隐私计算的厂商

星环隐私计算平台
Sophon P²C是一款分布式隐私计算平台,集隐私计算、加密网络通信等多种功能,为多方安全建模提供完整解决方案。以隐私保护为前提,Sophon P²C解决了跨组织协作时无法安全利用各方数据困境。平台提供多种开箱即用工具,方便用户在联邦框架下进行数据处理、分析、特征工程等工作,并快速建立机器学习和深度学习模型。加密网络通信模块负责节点间大量多批次加密信息传输,多种加密安全手段和优异通信架构,确保平台在大数据量下也能获得卓越性能。Sophon P²C多种联邦学习算法适用于各类垂直业务场景,为跨企业AI协作提供安全可靠平台支持。
隐私计算
Sophon P²C是一款分布式隐私计算平台,集隐私查询、隐私计算、加密通信等多种功能,能够为多方安全建模提供完整解决方案。其以隐私保护为前提,能够帮助用户解决跨组织协作时无法安全利用各方数据困境。

隐私计算的厂商 更多内容

近日,零壹财经•零壹智库发布国内首个系统研究隐私计算在金融领域应用报告——《开启新纪元:隐私计算在金融领域应用发展报告(2021)》,星环科技荣登隐私计算厂商图谱,并成为国内唯一一家拥有大数据背景入选企业。此次报告由零壹财经·零壹智库作为研究机构,由中国科技体制改革委员会数字经济发展研究小组、深圳市信用促进会、横琴数链数字金融研究院联合发布,旨在遴选出一批具有代表性隐私计算厂商,树立引领等。一旦大数据平台宕机,组织中诸多核心业务将无法开展,造成损失不可估量。作为大数据和人工智能基础软件平台供应商,星环科技一直非常重视企业用户数据安全问题。今年3月,星环科技发布了隐私计算和联邦学习技术,可以保障数据在加密状态下被采集、传输、存储、计算、共享和流通,中间数据不会被攻击和被泄露。星环科技联邦学习平台SophonP²C拥有隐私计算、加密网络通信等多种功能,为多方安全建模提供完整解决方案。以隐私保护为前提,SophonP²C从根本上解决了跨组织协作时无法安全利用各方数据困境,真正实现了“原始数据不流通,分析模型流通”。星环科技隐私计算平台SophonP²C架构图安全性方面
答疑、集中评议,共计35家企业产品通过了本批评测。星环科技隐私计算平台SophonP²C通过了多方安全计算性能专项评测,也是唯一一家通过第七批“可信隐私计算评测”该类别评测厂商。中国信通院“可信隐私中国信通院第七批“可信隐私计算评测”评审会。评审会专家由来自中国科学院、中央财经大学、北京航空航天大学、中国科学院大学、北京交通大学等单位专家组成。评审环节包括产品资料审核、测试报告审核、质询与计算评测”体系自2018年起逐步构建,是目前国内隐私计算领域早、全、广受行业认可评测体系。经过4年发展,“可信隐私计算评测”已成为隐私计算领域权威第三方评测品牌,成为供给侧产品研发和需求侧采购选型风向标。星环科技分布式隐私计算平台SophonP²C集多方安全计算、联邦学习等多种功能,为隐私计算提供完整解决方案,以隐私保护为前提,解决了跨组织协作时无法安全利用各方数据困境。平台提供多种获得卓越性能。星环科技隐私计算技术已落地如数据流通、政务民生、金融营销等垂直业务场景,为跨企业数据协作提供安全可信平台支持。
隐私计算优秀案例,并成为上海数据交易所首批签约数商。此次入围“隐私计算典范厂商”,再度彰显了星环科技行业影响力。在未来,随着技术成熟和案例落地,隐私计算产业将从供给拉动转为需求驱动,星环科技将在不断技术创新中,为更多企业数字化转型提供更安全、更有效、更富价值新动能!近日,易观分析发布《2022年中国隐私计算市场分析》,星环科技成功入围“隐私计算领域典范厂商”,作为渗透行业供应商被引用介绍。隐私计算领域典范厂商——图片来源《易观数字化》公众号在助力企业数字化转型同时,星环科技非常重视企业用户数据安全问题,其联邦学习平台SophonP²C拥有隐私计算、加密网络等多种功能,为多方安全建模提供完整解决方案,保障企业用户在数据在加密状态下被采集、传输、存储、计算、共享和流通。星环科技是中国信息通信研究院隐私计算联盟初创成员,先后入选零壹财经•零壹智库《开启新纪元:隐私计算在金融领域应用发展报告(2021)》,摘得《人工智能领域很好创新产品奖》,获评“星河
