可信计算行业排名

星环隐私计算平台
Sophon P²C是一款分布式隐私计算平台,集隐私计算、加密网络通信等多种功能,为多方安全建模提供完整的解决方案。以隐私保护为前提,Sophon P²C解决了跨组织协作时无法安全利用各方数据的困境
隐私计算
Sophon P²C是一款分布式隐私计算平台,集隐私查询、隐私计算、加密通信等多种功能,能够为多方安全建模提供完整的解决方案。其以隐私保护为前提,能够帮助用户解决跨组织协作时无法安全利用各方数据的困境。

可信计算行业排名 更多内容

行业资讯
可信计算技术
可信计算技术是一种通过在计算和通信系统中广泛使用基于硬件安全模块支持下的可信计算平台,以提高系统整体安全性的技术。可信计算技术的应用场景非常广泛,以下是一些常见的应用场景:数字版权管理:可信计算技术可以用于创建安全的数字版权管理系统,以防止数字内容被非法复制和分发。身份盗用保护:可信计算技术可以增强身份盗用保护措施,防止身份被盗用进行非法活动。保护系统不受病毒和间谍软件危害:通过使用可信计算技术,可以确保系统中的软件是完整的,没有被恶意软件篡改或注入。保护生物识别身份验证数据:可信计算技术可以保护生物识别身份验证数据的安全性,防止敏感信息被非法获取和使用。云环境安全:云环境需要更高的安全性,可信计算技术可以帮助提供更安全、更可信赖的云服务环境。数据安全存储和传输:通过可信计算技术,可以更安全地存储和传输敏感数据,防止数据被非法获取或篡改。虚拟专用网络:可信计算技术可以增强VPN的安全性,保护远程用户的数据传输安全。物联网安全:在物联网环境中,可信计算技术可以帮助保护各种设备和传感器的数据安全,以及确保数据的完整性和真实性。可信计算技术的应用场景非常广泛,可以在各种计算机系统中提供更高级别的安全性,保护数据和系统的完整性。
行业资讯
可信计算
随着信息技术的不断发展,网络攻击和数据泄露等安全问题越来越突出,这对计算机系统的安全性和可信度提出了更高的要求。可信计算是一种基于硬件的安全技术,旨在确保计算机系统的完整性、保密性和可用性,为用户提供高度可信的安全保障。可信计算是一种基于硬件的安全技术,通过加密、数字签名、数字证书、随机数等手段,立起一个安全的计算环境,可以确保用户在使用计算机的过程中获得高度可信的保障,从而避免计机系统被黑客攻击、恶意软件侵入和数据泄露等全问题。可信计算广泛应用于金融、电子政务、大数据等领域。在金融领域,可信计算可以通过加密、数字签名等技术,确保投资、支付和交易等过程的安全和可信度。在电子政务领域,可信计算可以通过可信身份认证、加密和安全通信等手段,提高政府信息化服务的安全性和可信度。在大数据领域,可信计算可以加强大数据安全和隐私保护,提供更加可靠的数据安全保障。可信计算是一种基于硬件的安全技术,其核心中,可信计算可以加强云计算、金融、电子政务和大数据等领域的安全保障,有助于构建一个更加安全可靠的数字环境。
可信计算和隐私计算是两个在数据安全和隐私保护领域非常重要的概念,它们各自有不同的特点和应用场景。可信计算可信计算是一种确保计算机系统安全的技术,它通过验证软件和数据的完整性来防止恶意攻击。可信计算的核心目标之一是保证系统和应用的完整性,从而确定系统或软件运行在设计预期之内。它依赖于硬件和软件的结合,确保数据的安全和完整性。可信计算的应用可以确保数据源的正确性,提高大数据的质量,同时防止数据泄露等既可以是同一机构的不同部门,也可以是不同的机构。隐私计算的技术体系包括安全多方计算、联邦学习、可信执行环境等。它在金融、政务、通信、互联网、医疗等行业有广泛的应用,可以在保持数据加密、不直接暴露客户信息的前提下,实现多个机构间的计算、分析。安全问题。它还可以应用于金融、医疗保健、物联网、供应链管理和政府服务等领域,保护数据安全、防止欺诈和数据泄露,提高系统的可信度和安全性。隐私计算隐私计算是一类技术方案,在处理和分析计算数据的过程中能保持数据不透明、不泄露、无法被计算方法以及其他非授权方获取。它是一种由两个或多个参与方联合计算的技术和系统,参与方在不泄露各自数据的前提下通过协作对他们的数据进行联合机器学习和联合分析。隐私计算的参与方
