金融领域内大模型

垂直模型是特定领域或行业中应用的规模机器学习模型,专注于处理该领域内的特定任务或数据。例如,在医疗、生物信息学、金融等垂直行业,垂直模型可以用于疾病预测、金融风险评估等任务。与通用模型相比:利用领域知识进行模型和算法的优化,提高准确性和效率。实用性强:直接应用于特定行业的具体问题,提供更高效的解决方案。法规和合规性:在受规管行业,如医疗和金融,更容易满足行业特定的法规和合规要求。垂直,垂直模型更具针对性,性能上往往更为优化。垂直模型的优势相比于通用模型,垂直模型在几个方面有其独特的优势:数据专注性:专注于特定领域的数据,训练过程中可以更好地捕捉领域特性和细微差异。性能优化模型在实际应用中,通过利用海量的行业数据和专业知识,实现了更精确、更高效的任务处理能力。垂直模型的应用场景有哪些?垂直模型在不同领域的应用广泛,如:医疗领域:疾病诊断:通过分析医学影像、电子病历和基因数据,辅助医生进行疾病诊断。个性化医疗:根据患者的特定基因信息和病史数据,提供个性化的治疗方案。金融领域:风险评估:用于信用评分、贷款审批以及金融欺诈检测,通过分析大量的财务数据来评估风险。投资分析

金融领域内大模型 更多内容

解锁证券金融新引擎:数据解决方案全解析证券金融数据:全景透视(一)定义与内涵证券金融数据,是指在证券金融领域内,通过各种渠道收集而来的海量数据集合。这些数据来源广泛,涵盖了证券交易过程中产生的至关重要。宏观经济数据,像GDP增长、通货膨胀率、利率变动等,这些宏观经济指标的变化会对证券市场产生深远影响,是投资者进行投资决策时不可或缺的参考依据。(二)独特属性证券金融数据具有显著的特点,这些金融数据解决方案的首要环节,如同从众多源头汇聚信息的洪流。在这个过程中,需要从证券交易系统、行情数据源、新闻资讯平台等多渠道获取数据。对于证券交易系统,通常通过API接口来实现数据的采集。API接口方式呈现出来,以便投资者和金融机构能够快速理解和做出决策,数据可视化就起到了这样的作用。通过图表、图形、仪表盘等可视化工具,将复杂的数据转化为直观的信息。在证券金融领域,常见的图表类型有折线图、柱状图了证券市场的整体走势、指数变化、成交量等宏观信息,能让投资者和从业者对市场的整体状况有清晰的认识。客户数据涉及投资者的个人信息、投资偏好、交易历史、资产规模等,对于金融机构了解客户需求、提供个性化服务
金融领域模型是指应用于金融领域规模机器学习或深度学习模型,用于解决金融市场和金机构所面临的复杂问题。这些模型通常具有较大的数据规模和参数数量,并能够从大量历史数据中学习并提供预测、风险评估、投资决策等功能。金融领域模型可以应用于很多不同的方面,包括股票市场预测、期货交易策略、贷款违约风险评估、信用评级、金融欺诈检测、证券交易监管等。星环无涯金融模型-TranswarpInfinity针对智能投研领域特定的业务逻辑,星环科技通过预训、提示、增强、推导范式的构建,实现Financial-Specific-LLM的训练,推出了金融行业智能投研模型无涯Infinity。星环科技基于学海无涯,既代表了投资领域终身学习的精神,也蕴含了模型本身在参数架构方面持续迭代的内涵。可以说无涯是一款面向金融量化领域、超大规模参数量的生成式语言模型。主要通过自监督的增量训练和有监督的指令微调、消息面在内的金融通识领域准确的理解能力,满足行业分析师的需求。星环科技无涯使用了上百类特定事件类型和20多万事件实例,完成对模型的指令微调,从而使得无涯能够对齐专业研究员的分析推理能力,更加智能和
行业资讯
垂类模型