联邦计算隐私计算都是在保护数据隐私前提下进行数据计算或模型训练技术手段。联邦计算指的是在不泄露原始数据隐私前提下,将各方数据集合并在一起进行计算或模型训练。与传统数据集中式计算方案相比,联邦计算更加注重数据隐私保护和数据去中心。联邦计算基本流程是:通过密码学手段保证各方之间数据隐私;将各个参与方提供数据在本地预处理,提取特征,然后在各方之间进行模型参数更新;后汇总模型参数,得到联合训练后模型。联邦计算应用于数据大规模分布式场景,例如金融风控、医疗诊疗、智慧城市等多个领域。隐私计算则是一种在不将原始数据暴露前提下,基于加密计算实现对数据计算、查询或分析。隐私计算数据能够在加密状态下保存、传输、计算和输出,用户在享受计算结果同时,也可以享受到数据隐私保护。在隐私计算中,数据拥有者将原始数据进行加密,形成密文。在密文基础上,进行加密计算,得到密文结果。之后,密文结果才被解密,得到终结果。通过加密计算,私计算实现了用户数据隐私保护和数据共享矛盾平衡。联邦计算更加注重在各方之间进行数据合并时对数据隐私保护,强调去中心化,在各方数据安全和隐私保护保证
行业资讯
可信隐私计算
可信隐私计算是基于隐私计算和安全计领域技术实现,并且在此基础上提供高级别安全保障、隐私保护和数据共享能力。其主要目的是保护数据隐私、避免数据泄露、提高数据共享率、实现智能化计算和数据分析等。相较于传统隐私计算技术,可信隐私计算具有更高安全性和可信度,具体包括以下特:可验证性:能够对隐私计算过程进行验证,在保证隐私和安全前提下,保障计算正确性和可靠性,消除不可信因素干扰。可审计性:能够对隐私计算过程进行推导和溯源,有利于发现隐私数据泄露源头和原因,做出相应应对更新。非侵入性:能够在无需客户端、服务器或内部插件前提下完成便携式防撕裂计算,保证数据隐私安全并减少对客户端干扰。反数据分析:对输出数据进行打乱、扰动和干扰以减少敏感数据泄露风险,具有一定反数据分析能力。可信隐私计算是一项高级别的隶属于隐私计算和安全计算技术计算方法,旨在提供高可靠性、可操作性、可验证性和可审计性可信服务,有效解决了数据隐私保护和数据共享问题。星环分布式隐私计算平台-SophonP²C星环分布式隐私计算平台SophonP²C集多方安全计算、联邦学习等多种功能,为隐私计算提供完整
隐私性,因为它避免了将原始数据发送到中央服务器或共享给第三方。隐私计算是一种实现隐私保护计算方法和技术,其中包括但不限于联邦学习、安全多方计算、可信计算等。它可以在数据产生、存储、处理和流通各个环节提供隐私保护,使得数据在协作同时不泄露给其他未经授权实体。联邦计算隐私计算虽然都致力于在保护数据隐私前提下实现数据价值挖掘,但是它们在应用场景上存在一些不同。联邦计算主要应用于人工智能和机器学习领域,特别是当涉及到大数据和多源数据融合时候,它优点是可以保护数据隐私并且提高计算效率。而隐私计算应用场景则更加广泛,它可以在数据产生、存储、处理和流通各个环节提供隐私保护,使得数据在协作同时不泄露给其他未经授权实体,因此可以应用于众多领域如金融、医疗、政府等。星环分布式隐私计算平台-SophonP²C星环分布式隐私计算平台SophonP²C集多方安全计算、联邦学习等多种功能,为隐私计算提供完整解决方案,以隐私保护为前提,解决了跨组织协作时无法安全利用各方数据困境。平台提供多种开箱即用工具,方便用户在隐私场景下进行数据处理、分析、特征工程等工作,并快速建立机AI模型。加密
