隐私计算方法有哪些

星环隐私计算平台
Sophon P²C是一款分布式隐私计算平台,集隐私计算、加密网络通信等多种功能,为多方安全建模提供完整的解决方案。以隐私保护为前提,Sophon P²C解决了跨组织协作时无法安全利用各方数据的困境
隐私计算
Sophon P²C是一款分布式隐私计算平台,集隐私查询、隐私计算、加密通信等多种功能,能够为多方安全建模提供完整的解决方案。其以隐私保护为前提,能够帮助用户解决跨组织协作时无法安全利用各方数据的困境。

隐私计算方法有哪些 更多内容

行业资讯
隐私计算技术
隐私计算技术是一系列允许数据在保护隐私的同时被分析和利用的密码学和计算方法。主要包括以下几种:多方安全计算:这是一种密码学领域的隐私保护分布式计算技术,允许多个参与方在互不信任且没有可信第三方的情况下,协同计算一个约定函数,同时确保除计算结果外,各参与方无法通过计算过程中的交互数据推断出其他参与方的原始数据。联邦学习:联邦学习是一种分布式机器学习方法,允许多个节点或设备协同训练模型,而不需要可信的程序进行处理。同态加密:同态加密是一种特殊的加密形式,允许在加密数据上直接进行计算计算结果在解密后与在原始数据上进行相同计算的结果相同,从而保护数据的隐私性。零知识证明:零知识证明允许一方向另一方证明某个陈述是正确的,而无需透露任何有用的信息,除了该陈述本身的真实性。差分隐私:差分隐私通过添加噪声来保护个人信息,确保在发布统计数据时,单个数据项对结果的影响被最小化,从而保护个人隐私。匿名化:匿名化技术通过去除或替换数据中的识别信息,使得数据在被使用时无法关联到具体的个人,实现隐私保护。
隐私性,因为它避免了将原始数据发送到中央服务器或共享给第三方。隐私计算是一种实现隐私保护的计算方法和技术,其中包括但不限于联邦学习、安全多方计算、可信计算等。它可以在数据产生、存储、处理和流通的各个环节提供隐私保护,使得数据在协作的同时不泄露给其他未经授权的实体。联邦计算隐私计算虽然都致力于在保护数据隐私的前提下实现数据价值的挖掘,但是它们在应用场景上存在一些不同。联邦计算主要应用于人工智能和机器学习领域,特别是当涉及到大数据和多源数据融合的时候,它的优点是可以保护数据隐私并且提高计算效率。而隐私计算的应用场景则更加广泛,它可以在数据产生、存储、处理和流通的各个环节提供隐私保护,使得数据在协作的同时不泄露给其他未经授权的实体,因此可以应用于众多领域如金融、医疗、政府等。星环分布式隐私计算平台-SophonP²C星环分布式隐私计算平台SophonP²C集多方安全计算、联邦学习等多种功能,为隐私计算提供完整的解决方案,以隐私保护为前提,解决了跨组织协作时无法安全利用各方数据的困境。平台提供多种开箱即用的工具,方便用户在隐私场景下进行数据处理、分析、特征工程等工作,并快速建立机AI模型。加密
行业资讯
可信隐私计算
。反数据分析:对输出数据进行打乱、扰动和干扰以减少敏感数据泄露的风险,具有一定的反数据分析能力。可信隐私计算是一项高级别的隶属于隐私计算和安全计算技术的计算方法,旨在提供高可靠性、可操作性、可验证性和可可信隐私计算是基于隐私计算和安全计领域的技术实现,并且在此基础上提供高级别安全保障、隐私保护和数据共享能力。其主要目的是保护数据隐私、避免数据泄露、提高数据共享率、实现智能化计算和数据分析等。相较于传统的隐私计算技术,可信隐私计算具有更高的安全性和可信度,具体包括以下特:可验证性:能够对隐私计算过程进行验证,在保证隐私和安全的前提下,保障计算的正确性和可靠性,消除不可信因素的干扰。可审计性:能够对隐私计算过程进行推导和溯源,有利于发现隐私数据泄露的源头和原因,做出相应的应对更新。非侵入性:能够在无需客户端、服务器或内部插件的前提下完成便携式的防撕裂计算,保证数据隐私安全并减少对客户端的干扰审计性的可信服务,有效解决了数据隐私保护和数据共享的问题。星环分布式隐私计算平台-SophonP²C星环分布式隐私计算平台SophonP²C集多方安全计算、联邦学习等多种功能,为隐私计算提供完整的
