图数据库产品对比
Transwarp StellarDB是星环科技自主研发的企业级分布式图数据库,提供高性能的图存储、计算、分析、查询和展示服务。StellarDB支持原生图存储,千亿点、万亿边、PB级大规模图数据存储;具备10+层的深度链路分析能力,提供丰富的图分析算法和深度图算法;支持标准图查询语言并兼容 openCypher,并具备2D/3D图展示能力,可以帮助用户快速开发欺诈检测、推荐引擎、社交网络分析、知识图谱等应用。
图数据库产品对比 更多内容
行业资讯
图数据库和关系型数据库性能对比
图数据库和关系型数据库性能对比在当今数据驱动的时代,数据库技术不断演进,其中图数据库和关系型数据库是两种重要的数据管理方式。它们在性能表现上各有特点,适用于不同的应用场景。本文将从多个维度对比这两种数据库,多表连接操作会导致性能显著下降。图数据库则采用节点、边和属性来表示数据,节点代表实体,边表示实体间的关系。这种原生存储关系的方式使得在处理高度互联数据时具有天然优势,避免了昂贵的连接操作。查询性能对比在简单查询场景下,如根据主键查找单个记录,关系型数据库通常表现出色,尤其是当数据量在合理范围内且索引优化良好时。这类操作的时间复杂度可以接近O(1)。对于涉及多度关系的查询,图数据库的优势开始显现。例如查找"朋友的朋友"这类两度关系,关系型数据库需要多次表连接,而图数据库则通过指针跳转直接遍历关系,性能差异随着关系深度的增加而扩大。测试表明,在三度及以上关系查询中,图数据库的响应时间可能比关系型数据库快数百倍。写入性能分析在数据写入方面,关系型数据库通常提供ACID事务保证,写入性能受事务隔离级别和索引维护成本影响较大。批量插入操作在关系型数据库中可以通过优化达到较高吞吐量。图数据库的写入性能

行业资讯
图数据库有哪些?
图数据库是一种用于处理图形数据的特殊类型的数据库。它们旨在存储和管理关系和连接,具有比其他类型的数据库更强大的能力。目前国内有众多优秀图数据库产品,星环科技图数据库产品StellarDB其中之一和3D的图可视化展示,集成批量导入、备份恢复、状态监控、参数配置、重建副本等图数据库常用功能。凭借优异的产品性能和出色的落地表现,StellarDB获得了多家行业权威机构认可,StellarDB被国际。TranswarpStellarDB是星环科技自主研发的企业级分布式图数据库,提供高性能的图存储、计算、分析、查询和展示服务。StellarDB支持原生图存储,千亿点、万亿边、PB级大规模图数据存储级子图计算效率达到行业先进水平。企业级功能:支持用户权限认证、集群状态监控、日志审计、数据加密、计算资源管控、备份恢复等完备的企业级数据库功能。强大的可视化能力:StellarDB的可视化界面支持2D权威研究分析机构Gartner列入2022年发布的《中国数据库市场指南》中,于2020年首批通过了中国信息通信研究院《图数据库基础能力评测》,并支持国产化硬件和操作系统部署。

行业资讯
图数据库有哪些?
图数据库是一种用于处理图形数据的特殊类型的数据库。它们旨在存储和管理关系和连接,具有比其他类型的数据库更强大的能力。目前国内有众多优秀图数据库产品,星环科技图数据库产品StellarDB其中之一和3D的图可视化展示,集成批量导入、备份恢复、状态监控、参数配置、重建副本等图数据库常用功能。凭借优异的产品性能和出色的落地表现,StellarDB获得了多家行业权威机构认可,StellarDB被国际。TranswarpStellarDB是星环科技自主研发的企业级分布式图数据库,提供高性能的图存储、计算、分析、查询和展示服务。StellarDB支持原生图存储,千亿点、万亿边、PB级大规模图数据存储级子图计算效率达到行业先进水平。企业级功能:支持用户权限认证、集群状态监控、日志审计、数据加密、计算资源管控、备份恢复等完备的企业级数据库功能。强大的可视化能力:StellarDB的可视化界面支持2D权威研究分析机构Gartner列入2022年发布的《中国数据库市场指南》中,于2020年首批通过了中国信息通信研究院《图数据库基础能力评测》,并支持国产化硬件和操作系统部署。

