银行大数据仓库管理

数据仓库
星环数据仓库解决方案具备超高性能、高可扩展、极简易用、高性价比等特性。面对高速增长的数据规模,传统的数据仓库负荷严重超出。不扩容会影响性能与稳定性,但是扩容却十分昂贵。星环数据仓库解决方案广泛应用于金融、政企、交通、能源、电信等多个领域,可以满足大数据时代企业构建各类数据仓库的需求。

银行大数据仓库管理 更多内容

行业资讯
银行数据仓库
银行数据仓库银行进行数据管理与分析的核心系统,具有重要作用和独特的架构及应用特点:作用支持决策制定:整合银行内部各类业务数据,为管理层提供全面、准确且及时的数据洞察,助力制定战略决策。风险管理场景构建数据集市,提供定制化的数据服务,满足各部门的个性化分析需求。数据存储与管理技术:基于规模并行处理(MPP)架构的数据仓库平台,或者采用云数据仓库解决方案,以应对海量数据的存储和高效处理需求。同时,结合数据压缩、索引优化、分区存储等技术手段,提高数据存储效率和查询性能。ETL与数据质量管理:配备强大的ETL(抽取、转换、加载)工具和流程,确保数据从不同数据源准确、高效地抽取并转换为符合数据仓库要求的数据格式,加载到相应的数据层。同时,建立完善的数据质量管理体系,从数据完整性、准确性、一致性、及时性等多个维度进行监控和评估,通过数据质量规则定义、数据质量监控工具应用以及定期的数据质量报告生成,及时发现和解决数据质量问题,保障数据仓库数据的可靠性和可用性。:汇聚客户信用信息、贷款还款记录、市场风险指标等数据,构建风险评估模型,精确识别和量化信用风险、市场风险以及操作风险等各类风险,辅助银行提前制定风险应对策略,保障银行资产安全。客户关系管理:深度剖析客户
行业资讯
大数据仓库
大数据仓库是一个用于存储、管理和分析大量数据的集中式系统,它是传统数据仓库大数据时代的演进和扩展,具有以下特点和优势:数据存储海量数据处理能力:能够容纳和处理海量的结构化、半结构化以及非结构化数据,例如通过机器学习算法对客户数据进行聚类分析,实现精准营销。决策支持:为企业的决策制定提供有力支持,企业管理层可以基于数据仓库中的数据分析结果,做出更明智、更科学的决策,例如制定市场营销策略、优化产品设计、调整生产计划等。架构与可扩展性分层架构:通常采用多层架构,如操作数据存储(ODS)、企业数据仓库(EDW)、数据集市等,各层之间分工明确,便于数据管理、维护和使用。弹性可扩展:能够根据企业数据量的增长和业务需求的变化,灵活地扩展计算资源和存储资源,实现水平扩展和垂直扩展,确保系统的性能和可用性不受影响。元数据管理数据存储:对数据仓库中的数据进行元数据管理,记录数据的来源、定义、转换规则、数据质量等信息,方便用户了解数据的背景和含义,提高数据的可信度和可理解性。数据血缘追踪:通过元数据管理,实现数据的血缘追踪,即能够追溯数据从产生到最终存储在数据仓库中的整个过程,有助于数据的审计、质量
数据的可靠性和容错能力。多层数据存储架构:银行大数据平台通常采用多层数据存储架构,包括原始数据层、数据仓库层和数据集市层。原始数据层存储从银行各个业务系统采集的原始数据,这些数据未经清洗和转换,保留大数据平台提升自身的竞争力,通过数据驱动的决策优化业务流程、降低运营成本、提高客户满意度。监管要求严格化:金融监管机构对银行的风险管理和合规要求越来越高。大数据平台能够帮助银行更好地满足监管要求,通过实时监控和数据分析及时发现潜在风险,确保业务合规性。1.2重要性银行大数据平台在提升银行的运营效率、风险管理能力、客户服务水平和创新能力等方面具有重要意义。提升客户洞察力:通过对客户交易记录、行为数据、社交数据等多维度数据的分析,银行能够全面了解客户的需求和偏好,从而提供更加个性化的产品和服务。优化风险管理大数据平台能够整合银行内外部的各类数据,实时监控市场动态和客户风险状况。通过先进的数据银行可以及时发现并处理合规问题,确保业务的合法合规运营。2.1数据存储架构银行大数据平台的数据存储架构是其技术架构的核心组成部分,承担着海量、多源、异构数据的存储和管理任务,为数据的高效处理和分析提供