隐私计算平台哪些当前主流的隐私计算平台主要分为三大类型,满足不同场景下的数据安全计算需求。开源平台方面,FATE(FederatedAITechnologyEnabler)是最受欢迎的联邦学习框架,支持多方参与的机器学习建模;TensorFlowPrivacy则专注于差分隐私保护,被多家研究机构采用。商业解决方案中,蚂蚁链摩斯平台已服务超过500家企业客户,其特色是融合了区块链技术实现计算过程可审计;腾讯云数盾则凭借与微信生态的深度整合,在营销场景表现突出。云服务厂商也纷纷入局,AWSCleanRooms和微软AzureConfidentialComputing都提供了即用型的隐私计算服务。这些平台在实际应用中展现出显著价值。某股份制商业银行采用蚂蚁摩斯平台后,在联合征信场景中数据使用合规率提升至99.9%,同时模型准确度保持行业领先水平。值得注意的是,行业垂直化解决方案正在兴起,如医疗领域专用的隐私计算平台,支持DICOM等专业数据格式的安全处理。
行业资讯
安全多方计算
安全多方计算能够保证各参与方在进行计算的过程中仅获得正确计结果,并且无法获得除计算结果之外的任何信息的计算方法。是多种密码学基础工具的综合应用,通过利用混淆电路、秘密分享、不经意传输等密码学原理构造共同研究。医疗数据是非常隐私而敏感的,但是如果多个医疗机构或研究机构希望共同开展一项研究,他们可能需要共享一些数据。安全多方计算可以保证参与方在计算过程中只能得到计算结果,而无获得其他任何相关数据,从而保护了数据的隐私和安全性。这使得医疗机构之间能够高效地开展合作研究,加速了医疗领域的进步和创新。安全多方计算可以提高企业之间分享数据的业务效率。企业在某些情况下需要共享一些数据,例如供应链管理或市场调研的经典多方安全计算协议,以及其他用于实现多方安全计算的密码学算法,来实现安全的算过程。目前,安全多方计算在技术上已经趋于成熟,并在多个领域展示出了重要的应用价值。在医疗领域,安全多方计算可以被用于。然而,这些数据通常包含有商业机密或敏感信息。通过使用安全多方计算,企业可以确保参与方仅获得计算结果,而不能获取到原始的数据。这样,企业之间的数据共享变得更加安全和可行,促进了业务效率的提升。
软硬件方法在中央处理器中构建一个安全的区域,这个区域能够抵御外部攻击,保证内部加载的程序和数据在机密性和完整性上得到保护。这种技术有效隔离了敏感数据的处理过程,防止了数据泄露和篡改,为隐私计算提供了坚实的硬件基础。隐私计算技术体系主要可以分为三类:基于密码学的隐私计算技术、人工智能与隐私保护技术融合衍生的技术,以及基于可信硬件的隐私计算技术。以多方安全计算为代表的基于密码学的隐私计算技术:多方安全计算基于现代密码学原理,通过一系列复杂的算法和协议,实现在不暴露原始数据的前提下,完成多方间的数据融合计算。这种技术主要用于联合统计、联合查询、联合建模和联合预测等场景,有效保护了参与方的数据隐私,同时实现了数据和数据安全,还能充分利用多方数据进行全局模型的构建,提高了模型的准确性和泛化能力。联邦学习在联合建模、联合预测等领域有着广泛的应用前景。以可信执行环境为代表的基于可信硬件的隐私计算技术:可信执行环境通过的共享和利用。以联邦学习为代表的人工智能与隐私保护技术融合衍生的技术:联邦学习本质上是一种分布式机器学习的技术,它通过安全设计,使得各参与方之间的模型信息交换过程更加安全。这种技术不仅确保了用户隐私