行业资讯
图数据库有哪些?
图数据库是一种用于处理图形数据的特殊类型的数据库。它们旨在存储和管理关系和连接,具有比其他类型的数据库更强大的能力。目前国内有众多优秀图数据库产品,星环科技图数据库产品StellarDB其中之一和3D的图可视化展示,集成批量导入、备份恢复、状态监控、参数配置、重建副本等图数据库常用功能。凭借优异的产品性能和出色的落地表现,StellarDB获得了多家行业权威机构认可,StellarDB被国际。TranswarpStellarDB是星环科技自主研发的企业级分布式图数据库,提供高性能的图存储、计算、分析、查询和展示服务。StellarDB支持原生图存储,千亿点、万亿边、PB级大规模图数据存储级子图计算效率达到行业先进水平。企业级功能:支持用户权限认证、集群状态监控、日志审计、数据加密、计算资源管控、备份恢复等完备的企业级数据库功能。强大的可视化能力:StellarDB的可视化界面支持2D权威研究分析机构Gartner列入2022年发布的《中国数据库市场指南》中,于2020年首批通过了中国信息通信研究院《图数据库基础能力评测》,并支持国产化硬件和操作系统部署。

行业资讯
图数据库产品
图谱场景实现了万亿边规模的存储和稳定运行,真正意义上将万亿级图数据库能力应用落地。星环科技分布式图数据库StellarDB通过了中国信通院图数据库和图计算平台基础能力2项评测,并列为全球图数据库代表产品上榜Gartner2022年《图数据库管理系统市场指南》和信通院图计算平台代表产品。目前,StellarDB广泛应用于金融、政府和社交网络等领域,在人员社交网络探索、金融风险传播分析等场景发挥着重要作用。未来,星环科技将继续在图技术领域深耕,为企业提供查询速度更快、分析能力更强、稳定性更高的图数据库产品。同时,作为国内领先的企业级大数据基础软件公司,星环科技是国内同时具备图数据库、知识图谱平台、图挖掘应用开发能力的企业,其全栈自研的图技术能力可以助力企业快速挖掘图数据价值,推动业务高效高质量发展。TranswarpStellarDB是星环科技自主研发的分布式图数据库,兼容openCypher查询语言,提供海量图数据的存储和分析能力,支持原生属性图存储结构,支持万亿边PB级数据存储。同时,StellarDB具备毫秒级点边查询能力,10+层的深度链路分析能力,提供众多图分析算法,具备数据2D和3D展示能力。StellarDB在金融、政府和社交网络等领域得到广泛应用,特别是在某地客户电信关系

行业资讯
图数据库产品
图谱场景实现了万亿边规模的存储和稳定运行,真正意义上将万亿级图数据库能力应用落地。星环科技分布式图数据库StellarDB通过了中国信通院图数据库和图计算平台基础能力2项评测,并列为全球图数据库代表产品上榜Gartner2022年《图数据库管理系统市场指南》和信通院图计算平台代表产品。目前,StellarDB广泛应用于金融、政府和社交网络等领域,在人员社交网络探索、金融风险传播分析等场景发挥着重要作用。未来,星环科技将继续在图技术领域深耕,为企业提供查询速度更快、分析能力更强、稳定性更高的图数据库产品。同时,作为国内领先的企业级大数据基础软件公司,星环科技是国内同时具备图数据库、知识图谱平台、图挖掘应用开发能力的企业,其全栈自研的图技术能力可以助力企业快速挖掘图数据价值,推动业务高效高质量发展。TranswarpStellarDB是星环科技自主研发的分布式图数据库,兼容openCypher查询语言,提供海量图数据的存储和分析能力,支持原生属性图存储结构,支持万亿边PB级数据存储。同时,StellarDB具备毫秒级点边查询能力,10+层的深度链路分析能力,提供众多图分析算法,具备数据2D和3D展示能力。StellarDB在金融、政府和社交网络等领域得到广泛应用,特别是在某地客户电信关系

行业资讯
图数据库有哪些?
图数据库是一种用于处理图形数据的特殊类型的数据库。它们旨在存储和管理关系和连接,具有比其他类型的数据库更强大的能力。目前国内有众多优秀图数据库产品,星环科技图数据库产品StellarDB其中之一和3D的图可视化展示,集成批量导入、备份恢复、状态监控、参数配置、重建副本等图数据库常用功能。凭借优异的产品性能和出色的落地表现,StellarDB获得了多家行业权威机构认可,StellarDB被国际。TranswarpStellarDB是星环科技自主研发的企业级分布式图数据库,提供高性能的图存储、计算、分析、查询和展示服务。StellarDB支持原生图存储,千亿点、万亿边、PB级大规模图数据存储级子图计算效率达到行业先进水平。企业级功能:支持用户权限认证、集群状态监控、日志审计、数据加密、计算资源管控、备份恢复等完备的企业级数据库功能。强大的可视化能力:StellarDB的可视化界面支持2D权威研究分析机构Gartner列入2022年发布的《中国数据库市场指南》中,于2020年首批通过了中国信息通信研究院《图数据库基础能力评测》,并支持国产化硬件和操作系统部署。

