见的应用场景有:社交媒体:社交媒体中的用户和关系可以建模为图结构。用图数据库来管理和查询这些社交数据,可以实现更精确的社交关系分析。金融:在金融领域中,图数据库可以用于合规风控、反欺诈、投资和信贷决策等众多场景。例如,通过在图中存储和分析不同实体(如银行账户、信用卡、电话、邮箱、运单等)之间的关系,可以准确识别欺诈降低风险。物流和运输:物流和运输领域也是图数据库的应用场景之一。例如,通过在图中存储城市、仓库、货物、运输路线等信息,可以进行物流管理、运输计划优化、货物追踪等任务。生命科学:在生命科学领域,图数据库可以用于存储和分析复杂的基因、蛋白质、代谢物等数据,帮助科学家发现新的治疗方法和疾病机制。游戏:游戏开发者可以使用图数据库来管理玩家角色、各种装备、地图、任务等复杂的游戏数据,实现更好的游戏体验。图数据库的灵活性和高效性使其在多个领域都有着广泛的应用。星环分布式图数据库StellarDB星环科技致力于打造企业级大数据基础软件,围绕数据的集成、存储、治理、建模、分析、挖掘和流通等数据全生命周期提供基础软件与服务,在图计算领域深耕多年,自主研发了分布式图数据...
图数据库是现代数据库系统中的一种,它主要的特点就是使用了图论的概念来进行数据管理。传统的关系型数据库通常是基于表和列的结构进行数据管理,而图数据库则是构建了节点和边的图形结构,可以更好的表示现实世界中的复杂关系。下面是图数据库的几个主要特点:1.基于图形结构:图数据库是基于图形结构来进行数据管理的。它通过节点和边来构建数据的表示形式,使得数据之间的关系和结构更加直观和清晰。这对于处理关联复杂、数据关系复杂的场景具有重要意义。2.高效地关系查询和分析:图数据库具有高效的关系查询和分析能力。对于一个大规模的图,传统的SQL查询方式显然不能满足查询时间的要求。而图数据库则可以通过图数据库内部的算法来进行实时的查询和分析。尤其是针对一些复杂的图分析算法,图数据库更能够快速地获得结果,提高查询速度。3.可扩展性:由于采用了分布式的技术设计,使图数据库的可扩展性极佳。当需要管理的数据量增加时,图数据库可以通过简单的集群扩展方式来实现性能的提升。而且,图数据库的分布式能力也可以让其在多个节点上进行操作,提高了系统的容错能力和加载能力。4.元素和关系度量:图数据库具有丰富的元素数据和关系数据量度方式。...
银行图数据库的应用场景:反洗钱:图数据库可以将可疑交易数据存储于其中,帮助银行更快速地提取、分析与关系,识别出潜在的洗钱行为。客户关系管理:银行图数据库可以将客户的不同信息(如交易记录、信用评级、客户所在地和行业等)进行整合,并将这些信息在一个数据仓库中呈现出来。这使得银行能够更加精准地分析客户需求,提供更加符合客户需求、更加优质的服务。风险管理:银行是一个与风险息息相关的行业。图数据库可以帮助银行对相关风险进行整合和分析。通过解析大量的金融数据,图数据库可以找出潜在的风险点,提前控制风险。数字化转型:图数据库能够将社交网络、收集的数据等信息关联起来,并创造性地开拓新业务模式。除了与客户密切相关的业务领域,图数据库还能够在支持业务流程优化方面发挥重要作用。营销:银行可以使用图数据库来收集客户数据、行为数据等,这样可以更加精确地预测客户习惯,对客户进行更加细致的营销和服务。银行图数据库有着广泛的应用场景,可以在多个角度上支持银行的业务发展,提高服务的质量和效率。星环分布式图数据库StellarDB星环科技致力于打造企业级大数据基础软件,围绕数据的集成、存储、治理、建模、分析、挖掘和流通等...