在金融、电子商务、政务、医疗等行业得到了广泛的应用。可信计算平台的实现需要依靠硬件、软件和标准的协同配合。硬件方面,需要使用可信执行环境提供的硬件安全模块,以保护数据和代码不被非法访问和篡改。软件方面可信计算是在计算和通信系统中广泛使用基于硬件安全模块支持下的可信计算平台,以提高系统整体的安全性。可信计算平台能够保证计算资源的完整性、保密性和可用性,能够预防恶意软件侵入、诈骗、篡改和数据泄露等各种安全风险。可信计算平台还支持安全启动、防篡改可信应用程序的运行和数据加密等功能,能够为用户提供全面的数据保护和安全保障。同时,也能够对网络和云计算环境的安全性进行提升,以满足用户的安全需求。可信计算,需要使用安全的操作系统和可信应用程序,从而使得整个系统构成完整的安全环境。标准方面,需要制定统一的安全标准和规范,以确保不同厂家和产品间的兼容性和可信度。可信计算平台的实现需要基于安全的硬件、软件和行业的广泛认可,入围工信部网安中心“2021数字技术融合创新应用典型解决方案”,产品通过信通院“卓信大数据计划”安全专项评估认证;荣获“江苏省优秀人工智能产品”、“2022可信AI”实践优秀案例、大数据“星河”隐私计算优秀案例;入选艾瑞咨询“隐私计算卓越者”榜单、易观分析“隐私计算领域典范厂商”等。
泄露的风险,需要采取相应的保密措施。可信计算(TC)优点:安全计算环境:可信计算通过构建安全硬件和软件环境,为应用程序提供安全的执行环境,降低行业准入门槛。完整性保护:TC能够确保数据的完整性和真实性多方安全计算(MPC)、联邦学习(FL)和可信计算(TC)各自在数据隐私保护领域具有不同的优势和局限性。以下是对这三种技术的优缺点进行详细对比:多方安全计算(MPC)优点:数据隐私保护:多方安全计算,防止数据在传输或存储过程中被篡改。缺点:硬件依赖:可信计算高度依赖于硬件厂商的诚信和安全性。如果硬件厂商不可信或存在安全漏洞,TC的安全性将受到严重影响。成本问题:由于需要采用特殊的硬件和软件技术来实现可信计算,可能会增加系统的成本和复杂性。能够从理论上保证数据在计算过程中的可用性和不可见性,即参与方可以在不暴露原始数据的情况下共同进行计算。灵活性:MPC适用于多种计算场景,包括线性计算和非线性计算,为数据隐私保护提供了丰富的手段。缺点:计算性能:由于MPC涉及复杂的加密和计算协议,对算力要求较高,计算性能往往低于明文计算。通信开销:MPC通常需要多轮通信来协调不同参与方的计算过程,可能导致较高的通信开销。联邦学习(FL)优点:数据
隐私计算技术为解决数据隐私保护与利用之间的矛盾提供了有效的手段。联邦学习、安全多方计算可信计算这三种技术各具特色,能够根据不同的应用场景和需求,提供灵活多样的隐私保护方案。联邦学习是一种分布式机器加密或转化后再提供给其他方,确保在整个计算过程中,任一参与方都无法接触到其他方的明文形式数据。这种技术为跨组织、跨领域的数据合作提供了安全可靠的保障。可信计算是基于可信硬件的隐私保护技术。与基于软件和协议的方式相比,硬件实现的方式更为安全可靠。可信计算技术通过利用可信硬件的特性,如安全存储、加密解密等,确保数据的完整性和机密性。在数据处理和计算过程中,可信硬件能够防止恶意软件的攻击和篡改,从而保护数据的隐私和安全。不共享各自数据且没有可信第三方的情况下安全地计算约定函数的技术和系统。它通过一系列安全的算法和协议,使得参与方能够在不暴露原始数据的情况下进行计算。在安全多方计算中,参与方通常需要将明文形式的数据进行保证了数据隐私,还能获得与传统中心式机器学习模型几乎相同的模型效果。联邦学习的应用广泛,特别是在金融、医疗等敏感数据领域,能够有效地解决数据孤岛问题,促进数据价值的共享和释放。安全多方计算是一种在参与方