行业资讯
安全隐私计算
和规范将不断完善,推动安全隐私计算技术产业化发展。建立统一技术标准、安全评估标准和应用规范,促进不同厂商之间产品互操作性和市场竞争,推动产业生态形成和壮大。安全隐私计算是一种在数据处理和计算过程中,能够同时确保数据安全性和隐私技术体系。技术原理与特点多种技术融合:融合了密码学、分布式计算、人工智能等多领域技术。如联邦学习通过加密模型参数更新来保护数据隐私;安全多方计算利用加密协议使多方在不泄露隐私数据情况下进行协同计算;同态加密允许直接对密文进行特定类型计算计算结果解密后与对明文计算结果相同。数据隐私保护:在数据全生命周期,包括数据收集、存储、传输、处理和共享等各个环节,都采取严格隐私保护措施。对敏感数据进行加密、脱敏、匿名化等处理,确保数据在使用过程中不被泄露、篡改或滥用。安全计算环境:构建安全计算环境,防止外部攻击和内部、药物研发等工作。患者个人隐私信息不会被泄露,同时促进了医疗技术进步。政务领域:政府部门在数据共享和协同治理过程中,需要确保数据安全和隐私。安全隐私计算可用于人口普查数据处理、税收数据共享、城市治理
隐私计算是一种保证两个或多个数据提供方在不泄露敏感数据前提下进行联合计算技术和系统。在隐私计算框架下,参与方数据不出本地,各方能对密文数据进行分析计算并验证计算结果,保证在各个环节中数据可用不可见。隐私计算技术有多种常见形式,包同态加密、安全多方计算和差分隐私等。同态加密技术能够在不暴露明文情况下对密文进行计算,而安全多方计算可以保证在多个数据提供方之间进行计算而无需交换实际数据,从而保护计算数据隐私性。差分隐私技术则可以在不暴露个人信息情况下对数据进行分析和共享。隐私计算技术应用场景非常广泛,包括金融、医疗、电子商务、智能交通等领域。例如,在医疗领域中,隐私计算技术可以在多个医疗机构之间共享患者医疗数据,而不会暴露个人隐私信息,从而提高医疗资源利用效率。在电子商务领域中,隐私计算技术可以帮助商家进行用户行为分析,而不会泄露用户的人信息,从而提高商家服务质量。隐私计算技术是保护个人隐私信息有效手段,可以在不暴露个人信息情况下进行数据计算和分析,为各个域数据共享和应用带来便利。星环分布式隐私计算平台-SophonP²C星环分布式隐私计算平台SophonP
数据要素是数字经济发展的关键生产要素,是数字经济发展的基础。加快培育数据要素市场是全面建设社会主义现代化国家的一项基础性工作,对推动经济高质量发展、建设数字中国和数字强省、促进经济社会数字化转型具有重要意义。星环科技致力于打造企业级大数据基础软件,围绕数据全生命周期提供基础软件与服务。基于在大数据、分布式数据库、隐私计算、数据安全流通领域的多年积累,星环科技研发了数据要素流通全过程的一系列工具,在各方数据不出域的前提下,为数据资源方和数据消费方提供数据交付服务。2021年星环科技成为上海数据交易所首批签约数商。2022年9月星环科技曾受邀出席“深数交”数据合规活动,分享数据安全出境解决方案。2022年12月星环科技与中国东信旗下北部湾大数据交易中心达成了战略合作。星环科技在产品的各层级上都完善了安全技术,从而可以给用户提供体系化的数据安全防护能力,助力企业高效、合规的开展数据流通业务。在基础设施层,星环科技提供基于容器的云原生操作系统TCOS,它不仅能够提供容器隔离和镜像扫描,还新增了漏洞检测以及面向业务的微隔离安全技术,从而可以为用户开辟一个独立的数据与计算环境,外部的服务未经授权无...