保持数据不透明、不泄露、无法被计算方法以及其他非授权方获取。它是一种由两个或多个参与方联合计算的技术和系统,参与方在不泄露各自数据的前提下通过协作对他们的数据进行联合机器学习和联合分析。隐私计算的参与方既可以是同一机构的不同部门,也可以是不同的机构。隐私计算的技术体系包括安全多方计算、联邦学习、可信执行环境等。它在金融、政务、通信、互联网、医疗等行业广泛的应用,可以在保持数据加密、不直接暴露客户信息的前提下,实现多个机构间的计算、分析。可信计算隐私计算是两个在数据安全和隐私保护领域非常重要的概念,它们各自有不同的特点和应用场景。可信计算可信计算是一种确保计算机系统安全的技术,它通过验证软件和数据的完整性来防止恶意攻击。可信计算的安全问题。它还可以应用于金融、医疗保健、物联网、供应链管理和政府服务等领域,保护数据安全、防止欺诈和数据泄露,提高系统的可信度和安全性。隐私计算隐私计算是一类技术方案,在处理和分析计算数据的过程中能核心目标之一是保证系统和应用的完整性,从而确定系统或软件运行在设计预期之内。它依赖于硬件和软件的结合,确保数据的安全和完整性。可信计算的应用可以确保数据源的正确性,提高大数据的质量,同时防止数据泄露等
计算指的是使用图数据结构和图算法来解决复杂问题的计算方法。通常用于处理关系型数据,如交网络、地图、网络拓扑等。图计算的主要目标是发现图中的模式、群组和其他价值的信息。图计算常见的算法包括深度优先搜索、广度优先搜索、短路径算法、小生成树算法、大流算法、匹配算法、社区发现算法等。这些算法可以帮助用户发现图中的模式和关系,并从中提取有用的信息。在近年来,图计算得到了广泛的应用,包括社交网络分析、风险管理、医疗和生物信息学等领域。通常,图计算需要使用专门的图计算工具和平台。这些工具为用户提供了一个好的图计算环境,以便于用户更好的理解和分析数据。星环分布式图数据库-TranswarpStellarDBTranswarpStellarDB是星环科技自主研发的企业级分布式图数据库,提供高性能的图存储、计算、分析、查询和展示服务。StellarDB支持原生图存储,千亿点、万亿边、PB级大规模图数据、知识图谱等应用。凭借优异的产品性能和出色的落地表现,StellarDB获得了多家行业权威机构认可,中国信通院重磅发布的2022大数据十大关键词,星环科技作为图计算平台国内代表厂商入选信通院“图计算平台
行业资讯
大数据湖
大数据湖是在数据湖概念基础上,结合大数据技术特点和需求而发展起来的一种更加强大、灵活的数据存储和分析架构。海量数据存储:能够轻松应对海量数据的存储需求,可存储PB级甚至EB级的数据,涵盖各种类型的数据,包括结构化数据、半结构化数据和非结构化数据。高可扩展性:基于分布式架构,能够方便地进行水平扩展,随着数据量的增加,可以通过添加节点的方式快速扩展存储和计算能力。数据多样性支持:不仅支持传统的关系型数据,还能存储各种非传统数据类型,如文本、图像、视频、音频、日志文件、社交媒体数据等,为企业提供全面的数据视角。灵活性与敏捷性:数据以原始格式存储,不需要预先定义严格的数据模型,用户可以根据不同的业务需求随时对数据进行各种分析和处理,快速响应业务变化。架构与组件存储层:通常采用分布式文件系统或对象存储系统作为底层存储,具有高可靠性、高吞吐量和容错性,确保数据的安全存储和高效访问。数据管理层:包括元数据管理、数据目录、数据血缘等功能。元数据管理记录数据的来源、格式、含义等信息,方便用户查找和理解数据;数据目录提供数据的分类和索引,便于数据的搜索和发现;数据血缘则跟踪数据的流转和处理过程,确保数据的...