银行大数据平台是银行利用大数据技术构建的,用于整合、存储、处理和分析海量金融数据的综合性系统,旨在提升银行的业务效率、风险管理能力、客户服务水平以及创新能力。应用场景与价值体现客户营销与服务优化运营效率。金融创新驱动:基于大数据平台挖掘出的客户需求和市场趋势,银行可以创新金融产品和服务模式。例如,开发基于大数据的消费金融产品,根据客户的消费数据和信用状况,提供即时的小额消费贷款;探索智能投顾:通过大数据分析客户的交易行为、浏览记录、社交关系等多维度数据,深入了解客户需求和偏好,实现精准营销。例如,银行可以根据客户的消费习惯和资产状况,向其推荐个性化的金融产品,如信用卡升级、理财产品推荐等服务效率;利用大数据预测客户的资金需求和业务高峰时段,提前做好资金准备和系统资源调配,确保业务的平稳运行;同时,通过对业务流程数据的挖掘,发现流程中的瓶颈环节,进行流程再造和优化,降低运营成本,提高整体,提高营销活动的响应率和成功率;同时,利用数据分析结果优化客户服务流程,例如通过分析客户咨询热点问题和投诉原因,提前优化服务策略,提高客户满意度和忠诚度。风险管理强化:在信用风险管理方面,整合客户的各类
数据仓库的一些关键特点:大规模数据存储:大数据数据仓库能够处理PB级别的数据存储需求,支持大规模数据的存储和管理。多样化数据类型:它能够处理各种类型的数据,包括传统的关系型数据以及文本、图像、视频等非大数据数据仓库是一种专门设计用于处理和分析大规模数据集的数据库系统。它能够存储来自不同来源的海量数据,包括结构化数据、半结构化数据和非结构化数据,并提供数据查询、数据分析和报告等功能。以下是大数据结构化数据。高性能处理能力:利用分布式计算和存储技术,大数据数据仓库能够快速处理和分析海量数据,支持实时或近实时的数据分析。数据集成:它能够集成来自不同来源和格式的数据,提供统一的数据视图,简化数据的访问和分析。高可用性和可靠性:大数据数据仓库通常采用分布式架构,提高了系统的可用性和可靠性,减少了单点故障的风险。数据压缩和优化:为了提高存储效率和查询性能,大数据数据仓库会采用数据压缩、列式存储、数据、访问控制和审计日志等安全功能,以保护数据的安全和满足合规要求。成本效益:与传统的数据仓库相比,大数据数据仓库通常基于开源技术构建,能够降低成本。云原生支持:许多大数据数据仓库提供云服务,使得用户可以按需使用资源,具有更高的灵活性和可扩展性。
控制系统、供应链管理系统等数据,设计数据模型,通过ETL工具抽取数据,利用BI工具和大数据分析技术进行生产效率分析、质量控制分析、供应链优化等。零售行业:零售连锁店通过构建数据仓库整合销售点系统、会员管理系统付费和简化维护的优势。实时数据仓库:企业对实时数据处理的需求增加,数据仓库开始向实时化方向发展,支持数据的实时分析和监控。大数据数据仓库融合:数据仓库大数据平台的融合,拓展了数据仓库的应用范围,实现:数据仓库开始向智能化方向发展,包括自动化数据建模、智能数据清洗、自动化ETL流程等技术,提升数据仓库的建设效率和数据分析能力。数据仓库应用案例金融业:银行通过构建数据仓库整合交易系统、信贷管理系统、风险数据仓库技术与应用是一个广泛的话题,涉及到数据存储、管理和分析等多个方面。以下是一些关键点,结合了最新的搜索结果:数据仓库技术云数据仓库:随着云计算的普及,数据仓库正向云端迁移,提供弹性扩展、按需对结构化、半结构化和非结构化数据的统一管理和分析。数据湖与数据仓库的结合:数据湖技术与数据仓库相结合,实现数据的全生命周期管理,提供更强大的数据管理能力,这种结合被称为“数据湖仓”。智能化与自动化