时空数据库(Spacial-temporaldatabase)是一种专门用于存储和管理时空数据的数据库管理系统,它是传统关系型数据库的一个扩展,可以实现对时空数据进行有效管理和处理。时空数据是指带有时空坐标或时间戳的数据,例如地图、气象数据、交通、城市规划等。因此,时空数据库可以用于多种应用程序,如地理信息系统、航空航天、气象预报、GPS导航等。时空数据库与传统数据库不同的是,它提供了额外的功能和数据类型,例如点、线、面等空间对象和时间序列数据类型。此外,时空数据库还支持空间查询和时空查询,例如常见的缓冲区查询,使得用户可以在时空范围内进行查询和分析。这种数据库可以对时空数据进行高效的存储、查询、更新和分析,并通过插件技术集成其他地理信息数据源。星环分布式时空数据库-SpactureSpacture是星环科技自主研发的一款面向空间、时空数据的存储与管理,集计算与存储为一体的分布式数据库产品,支持大规模矢量数据、时空轨迹数据的存储与计算,具有完备的数据查询、分析和挖掘能力,可用于时空查询分析、时空模式挖掘、时空轨迹聚类等时空轨迹数据分析场景,广泛应用于交通物流、城市管理、位置服务等场景。
银行图数据库的应用场景:反洗钱:图数据库可以将可疑交易数据存储于其中,帮助银行更快速地提取、分析与关系,识别出潜在的洗钱行为。客户关系管理:银行图数据库可以将客户的不同信息(如交易记录、信用评级、客户所在地和行业等)进行整合,并将这些信息在一个数据仓库中呈现出来。这使得银行能够更加精准地分析客户需求,提供更加符合客户需求、更加优质的服务。风险管理:银行是一个与风险息息相关的行业。图数据库可以帮助银行对相关风险进行整合和分析。通过解析大量的金融数据,图数据库可以找出潜在的风险点,提前控制风险。数字化转型:图数据库能够将社交网络、收集的数据等信息关联起来,并创造性地开拓新业务模式。除了与客户密切相关的业务领域,图数据库还能够在支持业务流程优化方面发挥重要作用。营销:银行可以使用图数据库来收集客户数据、行为数据等,这样可以更加精确地预测客户习惯,对客户进行更加细致的营销和服务。银行图数据库有着广泛的应用场景,可以在多个角度上支持银行的业务发展,提高服务的质量和效率。星环分布式图数据库StellarDB星环科技致力于打造企业级大数据基础软件,围绕数据的集成、存储、治理、建模、分析、挖掘和流通等...
星环科技图数据库StellarDB是国产高性能图数据库,采用分布式架构和原生图计算引擎,支持超大规模数据管理和高效的图计算。TranswarpStellarDB具有以下特点:原生图存储:StellarDB为数据存储设计了专有的图存储结构,优化查询性能,通过高效的压缩算法减少磁盘和内存的使用量。根据分区策略,图数据均匀分布于集群各节点。优越的性能:存储引擎和计算引擎结合,使计算引擎可以利用数据locality提升计算性能,拥有卓越的数据读写能力,支持大规模并行处理,毫秒级的查询响应。高扩展性:完全的分布式架构,具有良好的可扩展性,支持在线扩容和升级。拥有万亿级图数据处理能力,支持数据多副本,提供集群高可用和高可靠。灵活的查询方式:计算引擎支持灵活易懂的图查询语言TranswarpExtended-OpenCypher,拥有丰富的图操作语法。同时提供SQL支持,多模场景灵活切换。深度分析能力:支持10层及以上的图深度遍历和复杂分析。丰富的算法库:内置丰富的算法库,几十种图算法开箱即用,优化的分布式并行图算法,千万级子图计算效率达到行业先进水平。企业级功能:支持用户权限认证、集群状态监控、日...