垂类模型,也称为行业大模型或专业领域模型,是指针对特定行业或应用场景进行深度训练的大型人工智能模型。这些模型在某个特定领域内具有高度的专业性和准确性,能够提供比通用模型更精细、定制化的服务。垂类模型的优势和功能垂类模型的优势和功能主要体现在以下几个方面:专业性:垂类模型通过深度学习和大量的行业数据训练,能够理解和处理特定领域的复杂问题,提供更专业的解决方案。效率提升:在诸如药物筛选、代码编写、客户服务等领域,垂类模型可以显著提高工作效率。降低成本:相比于通用模型,垂类模型通常需要较少的计算资源。定制化服务:垂类模型可以根据不同行业的特点进行定制。垂类模型因其专业性、效率提升、成本控制以及定制化服务等特点,在各个行业中展现出强大的应用潜力。
行业资讯
产业大模型
产业大模型是在特定行业或领域内训练而成的庞大多层神经网络模型,具有参数量大、能够处理海量数据、捕捉复杂模式等特点。产业大模型特点规模参数量:通常具有数以亿乃至千亿计的参数量,这使其能够学习到更丰富行业:优化交通流量,实现智能交通管理,如实时调整信号灯时长、规划最优交通路线等,缓解交通拥堵;预测物流需求和优化物流配送路线,提高物流效率和降低成本。产业大模型发展趋势多领域融合:与物联网、数据、云计算越来越多,这将促进技术的交流和创新,降低产业大模型的应用门槛,推动其在更广泛的领域得到应用;数据共享和合作也将成为产业大模型发展的重要趋势,通过建立数据共享平台和合作机制,整合各方数据资源,提高数据的质量和。数据驱动决策:依靠大量的行业数据来训练和优化模型,通过对数据的挖掘和分析,发现隐藏在数据中的规律和趋势,为企业的决策提供有力支持,帮助企业更好地把握市场动态、优化生产流程、提高运营效率等。产业大模型应用领域制造业:用于预测设备故障实现预测性维护,例如预测设备故障时间,以减少停机时间;还可优化生产流程,如根据订单需求和生产能力自动生成生产计划和调度方案,提高生产效率和资源利用率。能源行业:对
众多科技巨头和金融机构敏锐地捕捉到了这一发展机遇,纷纷在金融模型领域进行战略布局。目前,金融模型金融领域的应用场景日益多元化,涵盖了投资研究、合规审核、客户服务等多个重要方面。在投资研究领域金融智能化升级在金融服务领域,客户服务的质量直接关系到客户的满意度和忠诚度。随着金融模型的应用,智能客服逐渐成为金融机构提升客户服务水平的重要手段。基于金融模型的智能客服,能够理解客户的自然语言提问,并挥着重要作用,帮助金融机构有效识别潜在风险,确保业务合规。在信贷风控领域金融模型可以对客户的信用数据、财务状况、消费行为等多维度数据进行分析,评估客户的信用风险,预测其违约可能性。通过建立风险评估模型金融模型:开启金融新时代的智能引擎金融模型,崭露头角在科技飞速发展的当下,人工智能已成为推动各行业变革的核心力量。从最初的简单数据处理到如今的智能决策支持,AI技术的应用不断拓展和深化。而模型评估到投资策略制定,每一个环节都离不开海量数据的支撑。传统的金融数据分析方法虽然在一定程度上满足了业务需求,但随着数据量的爆炸式增长和市场环境的日益复杂,其局限性也逐渐显现。而金融模型的出现,恰如
行业资讯
通用模型
通用模型是一种能够适应广泛任务的深度学习模型,通过预训练阶段从大量无标注数据中学习到丰富的知识表示,然后在下游任务中进行微调以适应特定需求。这种“预训练+微调”的范式使得通用模型能够在多个领域展现出色的表现。跨领域能力:通用模型可以处理自然语言理解、图像识别、语音识别等多种类型的任务。高效迁移学习:由于预训练阶段积累了丰富的知识,微调过程往往只需要少量的数据和计算资源。灵活性:同一模型可以结构使得模型决策过程难以解释。通用模型不仅提高了AI系统的效率和灵活性,还为解决跨领域的复杂问题提供了新的思路。星环科技无涯·问知星环科技无涯·问知(InfinityIntelligence),是一款基于星环模型底座,结合个人知识库企业知识库、法律法规、财经等多种知识源的企业级垂直领域问答产品。应用于不同的场景,降低了开发新任务专用模型的成本。泛化能力:虽然在多个任务上表现良好,但在某些特定场景下可能需要进一步优化。资源消耗:预训练阶段需要大量的计算资源和存储空间。解释性问题:复杂的神经网络