行业资讯
数据仓库产品
星环数据仓库解决方案星环数据仓库解决方案具备超高性能、高可扩展、易用、高性价比等特性。星环数据仓库解决方案广泛应用于金融、政企、交通、能源、电信等多个领域,可以满足大数据时代企业构建各类数据仓库的,提供大规模数据下高效灵活的存储和分析能力便捷的迁移:对于大量存量SQL与存储过程无需过多改动就可以迁移至新的数据仓库,同时轻松实现报表等多种工具同新平台的对接,从各个方面简化并加速数据仓库的平滑迁移度的复杂关联统计等功能分布式事务保障:支持完整4种事务隔离级别,保障事务在分布式系统下正常运转,高吞吐的,确保数据强一致,高可用的事务保障星环数据仓库方案优势强大的数据处理能力:采用向量化加速,高性能效率:提供全套的数仓开发工具,支持数据整合、工作流调度、数据治理以及报表工具等数据业务,提供可视化工具进行数据特征分析,探索数据间关系,大大提高数据仓库的开发效率丰富的数据类型的支持:支持多种类型的数据可靠的数据与服务:提供双机热备。保障数据可靠,服务可用。能够实现即时灾难恢复,通过故障转移保障系统随时稳定可用,维护业务的连续性稳健的安全保护:提供集中的安全和资源管理服务,保证集群免受恶意攻击和安全威胁,并且支持细粒度资源管控和用户权限配置
行业资讯
数据仓库管理
数据仓库管理是一个涉及多个方面的复杂过程,包括维护、性能优化、扩展和迭代、文档和知识管理等。以下是这些方面的详细说明:数据仓库维护数据仓库维护是确保数据持续准确和一致的过程,主要任务包括:数据更新:采用合适的压缩算法减少存储空间占用并提升数据传输速度。优化表结构和索引:合理的表结构设计和正确的索引创建可以显著提升查询效率。数据分区:通过数据分区可以提高查询性能和数据管理效率。数据仓库扩展和迭代数据仓库扩展性。维度表和事实表的扩展:通过添加新的维度表和事实表来扩展数据仓库的分析能力。数据仓库文档和知识管理文档和知识管理是确保数据仓库知识和经验得到有效传递和共享的关键:文档编写:编写和维护项目文档、清洗和备份:定期更新数据,清洗以去除无效和错误数据,以及备份以防数据丢失或损坏。故障处理:及时解决数据仓库运行中出现的故障,保证系统的稳定性。数据仓库性能优化性能优化是提升数据处理效率的关键,包括:高速存储解决方案:使用SSD等高速存储设备提升数据读写速度。数据库版本升级:定期升级数据库版本以享受性能改进和新功能。数据库参数设置:合理调整数据库参数如缓冲区大小、并发度等,以提升性能。使用压缩算法
行业资讯
数据仓库
可以利用数据仓库云来整合业务数据,如销售数据、客户数据等,进行简单的数据分析,如销售趋势分析、客户画像等,以支持企业的日常决策。大数据分析与机器学习在大数据和机器学习领域,数据仓库云发挥着重要作用。企业可以将海量的大数据存储在数据仓库云中,然后利用云平台提供的计算资源和分析工具进行复杂的数据挖掘、机器学习算法训练等任务。企业数据集成与共享企业内部往往有多个部门和多种业务系统,数据仓库云可以帮助整合规模动态分配计算能力。这意味着在数据量较大或者分析任务复杂时,可以快速获取更多的计算资源来加速处理过程。管理与监控层提供集中式的管理和监控功能。通过云平台的管理控制台,用户可以方便地对数据仓库的各种参数数据仓库云是将数据仓库的功能部署在云计算环境中的一种数据存储和分析解决方案。它利用云计算的强大计算能力、存储资源和可扩展性,为企业提供高效的数据处理和分析服务。架构特点存储层基于云存储技术,数据仓库进行配置,如存储容量、计算资源分配、用户权限等。同时,监控功能可以实时踪数据仓库的性能指标,如查询响应时间、存储使用率、数据加载速度等,以便及时发现问题并进行调整。优势成本效益采用按需付费模式,企业