星环科技分布式隐私计算平台SophonP²C集多方安全计算、联邦学习等多种功能,为隐私计算提供完整的解决方案,以隐私保护为前提,解决了跨组织协作时无法安全利用各方数据的困境。平台支持联邦学习、多方安全计算、匿踪查询等功能;性能方面,联邦学习与多方安全计算可达亿级数据量,助力数据要素安全流通和价值迸发,实现数字经济时代下的跨企业和行业的AI协作。星环科技的隐私计算技术已落地如数据流通、政务民生、金融营销等垂直业务场景,为跨企业数据协作提供安全可信的平台支持。在政务民生场景,SophonP²C通过纵向联邦学习联合居民用电数据与用水数据,生成群租房预测名单。在联合建模过程中,全程明文数据不出,有效保护了居民用水用电的数据隐私信息。联合训练模型比本地单独用电数据训练的模型AUC提升20%以上,赋能政务决策高效的处理分析能力,为政府有效排查群租房,消除群租房造成的消防、安全隐患,打造和谐、安全、美丽的生活环境作出了突出贡献,为政务决策、民生建设发挥信息化支撑保障作用。在精准营销场景,通过纵向联邦学习,车企安全引入了多方数据,丰富用户特征维度,对用户行为进行统计分析。在联合建模过程中,全程明文数据...
星环科技致力于打造企业级大数据基础软件,基于在大数据、分布式数据库、隐私计算、数据安全流通领域有着多年积累,研发了数据要素流通全过程的一系列工具,在各方数据不出域的前提下,为数据资源方和数据消费方提供数据交付服务。2022年9月星环科技曾受邀出席“深数交”数据合规活动,分享数据安全出境解决方案。2021年星环科技成为上海数据交易所首批签约数商。2022年12月星环科技与中国东信旗下北部湾大数据交易中心达成了战略合作。伴随数字经济蓬勃发展,融入全球数据跨境流动的趋势不可避免。数据出境安全治理受到广泛重视,为进一步规范数据出境活动,保护个人信息权益,维护国家安全和社会公共利益,促进数据跨境安全,国家互联网信息办公室发布了《数据出境安全评估办法》。国内运营的外企(尤其是零售、化工等)、新能源汽车以及生态企业(含自动驾驶等)、国际化企业与出海企业、跨境电商和物流、有融资需求的基于数字化做业务创新的创业公司等是国内迫切需要落实数据安全出境的企业。然而企业在落地数据出境安全方面存在一些实际困难,主要体现在:错综复杂的数据如何分类分级,如何识别重要数据;重要数据如何存储和管理,才能达到相关法律法规的...
新时代需要新技术,企业应抓住机遇实现旧平台的改造升级数据库技术经过不断的发展,已经从以Oracle、IBM为代表的集中式数据库,演进到分布式、多模型、云原生的形态,并在很多场景应用落地,带来了真实的业务价值。当前得益于国家政策的大力扶持以及国内市场环境的快速发展,国产软件加速发展,国产化替代进程正在不断加速。自主可控是国产化替代的核心,同时也是一个阶段性的目标。我们不应该满足于此,应该抓住国产化改造的机遇,用新技术去替代老技术,实现自主可控的同时,完成旧系统的改造升级,这也是信创的主旨。星环科技致力于打造企业级大数据基础软件,围绕数据全生命周期提供基础软件与服务,在分布式技术、多模型技术、数据云技术等方面有很多技术突破。比如大数据基础平台TDH是全球首个通过TPC-DS基准测试的产品;提出了创新的多模型统一技术架构,支持业内主流的10种数据模型,Gartner®发布的中国数据库技术发展趋势报告引用星环科技多模型联合分析用例,论证了多模型融合分析的趋势和价值。基于多年积累的分布式技术、多模型统一技术、数据云技术等,星环科技打造了分布式数据库ArgoDB、分布式交易型数据库KunDB、分布...
