大数据数据仓库案例

数据仓库
星环数据仓库解决方案具备超高性能、高可扩展、极简易用、高性价比等特性。面对高速增长的数据规模,传统的数据仓库负荷严重超出。不扩容会影响性能与稳定性,但是扩容却十分昂贵。星环数据仓库解决方案广泛应用于金融、政企、交通、能源、电信等多个领域,可以满足大数据时代企业构建各类数据仓库的需求。

大数据数据仓库案例 更多内容

行业资讯
大数据仓库
大数据仓库是一个用于存储、管理和分析大量数据的集中式系统,它是传统数据仓库大数据时代的演进和扩展,具有以下特点和优势:数据存储海量数据处理能力:能够容纳和处理海量的结构化、半结构化以及非结构化数据社交媒体、物联网设备等,将这些分散的数据整合到一个统一的数据仓库中,消除数据孤岛,形成全面、一致的数据视图。数据清洗与转换:在数据集成过程中,对数据进行清洗、转换和标准化处理,去除噪声数据、纠正错误,例如通过机器学习算法对客户数据进行聚类分析,实现精准营销。决策支持:为企业的决策制定提供有力支持,企业管理层可以基于数据仓库中的数据分析结果,做出更明智、更科学的决策,例如制定市场营销策略、优化产品设计、调整生产计划等。架构与可扩展性分层架构:通常采用多层架构,如操作数据存储(ODS)、企业数据仓库(EDW)、数据集市等,各层之间分工明确,便于数据的管理、维护和使用。弹性可扩展:能够根据企业数据量的增长和业务需求的变化,灵活地扩展计算资源和存储资源,实现水平扩展和垂直扩展,确保系统的性能和可用性不受影响。元数据管理元数据存储:对数据仓库中的数据进行元数据管理,记录数据的来源、定义、转换规则
大数据数据仓库是一种专门设计用于处理和分析大规模数据集的数据库系统。它能够存储来自不同来源的海量数据,包括结构化数据、半结构化数据和非结构化数据,并提供数据查询、数据分析和报告等功能。以下是大数据数据仓库的一些关键特点:大规模数据存储:大数据数据仓库能够处理PB级别的数据存储需求,支持大规模数据的存储和管理。多样化数据类型:它能够处理各种类型的数据,包括传统的关系型数据以及文本、图像、视频等非结构化数据。高性能处理能力:利用分布式计算和存储技术,大数据数据仓库能够快速处理和分析海量数据,支持实时或近实时的数据分析。数据集成:它能够集成来自不同来源和格式的数据,提供统一的数据视图,简化数据的访问和分析。高可用性和可靠性:大数据数据仓库通常采用分布式架构,提高了系统的可用性和可靠性,减少了单点故障的风险。数据压缩和优化:为了提高存储效率和查询性能,大数据数据仓库会采用数据压缩、列式存储、数据、访问控制和审计日志等安全功能,以保护数据的安全和满足合规要求。成本效益:与传统的数据仓库相比,大数据数据仓库通常基于开源技术构建,能够降低成本。云原生支持:许多大数据数据仓库提供云服务,使得用户可以按需使用资源,具有更高的灵活性和可扩展性。
行业资讯
数据仓库
可以利用数据仓库云来整合业务数据,如销售数据、客户数据等,进行简单的数据分析,如销售趋势分析、客户画像等,以支持企业的日常决策。大数据分析与机器学习在大数据和机器学习领域,数据仓库云发挥着重要作用。企业可以将海量的大数据存储在数据仓库云中,然后利用云平台提供的计算资源和分析工具进行复杂的数据挖掘、机器学习算法训练等任务。企业数据集成与共享企业内部往往有多个部门和多种业务系统,数据仓库云可以帮助整合数据仓库云是将数据仓库的功能部署在云计算环境中的一种数据存储和分析解决方案。它利用云计算的强大计算能力、存储资源和可扩展性,为企业提供高效的数据处理和分析服务。架构特点存储层基于云存储技术,数据仓库规模动态分配计算能力。这意味着在数据量较大或者分析任务复杂时,可以快速获取更多的计算资源来加速处理过程。管理与监控层提供集中式的管理和监控功能。通过云平台的管理控制台,用户可以方便地对数据仓库的各种参数进行配置,如存储容量、计算资源分配、用户权限等。同时,监控功能可以实时踪数据仓库的性能指标,如查询响应时间、存储使用率、数据加载速度等,以便及时发现问题并进行调整。优势成本效益采用按需付费模式,企业
行业资讯
数据仓库产品