行业资讯
图数据库如何选型?
图数据库选型是一个复杂的过程。通过明确需求、评估候选数据库、实际测试与验证以及选择合适的图数据库产品等步骤,可以为您的项目选择最合适的图数据库。一、明确需求首先,您需要明确项目的具体需求,包括:使用监控工具对数据库的运行状态进行实时监控,并分析测试结果,确保数据库能够满足您的性能需求。四、选择合适的图数据库产品基于以上步骤的评估与测试,您可以选择合适的图数据库产品。五、持续优化与维护在选择并数据类型、数据量、查询类型、并发用户数等。这些因素将直接影响图数据库的选择。数据类型:确定您需要存储的数据是结构化、半结构化还是非结构化数据,以及数据之间的关联关系是否复杂。数据量:预估项目现在和未来的数据量和生成速度,以确定数据库的存储和处理需求。查询类型:了解您的查询需求,如是否需要多跳查询、实时查询等。图数据库在关联关系的分析中有天然的优势,适合处理复杂的关系查询。并发用户数:确定数据库必须支持的最大用户数或连接数,并了解需求在高峰和低峰时期的波动。二、评估候选数据库在明确需求后,您可以开始评估候选的图数据库。以下是一些关键的评估指标:技术路线:了解图数据库的技术路线,如数据
猜你喜欢
产品文档
3.3 Cluster
OverviewAclusterisaHippoCloudinstanceassociatedwithspecificcomputingresources.Youcancreaterelatedtables,insertcorrespondingdata,andcompleteproductexperiencewithinacluster.Beforeyouusethedemoenvironment,youneedtocreateacluster.CreateClusterYouneedtogotothespecificproject.Iftherearenoclustersunderthecurrentproject,youcanclickthe'Createcluster'buttonbelowtheclustercreationguidancepagetoentertheclustercreation.Ifthereareclustersunderthecurrentproject,youcanclickthe'+Cluster'buttonabovetheclusterlist...
产品文档
5.10 任务相关
在Hippo中,比较耗时的操作如激活、加载向量索引实际上是一个分布式任务,用户可以通过任务相关接口查看、删除任务。查看任务curl-ushiva:shiva-XGET"localhost:8902/hippo/v1/_jobs?pretty"-H'Content-Type:application/json'-d'{"job_ids":["fc6feff4f303455a9347f9aab323dfc8"],"action_patterns":["hippo*"]}';返回结果:{"jobs":[{"job_id":"810935a1d91a46b7af2ec35013454fed","job_status":"SHIVA_JOB_SUCCESS","embedding_number":100,"task_results":[{"id":"54ab52493dfb4bab9fb7742d850c64c4","status":"TASK_SUCCESS","server":"172.29.40.26:27841","embedding_number":100,"execute_time":...
产品文档
5.18 全文检索
Hippo在1.2版本提供了全文索引能力,兼容ElasticSearch6.7.2语法,在底层架构上复用了公司产品TranswarpScope的一部分特性,支持以Java/HTTPRestful的形式通过Hippo的HTTPServer接口进行全文索引的创建、查询、使用等各类需求,通过该能力的支持,可以更好的实现向量与全文的混合检索。通过将向量检索加全文检索的联合召回,可以降低漏检和误检的概率,能够实现比单独使用向量或全文更高的精度。同时,一套数据库系统可避免部署多套系统带来的架构复杂、开发运维成本高等问题。具体的使用方法除了访问端口需要将端口从8902调整为9200外,均可参考《TranswarpScope手册》4.TranswarpScopeAPI介绍。
产品文档
5.7 查询类操作
过滤条件表达式Hippo当前支持如下表达式,可用于标量或向量查询。表46.过滤条件表达式表达式描述and当前版本支持and,不支持or/not==等值<小于⇐小于等于>大于>=大于等于inin[1,2,3]notinnot_in[1,2,3]like'_'表示匹配任一字符,'%'表示匹配任意字符,'\'为转义符向量相似性检索本节描述如何进行向量相似度搜索。Hippo中的向量相似性搜索计算查询向量与表中向量的距离,返回最相似的结果集。通过指定标量过滤条件,用户可以进行向量与标量的混合搜索。curl-ushiva:shiva-XGET'localhost:8902/hippo/v1/{table}/_search?pretty'-H'Content-Type:application/json'-d'{"output_fields":["book_id"],"search_params":{"anns_field":"book_intro","topk":2,"params":{"nprobe":10},"embedding_index":"ivf_flat_index"}...
产品文档
5.3 写入类操作
本节介绍Hippo表写入相关操作。Hippo会返回写入成功数据的下标以及总共写入成功的数据条数,如果出现行级错误(比如主键冲突),Hippo会返回具体的行级错误。插入本节介绍如何向Hippo中插入数据。curl-ushiva:shiva-XPUT'localhost:8902/hippo/v1/{table}/_bulk?database_name={database_name}&pretty'-H'Content-Type:application/json'-d'{"fields_data":[{"field_name":"book_id","field":[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74...