金融场景模型:重塑金融行业新格局在数字化浪潮汹涌的当下,金融行业正经历着深刻变革,而金融场景模型的出现,无疑成为推动这场变革的关键力量。它宛如一把神奇的钥匙,开启了金融领域智能化、高效化的全新大门。一、深度剖析金融场景模型金融场景模型,是专门针对金融领域复杂业务场景打造的人工智能模型。它并非普通的AI模型,而是融合海量金融数据、先进算法与强大算力的结晶。通过对金融市场历史数据、经济指标建议。与通用模型相比,金融场景模型具有鲜明的独特优势。它对金融专业知识的理解和运用更加深入,能够准确处理金融领域特有的术语、业务逻辑和风险评估方式。在风险评估中,通用模型可能只是泛泛分析,而金融场景模型则能根据金融行业的风险度量标准,精确计算出各种风险指标,为金融机构提供专业、可靠的风险预警。二、多元应用场景,赋能金融全流程(一)智能投顾,开启个性化投资时代在投资领域金融场景模型的应用正、行业动态等多维度信息的深度学习,模型能够精准捕捉金融市场的细微变化和潜在规律。例如,它可以从过去几十年的股票价格走势、宏观经济数据中,挖掘出影响股价波动的关键因素,从而为投资者提供更具前瞻性的投资
行业资讯
领域模型
开发和训练工具及向量数据库,星环科技率先推出了金融数据分析两款领域模型,并成功实现了AI助理在企业落地的愿景。金融模型星环“无涯”是一款面向金融量化领域的生成式语言模型,具备超大规模的参数集合,构建立体的归因解释体系。金融领域模型还能够从时间和空间、深度和广度等多个方面扩展投资研究的视角,实现全新的智能智能投研范式。另一款领域模型数据分析模型SoLar星环“求索”,它具备领域模型是一种针对特定领域或行业的规模语言模型,通过训练规模语料库来提高在特定领域的表现。随着模型技术的快速发展,领域模型已经成为推动人工智能发展和企业数字化转型的重要力量。结合模型持续量。该模型采用上百万研报、公告、政策、新闻等高质量的自然语言文本进行预训练,并基于图数据库和深度图推理算法技术进行二次预训练,形成了规模高质量的金融类事件训练指令集。相较于通用模型金融模型更加擅长处理金融量化领域各类问题,包括政策和研报分析、新闻解读、事件总结和演绎推理等方面,具备强大的理解和生成能力。该模型能够全面复盘、传播和推演股票、债券、基金、商品等多种市场事件,并生成另类的策略因子
行业资讯
垂直模型
领域内的复杂问题星环科技在构建垂直模型方面有着深入的研究和应用,特别是在金融行业。这类模型的优势在于它们能够利用特定领域的专业知识和数据,提供更精准、更专业的服务。例如,星环科技的垂直模型可以应用于金融风险评估、投资决策支持等场景,通过聚焦于金融行业的数据和知识,能够在专业性、准确性和效率上提供更优的解决方案。在星环科技的模型技术体系中,垂直领域模型与通用语言模型相辅相成,共同构成了其在金融垂直模型是指针对特定场景或任务进行优化设计的深度学习模型,它们专注于某一领域或行业,如语音识别、自然语言处理、图像分类等。与通用模型相比,垂直模型在特定领域的表现更为出色,能够更好地解决该行业应用探索的核心技术支撑。这些垂直模型不仅能够处理多样化数据集上的任务,还能针对金融行业的特殊需求进行优化,从而实现更高效的数据分析和决策支持。
时空数据库时空数据库是一种针对时空数据处理的数据库系统。它以时间和空间为基础,整合了空间信息和时间信息,能够对时空数据进行存储、查询和分析。时空数据库广泛应用于交通运输、城市规划、GIS等领域。分布式时空数据库分布式时空数据库是一种对时空数据进行存储和处理的数据库系统,通过分布式存储和分布式计算等技术,可以实现对大规模时空数据的高效处理和分析。与传统的集中式数据库系统不同,分布式时空数据库将数据存储在多个存储节点上,并将计算任务分配给多个计算节点来完成,从而极大地提高了时空数据的处理能力和可靠性。分布式时空数据库的出现,使得处理大规模时空数据成为了可能,也更好地满足了各个领域对时空数据深度分析的需求。星环分布式时空数据库-TranswarpSpactureSpacture是星环科技自主研发的一款面向空间、时空数据的存储与管理,集计算与存储为一体的分布式数据库产品,支持大规模矢量数据、时空轨迹数据的存储与计算,具有完备的数据查询、分析和挖掘能力,可用于时空查询分析、时空模式挖掘、时空轨迹聚类等时空轨迹数据分析场景,广泛应用于交通物流、城市管理、位置服务等场景。