星环数据仓库解决方案星环数据仓库解决方案具备超高性能、高可扩展、易用、高性价比等特性。星环数据仓库解决方案广泛应用于金融、政企、交通、能源、电信等多个领域,可以满足大数据时代企业构建各类数据仓库的,提供大规模数据下高效灵活的存储和分析能力便捷的迁移:对于大量存量SQL与存储过程无需过多改动就可以迁移至新的数据仓库,同时轻松实现报表等多种工具同新平台的对接,从各个方面简化并加速数据仓库的平滑迁移度的复杂关联统计等功能分布式事务保障:支持完整4种事务隔离级别,保障事务在分布式系统下正常运转,高吞吐的,确保数据强一致,高可用的事务保障星环数据仓库方案优势强大的数据处理能力:采用向量化加速,高性能效率:提供全套的数仓开发工具,支持数据整合、工作流调度、数据治理以及报表工具等数据业务,提供可视化工具进行数据特征分析,探索数据间关系,大大提高数据仓库的开发效率丰富的数据类型的支持:支持多种类型的数据需求。多模型数据库:支持关系型、搜索、文本、对象等数据模型支持超大规模集群:天然分布式架构,集群节点规模无上限,数据存储容量随节点规模线性扩容,可支持2000+节点集群完整的SQL支持:支持完整的SQL
全国中小企业股份转让系统通过星环科技大数据平台及相关技术,实现了快速高效的数据仓库数据集市,实现了数据集中处理、高效数据转换、提高数据质量的目标,增强了数据质量的管控力度;同时提升了数据服务的。整个数据批处理过程在夜间短短3个小时内即可完成,充分保障了后续业务的进行。2、优异的分析统计能力大数据平台统一为领导驾驶舱、市场统计、行情分析、业务报表、微信后台等业务提供数据服务;不论是固定条件查询统计,还是管理人员的交互式分析,大数据平台均能实现快速响应和结果返回。在使用星环自研的内存数据库Holodesk后,原来耗时几分钟的报表,目前只需要1~2秒即可出来。3、优异的业务创新能力根据数据特性和业务需要,大数据平台可以设立不同调度模式的数据处理任务。下午收市后进行快速高效的数据处理,对当天市场、行情、交易等进行统计分析,并推送到微信后台,便于管理层和监管人员及时了解相关信息。统一便利的数据平台,也为后续进行机器学习与人工智能等数据深度应用提供了必要的数据基础和技术支撑。灵活性,为辅助决策、数据分析和挖掘提供了全面的数据支持。1、优异的数据处理性能全国中小企业股份转让系统实现了全域的数据接入,通过数据清洗加工和分层处理,生产账户、证券、参与人等九主题域,再加工成数据集市
行业资讯
企业数据仓库
查询和分析过程,提高查询性能。高性能存储:采用容量、高性能的存储系统,满足大量数据的存储和查询需求,优化查询性能。企业数据仓库应用案例以下是一些企业数据仓库的应用案例:销售分析:跨国零售企业利用企业数据仓库是企业提升数据管理能力、优化决策流程的关键基础设施。以下是企业数据仓库的架构、功能以及应用案例的概述:企业数据仓库架构企业数据仓库架构通常包括以下几个关键组件:数据源层:涵盖企业内外部的各类数据源,如业务系统数据库、文件、外部数据供应商等。数据采集与ETL:从数据源层抽取数据,经过清洗、转换和加载等步骤,将数据整合成适合分析的形式,并存储到数据仓库中。数据存储层:负责长期保存历史数据,通常以星型模式、雪花型模式或事实-维度模型进行存储。数据访问层:将存储在数据仓库中的数据以可视化、报表或查询的形式提供给业务用户。企业数据仓库功能企业数据仓库的主要功能包括:数据集成:将来自不同数据仓库整合多个销售渠道的数据,进行销售分析。供应链优化:制造业企业通过数据仓库整合供应链各环节数据,运用数据分析识别瓶颈和问题,优化供应链效率。市场营销:互联网公司整合用户行为数据、偏好和社交媒体互动数据,分析营销活动效果,制定个性化营销策略。
行业资讯
数据仓库开发