TranswarpSophonP²C隐私计算平台的可信计算、隐私计算技术近年来在城市AI公共服务、水电融合的群租房分析、金融风控、精准营销等场景都落地应用。案例一:城市人工智能公共服务平台某城TranswarpNavier,帮助该市构建面向中小企业的可信计算平台,其中,隐私计算平台SophonP²C、数据沙箱TranswarpSandbox、数据商城Datamall、数据安全管理平台TranswarpDefensor等产品提供了数据分类、个人信息去标识化、安全审计等功能,实现供需双方的隐私保护。该平台还将隐私计算、人工智能基础服务、区块链存证和数据安全相结合,在城市级超算平台上部署,实现资源调度和算力弹性伸缩。目前已投入生产环境,未来有望成为数据交易的支撑平台。城市人工智能公共服务平台架构图案例二:零售领域联合支付机构的智能营销解决方案在隐私保护监管日趋严格的当下,基于隐私计算确保双方数据安全,造成不必要的排查人员投入。因此电网公司和水务部门合作,基于星环科技的隐私计算平台SophonP²C,采用联邦学习的方式,共同构建群租房识别精准模型。识别准确率从单一用电数据的73.49%提升至水电
隐私性,因为它避免了将原始数据发送到中央服务器或共享给第三方。隐私计算是一种实现隐私保护的计算方法和技术,其中包括但不限于联邦学习、安全多方计算可信计算等。它可以在数据产生、存储、处理和流通的各个环节网络通信模块负责节点间大量多批次加密信息的传输,多种加密安全手段和优异的通信架构,确保平台在大数据量下也能获得卓越的性能。星环科技在隐私计算方面的技术探索和落地实践也受到了行业的广泛认可,入围工信部网安中心“2021数字技术融合创新应用典型解决方案”,产品通过信通院“卓信大数据计划”安全专项评估认证;荣获“江苏省优秀人工智能产品”、“2022可信AI”实践优秀案例、大数据“星河”隐私计算优秀案例;入选艾瑞咨询“隐私计算卓越者”榜单、易观分析“隐私计算领域典范厂商”等。联邦计算使得不同实体可以在不共享原始数据的情况下进行数据分析和机器学习。这种技术主要通过在分布式数据集上构建一个共同的模型,然后在这个模型上进行协作,而不需要将数据集中到一处。联邦计算可以增强数据提供隐私保护,使得数据在协作的同时不泄露给其他未经授权的实体。联邦计算和隐私计算虽然都致力于在保护数据隐私的前提下实现数据价值的挖掘,但是它们在应用场景上存在一些不同。联邦计算主要应用于人工智能和机器
数据要素是数字经济发展的关键生产要素,是数字经济发展的基础。加快培育数据要素市场是全面建设社会主义现代化国家的一项基础性工作,对推动经济高质量发展、建设数字中国和数字强省、促进经济社会数字化转型具有重要意义。星环科技致力于打造企业级大数据基础软件,围绕数据全生命周期提供基础软件与服务。基于在大数据、分布式数据库、隐私计算、数据安全流通领域的多年积累,星环科技研发了数据要素流通全过程的一系列工具,在各方数据不出域的前提下,为数据资源方和数据消费方提供数据交付服务。2021年星环科技成为上海数据交易所首批签约数商。2022年9月星环科技曾受邀出席“深数交”数据合规活动,分享数据安全出境解决方案。2022年12月星环科技与中国东信旗下北部湾大数据交易中心达成了战略合作。星环科技在产品的各层级上都完善了安全技术,从而可以给用户提供体系化的数据安全防护能力,助力企业高效、合规的开展数据流通业务。在基础设施层,星环科技提供基于容器的云原生操作系统TCOS,它不仅能够提供容器隔离和镜像扫描,还新增了漏洞检测以及面向业务的微隔离安全技术,从而可以为用户开辟一个独立的数据与计算环境,外部的服务未经授权无...