产品文档
2 Quick Start
ThistutorialwillguideyouthroughthefollowingtaskswithinHippoCloud:EstablishingatablePerusingthetableIncorporatingdataExecutingsearchoperationsEliminatingrowsDissolvingthetableBeforeyoustartInthisguide,wewillbeutilizingthePythonAPI.Priortocommencement,ensurethatyouhave:RegisteredforaHippoCloudaccount.SubscribedtothecomplimentaryplanandestablishedatrialclusterwithinHippoCloud,orsubscribedtothestandard/enterpriseplansandconstructedadedicatedcluster.IfyouanticipateemployingPythonfordevelopment,ascert...
产品文档
1 Introduction
OverviewUnstructureddatamanagementismoreimportantthaneverduetotheriseofbigdata.Managingandgleaningbusinessvaluefromunstructureddataisofutmostimportancetoenterprisestoday.Advancementsinmachinelearning,aswellasdeeplearning,technologiesnowenableorganizationstoefficientlyaddressunstructureddataandimprovequalityassuranceefforts.Inthefieldofartificialintelligenceormachinelearning,embeddingsandvectordatabaseshavebecomeincreasinglyimportantfortacklingawiderangeofproblems.Thesetechniquesareusedtorepresen...
产品文档
8 性能分析
本节测试主要描述了Hippo1.0在关键测试上的一些性能表现,该份测试同样也是Hippo的基准测试,后续版本发布也会在不同版本上进行该测试进行对比分析。术语表142.Hippo性能测试术语TermDescriptionnq一次搜索请求中搜索的向量个数topk一次请求中对于要检索的每个向量(依赖nq),所能检索到最近距离的向量个数RT一次请求从发起到接受响应的时间]QPS请求在每秒内成功执行的次数dataset测试所用数据集,不同数据集表示不同的业务场景测试集群配置硬件配置表143.性能测试硬件配置硬件规范Nodes3CPUIntel®Xeon®Gold5218RCPU@2.10GHzMemory16*\16GBRDIMM,3200MT/sDISKNVMeSSD2T*4GPUNONE软件配置表144.性能测试软件配置软件版本Hippov1.2TranswarpManagerTDH9.3.0测试集表145.性能测试数据集数据集名称数据集介绍向量维度向量总数查询数量数据总量距离类型Sift-128-euclidean该数据集是基于Texmex的数据集整理,使用SIFT算法得到的图片特征向量。...
产品文档
5.8 查看集群信息
查看Master节点通过以下命令,查看集群Master节点信息:curl-ushiva:shiva-XGET'localhost:8902/hippo/v1/_cat/master?v'返回结果:epochtimestampactive.master.hostactive.master.portmaster.group169079683909:47:19172.29.203.18926841172.29.203.189:26841,172.29.203.189:26851,172.29.203.189:26861查看数据节点curl-ushiva:shiva-XGET'localhost:8902/hippo/v1/_cat/nodes?v'//查看所有节点curl-ushiva:shiva-XGET'localhost:8902/hippo/v1/_cat/nodes/{node}?v'//{node}表示待匹配的节点地址,支持以*通配,支持指定多个pattern,多个pattern以逗号分割返回结果:
产品文档
10 Hippo 运维
运维管理界面WebserverWebserver是Hippo提供运维监控的界面。默认访问地址为:4567"class="bare">http://<webserver_ip>:4567。或者在Manager管理界面我们可以通过下图所示的查看链接这里进行跳转。图15.登录HippoWebserverWebserver主要由下面几个部分构成。概况图16.概况该页面展示了Hippo集群的基本信息,包括:Masterstatus:当前的ActiveMaster,MasterGroup,MasterAddress,Master的健康状态TabletServerStatus:TabletServerAddress,健康状态,逻辑机架和数据中心信息,容量使用以及Tablet个数TabletNum:当前集群表的个数Version:Hippo版本信息库表图17.库表页面以库和表的概念集群存储的各类数据信息。库信息:库名库创建时间库内各类表的信息:点击某个库,可以看到库下所有表的信息,主要包括:••表的ID••表的名字••表的状态••表的Tablet数量••表的Engine类型••表的副本数•...