星环科技作为一家企业级大数据基础软件开发商,在图计算领域深耕多年,有着深厚的技术积淀和丰富的实践经验。星环科技自主研发的分布式图数据库StellarDB,兼容openCypher查询语言,提供海量图数据的存储和分析能力,支持原生图存储结构,支持万亿边PB级数据存储。同时,StellarDB具备毫秒级点边查询能力,10+层的深度链路分析能力,提供近40种的图分析算法,具备数据2D和3D展示能力。StellarDB克服了海量关联图数据存储的难题,通过集群化存储和丰富算法,实现了传统数据库无法提供的低延时多层关系查询,目前已经用于金融、政府、交通等众多行业,用于反洗钱、风险控制、营销等多种场景。同时StellarDB还获得了多项行业权威认可:入选信通院2022大数据十大关键词“图计算平台”代表厂商;通过了中国信通院图数据库和图计算平台基础能力两项专项测评;入选著名咨询机构Gartner《中国数据库市场指南》、《工具:中国数据库管理系统供应商甄选》报告等,彰显了其产品技术领先性。如今,5G、物联网、AI等技术的发展应用让数据呈指数倍增长,为图数据库发展提供了更广阔的应用空间。顺势而为,乘势而上...
图数据库的应用场景非常广泛,可以应用于各个行业。以下是一些常见的应用场景:金融:在金融领域,图数据库可以帮助银行、保险公司等企业处理复杂的数据结构,支持欺诈检测、交易路由、投资组合分析等操作。社交网络:图数据库可以存储和处理社交网络中的复杂关系图谱和大量用户数据,支持好友推荐、社区发现、个性化内容推荐等操作。物流:在物流领域,图数据库可以帮助企业优化路径规划、物流运输等操作,加速发货、配送时间并提高效率。制造业:图数据库可以支持企业处理复杂的设备关系结构图,进行维修保养、设备性能分析、生产计划优化等操作。能源行业:在能源领域,图数据库可以处理复杂的电网、管道等结构图谱,并支持多种能源趋势分析和紧急事件监测等操作。电商:图数据库可以应用于电商业务中,存储和处理复杂的商品与用户之间的关系,支持个性化推荐、购物车分析、用户行为预测等操作。图数据库可以在各个领域中应用,并且在处理复杂的数据结构和大量的数据时比传统数据库具有更高的性能和效率。星环分布式图数据库StellarDB星环科技致力于打造企业级大数据基础软件,围绕数据的集成、存储、治理、建模、分析、挖掘和流通等数据全生命周期提供基础软件与...
在国产数据库产品方面,星环科技坚持自主研发与技术创新,打造了自主可控的高性能分布式数据库ArgoDB和分布式交易型数据库KunDB,以及分布式图数据库StellarDB等产品。KunDB具备较强的SQL兼容性,同时具备高可用、高并发、在线扩缩容、数据强一致性等能力,适用于操作型业务、高并发业务等场景。ArgoDB具备完整的SQL兼容性,同时具备高扩展、高可靠、多模型、存算解耦等能力,一站式满足数据仓库、实时数据仓库、数据集市、OLAP、联邦计算等场景。通过不断的打磨和对业务场景不断的落地实践,ArgoDB和KunDB已成为具有完全自主知识产权的成熟的国产数据库,能够为更多的客户提供高性能、高可靠、成熟的数据库产品服务,帮助用户应对智能数据时代海量数据的分析与探索。分布式图数据库StellarDB兼容openCypher查询语言,提供海量图数据的存储和分析能力,支持原生图存储结构,支持万亿边PB级数据存储。同时,StellarDB具备毫秒级点边查询能力,10+层的深度链路分析能力,提供近40种的图分析算法,具备数据2D和3D展示能力。星环科技StellarDB在金融、政府和社交网络等领域...