ETL技术、大数据处理技术、在线分析处理(OLAP)技术和机器学习等,这些技术共同作用,确保数据的有效存储、管理与分析。工具平台:数据仓库开发依赖于工具平台,包括存储系统、计算系统等,这些是数据仓库数据仓库开发是一个涉及多个步骤和关键技术的复杂过程。以下是数据仓库开发的一些核心步骤和技术要点:需求分析与数据建模:深入理解业务需求,与业务部门沟通,明确数据仓库需要解决的业务问题,并收集相关数据。设计并实现数据集成方案,将来自不同数据源的数据统一整合到数据仓库中,通常通过ETL工具实现。数据清洗与转换:对集成到数据仓库数据进行清洗,包括去除重复数据、纠正错误数据、处理缺失值等,以确保数据的准确性和一致性。根据业务需求和数据模型设计,对清洗后的数据进行转换和加工,生成符合分析需求的数据集。数据加载与验证:将转换后的数据加载到数据仓库中,并进行数据验证,确保数据的完整性和一致性。性能监控与优化:定期对数据仓库的性能进行监控和分析,发现潜在的性能瓶颈并进行优化。同时,关注新技术的发展和行业动态,及时升级和替换过时的技术和组件。数据备份与恢复:建立完善的数据备份和恢复机制,确保在数据丢失或
行业资讯
数据仓库案例
资本市场的繁荣,也对市场管理者提出了更高的要求。如何掌握市场增长趋势、投资行为态,从中发掘资金规律和发现异常行为,提供更加有针对性的投资建议和市场指导,都要求能够高效地对数据进行分析统计。解决方案大数据平台从各业务系统中抽取数据并进行清洗加工,得到ODS层、整合模型层、数据汇总层、数据集市层,为各业务系统提供数据服务。实施效果全国中小企业股份转让系统通过星环科技大数据平台及相关技术,实现了快速高效的数据仓库数据集市,实现了数据集中处理、高效数据转换、提高数据质量的目标,增强了数据质量的管控力度;同时提升了数据服务的灵活性,为辅助决策、数据分析和挖掘提供了全面的数据支持。1、优异的数据处理性能全国、优异的分析统计能力大数据平台统一为领导驾驶舱、市场统计、行情分析、业务报表、微信后台等业务提供数据服务;不论是固定条件查询统计,还是管理人员的交互式分析,大数据平台均能实现快速响应和结果返回。在使用星环科技自研的内存数据库Holodesk后,原来耗时几分钟的报表,目前只需要1~2秒即可出来。3、优异的业务创新能力根据数据特性和业务需要,大数据平台可以设立不同调度模式的数据处理任务。下午收市后进行快速
基于大数据平台的数据仓库是指将大量的数据存储在分布式的计算集群中,通过数据处理与计算技术提取有价值的信息,用于分析与决策。其主要包括以下几个部分:数据采集:通过多种数据采集方式获取各种数据源的数据、分析数据数据可视化:通过视化工具将数据转化为可读的图表、报表等形式,用于数据展示。基于大数据平台的数据仓库可以应用于各种领域,如电商、金融、医疗、物流等,能够从庞杂的数据中提取出有用的信息,辅助企业做出决策、提高运营效率、降低成本等。星环数据仓库解决方案星环数据仓库解决方案具备超高性能、高可扩展、易用、高性价比等特性。广泛应用于金融、政企、交通、能源、电信等多个领域,可以满足大数据时代企业构建各类数据仓库的需求。强大的数据处理能力:采用向量化加速,高性能的分析计算,提高执行效率。提供超强的并行计算和线性可扩展能力。具有PB级数据处理能力,提供强大的批处理能力,无需预先建模即可进行秒级交互分析无需过多改动就可以迁移至新的数据仓库,同时轻松实现报表等多种工具同新平台的对接,从各个方面简化并加速数据仓库的平滑迁移可靠的数据与服务:提供双机热备。保障数据可靠,服务可用。能够实现即时灾难恢复,通过
为解决AI落地难的问题,星环科技从用户需求端出发,研发了一款基于云原生架构的企业级AI能力运营平台SophonMLOps,助推AI模型落地。SophonMLOps是基于云原生架构构建的企业级AI能力运营平台,聚焦于机器学习模型全生命周期中的模型管理、模型部署、模型监控预警、模型评估和模型迭代等关键环节。通过统一纳管、统一运维、统一应用、统一监控、统一评估、统一解释,赋予企业客户易用、高效且安全可靠的AI能力运营服务,协助客户规模化管理日益增长的机器学习模型,提升模型使用效率,降低模型集成管理成本,控制模型生产环境风险。SophonMLOps针对企业AI运营的痛点,围绕企业AI模型接入、运营管理、持续训练的全生命周期,分别提供规模化集成管理、高效模型推理、模型监控预警、模型性能评估、隐私安全保障等功能,为企业的AI日常运营插上翅膀。SophonMLOps打通了AI的全生命周期,为企业的各类用户角色搭建了统一的AI协作平台。对于企业而言,MLOps规模化集成管理了多源异构的机器学习模型,并提供高效且保障隐私安全的模型推理、监控预警及性能评估服务;对用户而言,能感受到操作上的快捷,AI应用与...