垂直领域知识图谱产品主要用于面向特定领域知识应用需求,通过构建和应用知识图谱解决对应领域的专业问题。目前,知识图谱在智慧医疗与智慧金融领域已取得了一系列成功实践,被应用于辅助医生、药物发现、临床科研、风险防控、内部监管、投资研究、保险理赔等众多实际业务场景,并涌现出了一批知识图谱产品或服务平台。星环科技自主研发的知识图谱平台Sophon正是一款覆盖知识全生命周期,集知识的采集、建模、融合、存储、计算及应用为一体的知识图谱产品。平台支持低代码图谱构建、智能化知识抽取、多模态知识存储与融合、多形式知识计算和推理以及多维度的图谱分析。除了具备链路完备性,平台还从业务场景出发,沉淀了金融、保险等场景的图数据模型、规则模型和算法模型,可以帮助用户快速解决不同场景下的业务问题。目前,星环科技Sophon已经在金融等多个行业成功落地,在反洗钱、反欺诈、疫情防控、公共安全、企业级营销、保险知识智能问答等场景有着广泛的应用。同时星环科技在推动知识图谱技术创新和成功落地的过程中,也获得了多项荣誉和权威认可:入选Gartner《MarketGuideforArtificialIntelligenceStar...
图数据库有许多适用场景,常见的应用场景有:社交媒体:社交媒体中的用户和关系可以建模为图结构。用图数据库来管理和查询这些社交数据,可以实现更精确的社交关系分析。金融:在金融领域中,图数据库可以用于合规风控、反欺诈、投资和信贷决策等众多场景。例如,通过在图中存储和分析不同实体(如银行账户、信用卡、电话、邮箱、运单等)之间的关系,可以准确识别欺诈降低风险。物流和运输:物流和运输领域也是图数据库的应用场景之一。例如,通过在图中存储城市、仓库、货物、运输路线等信息,可以进行物流管理、运输计划优化、货物追踪等任务。生命科学:在生命科学领域,图数据库可以用于存储和分析复杂的基因、蛋白质、代谢物等数据,帮助科学家发现新的治疗方法和疾病机制。游戏:游戏开发者可以使用图数据库来管理玩家角色、各种装备、地图、任务等复杂的游戏数据,实现更好的游戏体验。图数据库的灵活性和高效性使其在多个领域都有着广泛的应用。星环分布式图数据库StellarDB星环科技致力于打造企业级大数据基础软件,围绕数据的集成、存储、治理、建模、分析、挖掘和流通等数据全生命周期提供基础软件与服务,在图计算领域深耕多年,自主研发了分布式图数据...
图数据库是现代数据库系统中的一种,它主要的特点就是使用了图论的概念来进行数据管理。传统的关系型数据库通常是基于表和列的结构进行数据管理,而图数据库则是构建了节点和边的图形结构,可以更好的表示现实世界中的复杂关系。下面是图数据库的几个主要特点:1.基于图形结构:图数据库是基于图形结构来进行数据管理的。它通过节点和边来构建数据的表示形式,使得数据之间的关系和结构更加直观和清晰。这对于处理关联复杂、数据关系复杂的场景具有重要意义。2.高效地关系查询和分析:图数据库具有高效的关系查询和分析能力。对于一个大规模的图,传统的SQL查询方式显然不能满足查询时间的要求。而图数据库则可以通过图数据库内部的算法来进行实时的查询和分析。尤其是针对一些复杂的图分析算法,图数据库更能够快速地获得结果,提高查询速度。3.可扩展性:由于采用了分布式的技术设计,使图数据库的可扩展性极佳。当需要管理的数据量增加时,图数据库可以通过简单的集群扩展方式来实现性能的提升。而且,图数据库的分布式能力也可以让其在多个节点上进行操作,提高了系统的容错能力和加载能力。4.元素和关系度量:图数据库具有丰富的元素数据和关系数据量度方式。...