行业资讯
多方安全计算
多方安全计算(SecureMulti-PartyComputation,简称MPC)是隐私计算的一个重要分支。多方安全计算允许多个参与方在不泄露各自隐私数据的情况下,共同完成对数据的计算和分析任务。其目标是在保护数据隐私的前提下,实现数据的共享和协同处理,以挖掘数据的价值。主要基于密码学技术,如同态加密、不经意传输、秘密共享等。通过这些技术,将数据进行加密或转换,使得在计算过程中,参与方只能看到加密后的结果或与自己相关的部分信息,而无法获取其他方的隐私数据。技术特点隐私保护性:多方安全计算能够确保参与方的隐私数据在整个计算过程中不被泄露,即使在存在恶意参与者的情况下,也能保证数据的安全性。去中心化:不需要依赖可信的第三方来处理数据,各参与方之间通过密码学协议进行交互和协作,实现数据的分布式计算。可验证性:计算结果可以被参与方进行验证,确保计算的正确性和完整性。灵活性:可以支持各种类型的计算任务,如算术运算、比较运算、逻辑运算等,适用于不同的应用场景。应用场景金融领域联合风控:多家金融机构可以在不共享客户敏感信息的情况下,联合进行风险评估和信用评分,提高风控的准确性和效率。隐私保护的投资...
数据要素与隐私计算存在紧密的联系,隐私计算为数据要素的安全流通和价值释放提供了关键技术支撑,二者相互促进、共同发展。隐私计算是面向隐私信息全生命周期保护的计算理论和方法,涉及信息搜集者、发布者和使用者在信息产生、感知、发布、传播、存储、处理、使用、销毁等全生命周期过程的所有计算操作。它包括支持海量用户、高并发、高效能隐私保护的系统设计理论与架构,旨在实现数据的“可用不可见”。数据要素市场化:数据作为一种新型生产要素参与分配,隐私计算在数据要素市场化进程中扮演核心基础技术的角色。它帮助建立有序可控的共享机制,促进数据要素市场的蓬勃发展。数据要素只有在安全、高效的流通中才能充分发挥价值,隐私计算可以在保障数据流通过程计算安全性、赋能不同行业场景释放数据价值、适配数据要素流通多种应用模式上发挥价值。技术应用:隐私计算技术可以应用于数据的收集、脱敏、存储、使用、交换、删除、存证与取证等环节,涵盖隐私信息全生命周期的操作过程。它通过融合密码学、人工智能、安全硬件等跨学科技术体系形成一套可以保障数据流通安全合规的基础设施。数据安全与隐私保护:隐私计算实现了在数据流通过程中对国家安全、商业机密、个人...
联邦学习与隐私计算是紧密相关且相互促进的两个概念,以下是它们之间的详细关系及相关情况:联系目标一致:都旨在解决在数据隐私保护前提下的数据处理与分析问题。在大数据时代,数据分散在不同的机构或个人手中,而这些数据往往包含敏感信息。联邦学习和隐私计算都致力于在不泄露隐私数据的情况下,实现数据的价值挖掘和共享,打破数据孤岛,促进数据的流通和协同使用。技术融合:联邦学习是隐私计算的重要技术分支和应用场景之一。在联邦学习的过程中,会运用到多种隐私计算技术来确保数据的安全性和隐私性,如加密技术、差分隐私技术等。相互促进:隐私计算技术的发展为联邦学习提供了更强大的隐私保护手段,使其能够在更广泛的场景中应用。而联邦学习的实践也推动了隐私计算技术的不断创新和完善,为隐私计算技术提供了更多实际应用需求和挑战,促使其在性能、安全性等方面不断优化。区别概念侧重:联邦学习侧重于机器学习模型的训练和优化,强调在多个数据拥有方之间进行协同学习,通过交换模型参数而不是原始数据来实现模型的训练和更新。隐私计算则是一个更广泛的概念,涵盖了多种技术和方法,旨在对隐私数据进行全生命周期的保护,包括数据的存储、传输、处理和共享等...