行业资讯
数据中台建设
随着行业和技术领域的变化日新月异,从数据仓库、动态数仓,到数据湖,从新一代湖仓一体技术到可插拔数据库,概念的引入虽然简单,但如何做到更有效,更复杂的数据资产管理就考验着对生产能力和工艺过程的管理能力。星环科技认为数据中台是一种能力、是一种组织上的策略而不仅仅是一种技术架构,它是在信息化基础上建立的可编织和可复用的数据可分析能力,从而支撑企业数字化转型。星环科技的数据中台三中心、六能力、两个体系星环科技很早就在数据中台领域布局,结合星环科技全系产品的相关组件实现数据中台能力建设。星环科技把数据中台建设归纳为三中心、六能力、两个体系,这当中都会有星环科技产品作为支撑,从而保证企业能够快速实现,并搭建起数据中台,满足企业未来发展变化。数据存储、分析探索、业务赋能三中心第一,帮助企业构建存储中心,提升数据的汇聚和整合能力;第二,构建数据分析探索中心,专注于智能分析能力和实时计算能力的提升,推动智能推荐能力和全链路实时监测和保障能力;第三,构建业务赋能中心,提供统一的访问能力实现跨平台联邦,统一的访问层控制,确保数据安全可用,同时搭建统一的服务能力,面向多场景的服务应用支撑。安全和运维、数据和分...
作为一家企业级大数据基础软件开发商,星环科技很早就在数据中台领域布局,结合星环科技全系产品的相关组件实现数据中台能力建设。星环科技把数据中台建设归纳为三中心、六能力、两个体系,这当中都会有星环科技产品作为支撑,从而保证企业能够快速实现,并搭建起数据中台,满足企业未来发展变化。其中,三中心分别是存储中心、分析探索中心、业务赋能中心;六能力包括数据汇聚能力、数据整合能力、智能分析能力、实时计算能力、统一访问能力、统一服务能力;两个体系则是安全和运维保障体系与数据和分析支撑体系。三中心、六能力、两个保障体系都构建在一个云底座之上,满足企业私有化或者混合云多云的部署形态,同时灵活组件式的可插拔式部署形态,能够帮助企业更迅速的起步,按规划分步完善数据中台建设。除了提供基础组件和相应的工具帮助客户快速构建数据中台之外,星环科技还提供咨询实施服务,可以为企业提供量身定制的“数据云基础设施+咨询服务的端到端产品+服务”的综合解决方案。在星环科技的咨询服务产品体系中,包括为企业构建中台的架构规划、应用规划,以及帮助企业实施建设数据底座、数据中台、数据仓库,以及数据治理服务,也包括了数据的分析、业务分析、...