星环科技致力于打造企业级大数据基础软件,具备大数据与云基础平台、分布式关系型数据库、数据开发与智能分析工具的软件产品矩阵,多年来深耕电力领域,覆盖电力产业“发-输-变-配-用”五大环节,为推动电力行业数字化转型做出了重要贡献。在国网上海电力智能配用电大数据应用系统建设项目中,基于星环科技大数据基础平台TDH构建的智能配用电大数据应用系统汇集了浦东1210平方千米的236万户的用电数据,高负荷738万千瓦,年用电量329亿度,占上海全网四分之一。集成的内外部数据源有10个,整个数据量到现在已经接近8个T了,台账的数据总量有29.14万条。在多元数据集成及大数据平台基础之上,应用系统实现了用电查询,电力地图等基础功能及用户用电行为分析,节电用电预测网架优化和错峰调度等业务应用。基于多源异构数据的关联解析,和海量用电负荷实际数据存储、索引,实现了用电查询的基础应用,包括230万用户,26000个台区,4000余中压馈线的基本台账及用电数据的快速查询,并可以进行用户用电画像、地图定位、供电范围等数据的查询,服务响应时间在三秒以内。此前,星环科技还曾凭借《星环科技电力智慧供应链智能决策平台建设方...
作为一家企业级大数据基础软件开发商,星环科技很早就在数据中台领域布局,结合星环科技全系产品的相关组件实现数据中台能力建设。星环科技把数据中台建设归纳为三中心、六能力、两个体系,这当中都会有星环科技产品作为支撑,从而保证企业能够快速实现,并搭建起数据中台,满足企业未来发展变化。其中,三中心分别是存储中心、分析探索中心、业务赋能中心;六能力包括数据汇聚能力、数据整合能力、智能分析能力、实时计算能力、统一访问能力、统一服务能力;两个体系则是安全和运维保障体系与数据和分析支撑体系。三中心、六能力、两个保障体系都构建在一个云底座之上,满足企业私有化或者混合云多云的部署形态,同时灵活组件式的可插拔式部署形态,能够帮助企业更迅速的起步,按规划分步完善数据中台建设。除了提供基础组件和相应的工具帮助客户快速构建数据中台之外,星环科技还提供咨询实施服务,可以为企业提供量身定制的“数据云基础设施+咨询服务的端到端产品+服务”的综合解决方案。在星环科技的咨询服务产品体系中,包括为企业构建中台的架构规划、应用规划,以及帮助企业实施建设数据底座、数据中台、数据仓库,以及数据治理服务,也包括了数据的分析、业务分析、...
行业资讯
数据中台建设
随着行业和技术领域的变化日新月异,从数据仓库、动态数仓,到数据湖,从新一代湖仓一体技术到可插拔数据库,概念的引入虽然简单,但如何做到更有效,更复杂的数据资产管理就考验着对生产能力和工艺过程的管理能力。星环科技认为数据中台是一种能力、是一种组织上的策略而不仅仅是一种技术架构,它是在信息化基础上建立的可编织和可复用的数据可分析能力,从而支撑企业数字化转型。星环科技的数据中台三中心、六能力、两个体系星环科技很早就在数据中台领域布局,结合星环科技全系产品的相关组件实现数据中台能力建设。星环科技把数据中台建设归纳为三中心、六能力、两个体系,这当中都会有星环科技产品作为支撑,从而保证企业能够快速实现,并搭建起数据中台,满足企业未来发展变化。数据存储、分析探索、业务赋能三中心第一,帮助企业构建存储中心,提升数据的汇聚和整合能力;第二,构建数据分析探索中心,专注于智能分析能力和实时计算能力的提升,推动智能推荐能力和全链路实时监测和保障能力;第三,构建业务赋能中心,提供统一的访问能力实现跨平台联邦,统一的访问层控制,确保数据安全可用,同时搭建统一的服务能力,面向多场景的服务应用支撑。安全和运维、数据和分...