图数据库有许多适用场景,常见的应用场景有:社交媒体:社交媒体中的用户和关系可以建模为图结构。用图数据库来管理和查询这些社交数据,可以实现更精确的社交关系分析。金融:在金融领域中,图数据库可以用于合规风控、反欺诈、投资和信贷决策等众多场景。例如,通过在图中存储和分析不同实体(如银行账户、信用卡、电话、邮箱、运单等)之间的关系,可以准确识别欺诈降低风险。物流和运输:物流和运输领域也是图数据库的应用场景之一。例如,通过在图中存储城市、仓库、货物、运输路线等信息,可以进行物流管理、运输计划优化、货物追踪等任务。生命科学:在生命科学领域,图数据库可以用于存储和分析复杂的基因、蛋白质、代谢物等数据,帮助科学家发现新的治疗方法和疾病机制。游戏:游戏开发者可以使用图数据库来管理玩家角色、各种装备、地图、任务等复杂的游戏数据,实现更好的游戏体验。图数据库的灵活性和高效性使其在多个领域都有着广泛的应用。星环分布式图数据库StellarDB星环科技致力于打造企业级大数据基础软件,围绕数据的集成、存储、治理、建模、分析、挖掘和流通等数据全生命周期提供基础软件与服务,在图计算领域深耕多年,自主研发了分布式图数据...
垂直领域知识图谱产品主要用于面向特定领域知识应用需求,通过构建和应用知识图谱解决对应领域的专业问题。目前,知识图谱在智慧医疗与智慧金融领域已取得了一系列成功实践,被应用于辅助医生、药物发现、临床科研、风险防控、内部监管、投资研究、保险理赔等众多实际业务场景,并涌现出了一批知识图谱产品或服务平台。星环科技自主研发的知识图谱平台Sophon正是一款覆盖知识全生命周期,集知识的采集、建模、融合、存储、计算及应用为一体的知识图谱产品。平台支持低代码图谱构建、智能化知识抽取、多模态知识存储与融合、多形式知识计算和推理以及多维度的图谱分析。除了具备链路完备性,平台还从业务场景出发,沉淀了金融、保险等场景的图数据模型、规则模型和算法模型,可以帮助用户快速解决不同场景下的业务问题。目前,星环科技Sophon已经在金融等多个行业成功落地,在反洗钱、反欺诈、疫情防控、公共安全、企业级营销、保险知识智能问答等场景有着广泛的应用。同时星环科技在推动知识图谱技术创新和成功落地的过程中,也获得了多项荣誉和权威认可:入选Gartner《MarketGuideforArtificialIntelligenceStar...
新时代需要新技术,企业应抓住机遇实现旧平台的改造升级数据库技术经过不断的发展,已经从以Oracle、IBM为代表的集中式数据库,演进到分布式、多模型、云原生的形态,并在很多场景应用落地,带来了真实的业务价值。当前得益于国家政策的大力扶持以及国内市场环境的快速发展,国产软件加速发展,国产化替代进程正在不断加速。自主可控是国产化替代的核心,同时也是一个阶段性的目标。我们不应该满足于此,应该抓住国产化改造的机遇,用新技术去替代老技术,实现自主可控的同时,完成旧系统的改造升级,这也是信创的主旨。星环科技致力于打造企业级大数据基础软件,围绕数据全生命周期提供基础软件与服务,在分布式技术、多模型技术、数据云技术等方面有很多技术突破。比如大数据基础平台TDH是全球首个通过TPC-DS基准测试的产品;提出了创新的多模型统一技术架构,支持业内主流的10种数据模型,Gartner®发布的中国数据库技术发展趋势报告引用星环科技多模型联合分析用例,论证了多模型融合分析的趋势和价值。基于多年积累的分布式技术、多模型统一技术、数据云技术等,星环科技打造了分布式数据库ArgoDB、分布式交易型数据库KunDB、分布...