行业资讯
数据湖
数据湖是一种以原始格式存储大量数据的存储库,它具有灵活、可扩展等特点,可支持多种类型数据的存储和分析。数据湖是一个集中存储大量原始数据的系统,这些数据可以是结构化数据(如关系型数据库中的表)、半结构化数据和非结构化数据(如文本文件、图像、视频等),数据湖允许企业以原始格式存储数据,直到需要使用时再进行处理和分析。特点存储容量大:能够存储海量数据,满足企业不断增长的数据存储需求。可以轻松扩展存储容量,支持PB级甚至EB级数据的存储。数据多样性:支持各种类型的数据,包括传统的关系型数据、日志文件、传感器数据、社交媒体数据等,打破了传统数据仓库只能处理结构化数据的限制。灵活性高:数据以原始格式存储,不需要在存储时进行预定义的模式或结构设计,企业可以根据不同的业务需求随时对数据进行各种分析和处理,具有很强的灵活性。支持多用户并发访问:可以同时支持多个用户和应用程序对数据的并发访问,不同的用户和团队可以根据自己的需求对数据进行探索和分析,提高了数据的共享和协作效率。架构数据采集层:负责从各种数据源收集数据,并将其传输到数据湖中。数据源可以包括数据库、文件系统、云存储、物联网设备等。存储层:是数据...
数据安全与隐私计算紧密相关、相互促进,共同为数据的安全利用与隐私保护提供保障。数据安全是隐私计算的基础和目标数据安全涵盖了数据的保密性、完整性和可用性等多方面要求,旨在防止数据被未经授权的访问、泄露、篡改或破坏。隐私计算的出现正是为了在数据处理和共享过程中更好地满足这些数据安全需求,尤其是在涉及多源数据融合、跨域数据协作等复杂场景下,确保数据的保密性和完整性不受损害。隐私计算是数据安全的技术支撑和创新手段隐私计算为数据安全提供了一系列先进的技术手段,包括多方安全计算、联邦学习、同态加密、零知识证明等。这些技术在不同程度上解决了数据在流通和使用过程中的隐私保护问题,使得数据能够在安全的环境中被充分挖掘和利用。二者协同发展推动数据价值释放与合规应用随着数字化进程的加速,数据已成为企业和社会发展的重要资产,但数据安全问题一直是制约数据流通和共享的关键因素。隐私计算技术的不断发展和应用,为数据安全提供了更有效的解决方案,使得数据能够在安全的前提下实现跨机构、跨领域的流通和共享,从而充分释放数据的价值。
数据入湖是指将企业内外部的各种数据汇聚到数据湖中进行统一存储和管理的过程。数据来源涵盖企业内部的业务系统数据,如客户关系管理系统(CRM)、企业资源计划系统(ERP)、办公自动化系统等产生的结构化数据;也包括来自网络的日志数据、社交媒体数据,以及物联网设备产生的传感器数据等半结构化和非结构化数据。入湖方式批量导入:对于一些已经存在的历史数据或定期产生的批量数据,通常采用批量导入的方式将数据加载到数据湖中。可以使用ETL工具、数据迁移工具等,按照一定的时间周期或数据量进行批量抽取、转换和加载。实时接入:对于实时性要求较高的数据,如物联网数据、实时日志数据等,需要通过实时数据接入技术将数据实时地传输到数据湖中。常见的实时接入方式包括使用消息队列(如Kafka)进行数据缓存和传输,然后由数据湖的实时处理组件进行消费和存储。数据同步:对于一些需要与源数据保持实时或准实时同步的数据,采用数据同步技术实现数据入湖。可以通过数据库的复制技术、数据同步中间件等,将源数据的变化及时同步到数据湖中。关键技术数据抽取与转换:在数据入湖过程中,需要对不同来源、不同格式的数据进行抽取和转换,使其符合数据湖的存储...