时空数据库时空数据库是一种针对时空数据处理的数据库系统。它以时间和空间为基础,整合了空间信息和时间信息,能够对时空数据进行存储、查询和分析。时空数据库广泛应用于交通运输、城市规划、GIS等领域。分布式时空数据库分布式时空数据库是一种对时空数据进行存储和处理的数据库系统,通过分布式存储和分布式计算等技术,可以实现对大规模时空数据的高效处理和分析。与传统的集中式数据库系统不同,分布式时空数据库将数据存储在多个存储节点上,并将计算任务分配给多个计算节点来完成,从而极大地提高了时空数据的处理能力和可靠性。分布式时空数据库的出现,使得处理大规模时空数据成为了可能,也更好地满足了各个领域对时空数据深度分析的需求。星环分布式时空数据库-TranswarpSpactureSpacture是星环科技自主研发的一款面向空间、时空数据的存储与管理,集计算与存储为一体的分布式数据库产品,支持大规模矢量数据、时空轨迹数据的存储与计算,具有完备的数据查询、分析和挖掘能力,可用于时空查询分析、时空模式挖掘、时空轨迹聚类等时空轨迹数据分析场景,广泛应用于交通物流、城市管理、位置服务等场景。
在国产数据库产品方面,星环科技坚持自主研发与技术创新,打造了自主可控的高性能分布式数据库ArgoDB和分布式交易型数据库KunDB,以及分布式图数据库StellarDB等产品。KunDB具备较强的SQL兼容性,同时具备高可用、高并发、在线扩缩容、数据强一致性等能力,适用于操作型业务、高并发业务等场景。ArgoDB具备完整的SQL兼容性,同时具备高扩展、高可靠、多模型、存算解耦等能力,一站式满足数据仓库、实时数据仓库、数据集市、OLAP、联邦计算等场景。通过不断的打磨和对业务场景不断的落地实践,ArgoDB和KunDB已成为具有完全自主知识产权的成熟的国产数据库,能够为更多的客户提供高性能、高可靠、成熟的数据库产品服务,帮助用户应对智能数据时代海量数据的分析与探索。分布式图数据库StellarDB兼容openCypher查询语言,提供海量图数据的存储和分析能力,支持原生图存储结构,支持万亿边PB级数据存储。同时,StellarDB具备毫秒级点边查询能力,10+层的深度链路分析能力,提供近40种的图分析算法,具备数据2D和3D展示能力。星环科技StellarDB在金融、政府和社交网络等领域...
星环科技致力于打造企业级大数据基础软件,具备大数据与云基础平台、分布式关系型数据库、数据开发与智能分析工具的软件产品矩阵,多年来深耕电力领域,覆盖电力产业“发-输-变-配-用”五大环节,为推动电力行业数字化转型做出了重要贡献。在国网上海电力智能配用电大数据应用系统建设项目中,基于星环科技大数据基础平台TDH构建的智能配用电大数据应用系统汇集了浦东1210平方千米的236万户的用电数据,高负荷738万千瓦,年用电量329亿度,占上海全网四分之一。集成的内外部数据源有10个,整个数据量到现在已经接近8个T了,台账的数据总量有29.14万条。在多元数据集成及大数据平台基础之上,应用系统实现了用电查询,电力地图等基础功能及用户用电行为分析,节电用电预测网架优化和错峰调度等业务应用。基于多源异构数据的关联解析,和海量用电负荷实际数据存储、索引,实现了用电查询的基础应用,包括230万用户,26000个台区,4000余中压馈线的基本台账及用电数据的快速查询,并可以进行用户用电画像、地图定位、供电范围等数据的查询,服务响应时间在三秒以内。此前,星环科技还曾凭借《星环科技电力智慧供应链智能决策平台建设方...
图数据库的应用场景非常广泛,可以应用于各个行业。以下是一些常见的应用场景:金融:在金融领域,图数据库可以帮助银行、保险公司等企业处理复杂的数据结构,支持欺诈检测、交易路由、投资组合分析等操作。社交网络:图数据库可以存储和处理社交网络中的复杂关系图谱和大量用户数据,支持好友推荐、社区发现、个性化内容推荐等操作。物流:在物流领域,图数据库可以帮助企业优化路径规划、物流运输等操作,加速发货、配送时间并提高效率。制造业:图数据库可以支持企业处理复杂的设备关系结构图,进行维修保养、设备性能分析、生产计划优化等操作。能源行业:在能源领域,图数据库可以处理复杂的电网、管道等结构图谱,并支持多种能源趋势分析和紧急事件监测等操作。电商:图数据库可以应用于电商业务中,存储和处理复杂的商品与用户之间的关系,支持个性化推荐、购物车分析、用户行为预测等操作。图数据库可以在各个领域中应用,并且在处理复杂的数据结构和大量的数据时比传统数据库具有更高的性能和效率。星环分布式图数据库StellarDB星环科技致力于打造企业级大数据基础软件,围绕数据的集成、存储、治理、建模、分析、挖掘和流通等数据全生命周期提供基础软件与...