星环科技图数据库StellarDB是国产高性能图数据库,采用分布式架构和原生图计算引擎,支持超大规模数据管理和高效的图计算。TranswarpStellarDB具有以下特点:原生图存储:StellarDB为数据存储设计了专有的图存储结构,优化查询性能,通过高效的压缩算法减少磁盘和内存的使用量。根据分区策略,图数据均匀分布于集群各节点。优越的性能:存储引擎和计算引擎结合,使计算引擎可以利用数据locality提升计算性能,拥有卓越的数据读写能力,支持大规模并行处理,毫秒级的查询响应。高扩展性:完全的分布式架构,具有良好的可扩展性,支持在线扩容和升级。拥有万亿级图数据处理能力,支持数据多副本,提供集群高可用和高可靠。灵活的查询方式:计算引擎支持灵活易懂的图查询语言TranswarpExtended-OpenCypher,拥有丰富的图操作语法。同时提供SQL支持,多模场景灵活切换。深度分析能力:支持10层及以上的图深度遍历和复杂分析。丰富的算法库:内置丰富的算法库,几十种图算法开箱即用,优化的分布式并行图算法,千万级子图计算效率达到行业先进水平。企业级功能:支持用户权限认证、集群状态监控、日...
银行图数据库的应用场景:反洗钱:图数据库可以将可疑交易数据存储于其中,帮助银行更快速地提取、分析与关系,识别出潜在的洗钱行为。客户关系管理:银行图数据库可以将客户的不同信息(如交易记录、信用评级、客户所在地和行业等)进行整合,并将这些信息在一个数据仓库中呈现出来。这使得银行能够更加精准地分析客户需求,提供更加符合客户需求、更加优质的服务。风险管理:银行是一个与风险息息相关的行业。图数据库可以帮助银行对相关风险进行整合和分析。通过解析大量的金融数据,图数据库可以找出潜在的风险点,提前控制风险。数字化转型:图数据库能够将社交网络、收集的数据等信息关联起来,并创造性地开拓新业务模式。除了与客户密切相关的业务领域,图数据库还能够在支持业务流程优化方面发挥重要作用。营销:银行可以使用图数据库来收集客户数据、行为数据等,这样可以更加精确地预测客户习惯,对客户进行更加细致的营销和服务。银行图数据库有着广泛的应用场景,可以在多个角度上支持银行的业务发展,提高服务的质量和效率。星环分布式图数据库StellarDB星环科技致力于打造企业级大数据基础软件,围绕数据的集成、存储、治理、建模、分析、挖掘和流通等...