隐私计算在金融行业具有极其重要的地位和广泛的应用前景。应用场景信贷风控联合建模:金融机构之间可以通过联邦学习等隐私计算技术,在不共享敏感数据的情况下,联合建立信贷风险评估模型。数据查询与验证:在信贷审批过程中,金融机构需要查询外部数据源来获取客户的更多信息,如征信报告、税务记录等。隐私计算技术可确保在查询和验证这些数据时,客户的隐私信息不被泄露,同时保证数据的真实性和完整性。精准营销客户画像构建:金融机构通过多方安全计算等技术,与其他企业合作构建更全面的客户画像。营销效果评估:在营销活动中,隐私计算可用于评估不同营销渠道和策略的效果。通过对客户反馈数据的加密分析,金融机构可以了解客户对不同营销活动的响应情况,而不会泄露客户的隐私信息,从而优化营销方案。金融监管数据报送与共享:金融机构需要向监管部门报送大量的业务数据,隐私计算技术可确保数据在报送过程中的安全和隐私保护。同时,监管部门之间也可以通过隐私计算实现数据共享,提高监管效率和协同监管能力。风险监测与预警:利用隐私计算技术,监管部门可以在不直接获取金融机构敏感数据的情况下,对金融市场的风险进行实时监测和预警。例如,通过多方安全计算对...
数据湖是一个集中存储海量原始数据的存储库,旨在存储企业所有类型和来源的数据,为企业提供全面的数据资产视图,并支持灵活的数据处理和分析。数据湖是一种存储企业各种原始数据的大型仓库,这些数据包括结构化数据、半结构化数据和非结构化数据。数据湖允许企业以原始格式存储数据,而无需在存储时进行预定义的模式或结构设计,用户可以根据不同的业务需求随时对数据进行各种分析和处理。核心特点海量存储:具备强大的存储能力,可轻松应对PB级甚至EB级数据的存储需求,能够存储企业从各个业务系统、设备以及外部数据源收集而来的大量数据。数据多样性:支持各种类型和格式的数据,打破了传统数据存储系统对数据格式的限制,使得企业能够将不同来源、不同结构的数据统一存储在一个地方。灵活性与敏捷性:数据以原始形态存储,不依赖于特定的模式或模型,用户可以根据具体的业务问题和分析需求,灵活选择不同的分析工具和技术对数据进行处理和探索,无需受限于预先设定的结构。支持多用户并发访问:可以同时支持多个用户和应用程序对数据的并发访问,不同的用户和团队可以根据自己的需求对数据进行探索和分析,提高了数据的共享和协作效率。关键技术分布式存储技术:通常...
隐私计算是一种在保护数据隐私的前提下实现数据价值挖掘和流通的技术体系,涵盖多方安全计算、联邦学习、同态加密、零知识证明等多种技术手段。定义与背景定义:隐私计算是指在不泄露数据隐私的情况下,对数据进行分析、计算和共享的一系列技术和方法的统称。它允许不同的参与方在数据不出本地的情况下,通过加密、分布式等技术手段进行协同计算,实现数据的互联互通和价值最大化,同时确保数据的隐私和安全得到有效保护。背景:随着数字化进程的加速,数据已成为企业和社会发展的重要资产,但数据的隐私泄露风险也日益增加。在数据共享和协同处理过程中,如何既充分发挥数据的价值,又保护数据所有者的隐私,成为亟待解决的问题,隐私计算应运而生。关键技术多方安全计算:多个参与方在不泄露各自数据隐私的情况下,通过特定的加密协议和算法进行协同计算。例如,在多方数据求和、数据比较等场景中,各方数据在加密状态下进行交互和计算,最终得到正确的结果,而任何一方都无法获取其他方的原始数据。联邦学习:一种机器学习技术,多个参与方在本地训练机器学习模型,然后将模型参数进行加密聚合,得到全局模型。在这个过程中,数据始终留在本地,不会被传输到其他方,从而保...