星环科技作为一家企业级大数据基础软件开发商,在图计算领域深耕多年,有着深厚的技术积淀和丰富的实践经验。星环科技自主研发的分布式图数据库StellarDB,兼容openCypher查询语言,提供海量图数据的存储和分析能力,支持原生图存储结构,支持万亿边PB级数据存储。同时,StellarDB具备毫秒级点边查询能力,10+层的深度链路分析能力,提供近40种的图分析算法,具备数据2D和3D展示能力。StellarDB克服了海量关联图数据存储的难题,通过集群化存储和丰富算法,实现了传统数据库无法提供的低延时多层关系查询,目前已经用于金融、政府、交通等众多行业,用于反洗钱、风险控制、营销等多种场景。同时StellarDB还获得了多项行业权威认可:入选信通院2022大数据十大关键词“图计算平台”代表厂商;通过了中国信通院图数据库和图计算平台基础能力两项专项测评;入选著名咨询机构Gartner《中国数据库市场指南》、《工具:中国数据库管理系统供应商甄选》报告等,彰显了其产品技术领先性。如今,5G、物联网、AI等技术的发展应用让数据呈指数倍增长,为图数据库发展提供了更广阔的应用空间。顺势而为,乘势而上...
近年来,企业数据安全问题的重要性被提上了前所未有的高度。星环科技提供了从云基础设施、数据平台、数据资源、数据应用的数据安全能力。覆盖数据生命周期的各个阶段,涉及数据的收集、存储、使用、加工以及开放流通。全方位保障企业的数据安全,支撑业务合法合规的开展。星环科技凭借全面的数据安全能力助力某支付机构构建安全防线的落地实践。该支付机构拥有大量数据资产,目前机构面临着较大的挑战,需要加强数据安全管理,为此,机构决定与星环科技合作,利用星环科技的技术来提升数据安全管理能力,共同打造一个基于隐私计算的数据服务平台DaaS。根据客户需求,星环科技在基础设施层提供了基于容器的云原生操作系统TCOS,可以为用户提供独立的数据与计算环境,减少数据对外暴露的风险。在数据平台层,星环科技大数据基础平台TDH新版本增强了安全技术,支持行列级权限控制、动态脱敏等。在数据资产层,星环科技借助两款新产品:数据安全管理平台Defensor帮助企业构建整个数据安全管理域及数据流通平台Navier:包含隐私计算平台SophonP²C和数据交易门户datamall,提供包括联邦学习和差分隐私等技术能力。该支付机构的数据管理平...
双碳目标下,全国碳排放监测服务平台启动建设力争2030年前实现碳达峰、2060年前实现碳中和,我国明确提出“双碳”目标,充分彰显了在构建人类命运共同体进程中的大国担当。国家电网公司主动担当重要使命,提出“实现双碳目标,能源是主战场,电力是主力军,电网是排头兵”的战略部署,率先行动,发布《全国碳排放监测服务平台建设工作方案》。“双碳”目标的实现离不开科技支撑。《全国碳排放监测服务平台建设工作方案》指出,全国碳排放监测服务平台建设的总体目标是以电网数字化赋能和助力国家碳达峰碳中和,实现“电力看双碳”,“双碳看经济”,为国家碳排放统计核算体系建设、宏观调控政策制定、经济社会全面绿色转型发展等工作提供决策支持。平台建设需要解决以下问题:以数字化平台技术解决各省的地市、区县、重点行业碳排放数据维度不全面、核算方法不完善、碳核算体系不统一等方面的问题;强化数据应用,发挥好决策支撑作用,深挖电力大数据价值,开展“电力看环保”“电力看经济”等大数据应用。积极响应号召,星环科技打造碳排放监测服务平台解决方案星环科技作为大数据基础软件领域的代表性企业,有着高度的责任感和使命感,为响应“全国碳排放监测服务平...