时空数据库(Spacial-temporaldatabase)是一种专门用于存储和管理时空数据的数据库管理系统,它是传统关系型数据库的一个扩展,可以实现对时空数据进行有效管理和处理。时空数据是指带有时空坐标或时间戳的数据,例如地图、气象数据、交通、城市规划等。因此,时空数据库可以用于多种应用程序,如地理信息系统、航空航天、气象预报、GPS导航等。时空数据库与传统数据库不同的是,它提供了额外的功能和数据类型,例如点、线、面等空间对象和时间序列数据类型。此外,时空数据库还支持空间查询和时空查询,例如常见的缓冲区查询,使得用户可以在时空范围内进行查询和分析。这种数据库可以对时空数据进行高效的存储、查询、更新和分析,并通过插件技术集成其他地理信息数据源。星环分布式时空数据库-SpactureSpacture是星环科技自主研发的一款面向空间、时空数据的存储与管理,集计算与存储为一体的分布式数据库产品,支持大规模矢量数据、时空轨迹数据的存储与计算,具有完备的数据查询、分析和挖掘能力,可用于时空查询分析、时空模式挖掘、时空轨迹聚类等时空轨迹数据分析场景,广泛应用于交通物流、城市管理、位置服务等场景。
图数据库是现代数据库系统中的一种,它主要的特点就是使用了图论的概念来进行数据管理。传统的关系型数据库通常是基于表和列的结构进行数据管理,而图数据库则是构建了节点和边的图形结构,可以更好的表示现实世界中的复杂关系。下面是图数据库的几个主要特点:1.基于图形结构:图数据库是基于图形结构来进行数据管理的。它通过节点和边来构建数据的表示形式,使得数据之间的关系和结构更加直观和清晰。这对于处理关联复杂、数据关系复杂的场景具有重要意义。2.高效地关系查询和分析:图数据库具有高效的关系查询和分析能力。对于一个大规模的图,传统的SQL查询方式显然不能满足查询时间的要求。而图数据库则可以通过图数据库内部的算法来进行实时的查询和分析。尤其是针对一些复杂的图分析算法,图数据库更能够快速地获得结果,提高查询速度。3.可扩展性:由于采用了分布式的技术设计,使图数据库的可扩展性极佳。当需要管理的数据量增加时,图数据库可以通过简单的集群扩展方式来实现性能的提升。而且,图数据库的分布式能力也可以让其在多个节点上进行操作,提高了系统的容错能力和加载能力。4.元素和关系度量:图数据库具有丰富的元素数据和关系数据量度方式。...
星环科技致力于打造企业级大数据基础软件,基于在大数据、分布式数据库、隐私计算、数据安全流通领域有着多年积累,研发了数据要素流通全过程的一系列工具,在各方数据不出域的前提下,为数据资源方和数据消费方提供数据交付服务。2022年9月星环科技曾受邀出席“深数交”数据合规活动,分享数据安全出境解决方案。2021年星环科技成为上海数据交易所首批签约数商。2022年12月星环科技与中国东信旗下北部湾大数据交易中心达成了战略合作。伴随数字经济蓬勃发展,融入全球数据跨境流动的趋势不可避免。数据出境安全治理受到广泛重视,为进一步规范数据出境活动,保护个人信息权益,维护国家安全和社会公共利益,促进数据跨境安全,国家互联网信息办公室发布了《数据出境安全评估办法》。国内运营的外企(尤其是零售、化工等)、新能源汽车以及生态企业(含自动驾驶等)、国际化企业与出海企业、跨境电商和物流、有融资需求的基于数字化做业务创新的创业公司等是国内迫切需要落实数据安全出境的企业。然而企业在落地数据出境安全方面存在一些实际困难,主要体现在:错综复杂的数据如何分类分级,如何识别重要数据;重要数据如何存储和管理,才能达到相关法律法规的...
星环科技分布式隐私计算平台SophonP²C集多方安全计算、联邦学习等多种功能,为隐私计算提供完整的解决方案,以隐私保护为前提,解决了跨组织协作时无法安全利用各方数据的困境。平台支持联邦学习、多方安全计算、匿踪查询等功能;性能方面,联邦学习与多方安全计算可达亿级数据量,助力数据要素安全流通和价值迸发,实现数字经济时代下的跨企业和行业的AI协作。星环科技的隐私计算技术已落地如数据流通、政务民生、金融营销等垂直业务场景,为跨企业数据协作提供安全可信的平台支持。在政务民生场景,SophonP²C通过纵向联邦学习联合居民用电数据与用水数据,生成群租房预测名单。在联合建模过程中,全程明文数据不出,有效保护了居民用水用电的数据隐私信息。联合训练模型比本地单独用电数据训练的模型AUC提升20%以上,赋能政务决策高效的处理分析能力,为政府有效排查群租房,消除群租房造成的消防、安全隐患,打造和谐、安全、美丽的生活环境作出了突出贡献,为政务决策、民生建设发挥信息化支撑保障作用。在精准营销场景,通过纵向联邦学习,车企安全引入了多方数据,丰富用户特征维度,对用户行为进行统计分析。在联合建模过程中,全程明文数据...