为解决AI落地难的问题,星环科技从用户需求端出发,研发了一款基于云原生架构的企业级AI能力运营平台SophonMLOps,助推AI模型落地。SophonMLOps是基于云原生架构构建的企业级AI能力运营平台,聚焦于机器学习模型全生命周期中的模型管理、模型部署、模型监控预警、模型评估和模型迭代等关键环节。通过统一纳管、统一运维、统一应用、统一监控、统一评估、统一解释,赋予企业客户易用、高效且安全可靠的AI能力运营服务,协助客户规模化管理日益增长的机器学习模型,提升模型使用效率,降低模型集成管理成本,控制模型生产环境风险。SophonMLOps针对企业AI运营的痛点,围绕企业AI模型接入、运营管理、持续训练的全生命周期,分别提供规模化集成管理、高效模型推理、模型监控预警、模型性能评估、隐私安全保障等功能,为企业的AI日常运营插上翅膀。SophonMLOps打通了AI的全生命周期,为企业的各类用户角色搭建了统一的AI协作平台。对于企业而言,MLOps规模化集成管理了多源异构的机器学习模型,并提供高效且保障隐私安全的模型推理、监控预警及性能评估服务;对用户而言,能感受到操作上的快捷,AI应用与...
双碳目标下,全国碳排放监测服务平台启动建设力争2030年前实现碳达峰、2060年前实现碳中和,我国明确提出“双碳”目标,充分彰显了在构建人类命运共同体进程中的大国担当。国家电网公司主动担当重要使命,提出“实现双碳目标,能源是主战场,电力是主力军,电网是排头兵”的战略部署,率先行动,发布《全国碳排放监测服务平台建设工作方案》。“双碳”目标的实现离不开科技支撑。《全国碳排放监测服务平台建设工作方案》指出,全国碳排放监测服务平台建设的总体目标是以电网数字化赋能和助力国家碳达峰碳中和,实现“电力看双碳”,“双碳看经济”,为国家碳排放统计核算体系建设、宏观调控政策制定、经济社会全面绿色转型发展等工作提供决策支持。平台建设需要解决以下问题:以数字化平台技术解决各省的地市、区县、重点行业碳排放数据维度不全面、核算方法不完善、碳核算体系不统一等方面的问题;强化数据应用,发挥好决策支撑作用,深挖电力大数据价值,开展“电力看环保”“电力看经济”等大数据应用。积极响应号召,星环科技打造碳排放监测服务平台解决方案星环科技作为大数据基础软件领域的代表性企业,有着高度的责任感和使命感,为响应“全国碳排放监测服务平...
近年来,企业数据安全问题的重要性被提上了前所未有的高度。星环科技提供了从云基础设施、数据平台、数据资源、数据应用的数据安全能力。覆盖数据生命周期的各个阶段,涉及数据的收集、存储、使用、加工以及开放流通。全方位保障企业的数据安全,支撑业务合法合规的开展。星环科技凭借全面的数据安全能力助力某支付机构构建安全防线的落地实践。该支付机构拥有大量数据资产,目前机构面临着较大的挑战,需要加强数据安全管理,为此,机构决定与星环科技合作,利用星环科技的技术来提升数据安全管理能力,共同打造一个基于隐私计算的数据服务平台DaaS。根据客户需求,星环科技在基础设施层提供了基于容器的云原生操作系统TCOS,可以为用户提供独立的数据与计算环境,减少数据对外暴露的风险。在数据平台层,星环科技大数据基础平台TDH新版本增强了安全技术,支持行列级权限控制、动态脱敏等。在数据资产层,星环科技借助两款新产品:数据安全管理平台Defensor帮助企业构建整个数据安全管理域及数据流通平台Navier:包含隐私计算平台SophonP²C和数据交易门户datamall,提供包括联邦学习和差分隐私等技术能力。该支付机构的数据管理平...