垂直领域知识图谱产品主要用于面向特定领域知识应用需求,通过构建和应用知识图谱解决对应领域的专业问题。目前,知识图谱在智慧医疗与智慧金融领域已取得了一系列成功实践,被应用于辅助医生、药物发现、临床科研、风险防控、内部监管、投资研究、保险理赔等众多实际业务场景,并涌现出了一批知识图谱产品或服务平台。星环科技自主研发的知识图谱平台Sophon正是一款覆盖知识全生命周期,集知识的采集、建模、融合、存储、计算及应用为一体的知识图谱产品。平台支持低代码图谱构建、智能化知识抽取、多模态知识存储与融合、多形式知识计算和推理以及多维度的图谱分析。除了具备链路完备性,平台还从业务场景出发,沉淀了金融、保险等场景的图数据模型、规则模型和算法模型,可以帮助用户快速解决不同场景下的业务问题。目前,星环科技Sophon已经在金融等多个行业成功落地,在反洗钱、反欺诈、疫情防控、公共安全、企业级营销、保险知识智能问答等场景有着广泛的应用。同时星环科技在推动知识图谱技术创新和成功落地的过程中,也获得了多项荣誉和权威认可:入选Gartner《MarketGuideforArtificialIntelligenceStar...
银行图数据库的应用场景:反洗钱:图数据库可以将可疑交易数据存储于其中,帮助银行更快速地提取、分析与关系,识别出潜在的洗钱行为。客户关系管理:银行图数据库可以将客户的不同信息(如交易记录、信用评级、客户所在地和行业等)进行整合,并将这些信息在一个数据仓库中呈现出来。这使得银行能够更加精准地分析客户需求,提供更加符合客户需求、更加优质的服务。风险管理:银行是一个与风险息息相关的行业。图数据库可以帮助银行对相关风险进行整合和分析。通过解析大量的金融数据,图数据库可以找出潜在的风险点,提前控制风险。数字化转型:图数据库能够将社交网络、收集的数据等信息关联起来,并创造性地开拓新业务模式。除了与客户密切相关的业务领域,图数据库还能够在支持业务流程优化方面发挥重要作用。营销:银行可以使用图数据库来收集客户数据、行为数据等,这样可以更加精确地预测客户习惯,对客户进行更加细致的营销和服务。银行图数据库有着广泛的应用场景,可以在多个角度上支持银行的业务发展,提高服务的质量和效率。星环分布式图数据库StellarDB星环科技致力于打造企业级大数据基础软件,围绕数据的集成、存储、治理、建模、分析、挖掘和流通等...
星环科技图数据库StellarDB是国产高性能图数据库,采用分布式架构和原生图计算引擎,支持超大规模数据管理和高效的图计算。TranswarpStellarDB具有以下特点:原生图存储:StellarDB为数据存储设计了专有的图存储结构,优化查询性能,通过高效的压缩算法减少磁盘和内存的使用量。根据分区策略,图数据均匀分布于集群各节点。优越的性能:存储引擎和计算引擎结合,使计算引擎可以利用数据locality提升计算性能,拥有卓越的数据读写能力,支持大规模并行处理,毫秒级的查询响应。高扩展性:完全的分布式架构,具有良好的可扩展性,支持在线扩容和升级。拥有万亿级图数据处理能力,支持数据多副本,提供集群高可用和高可靠。灵活的查询方式:计算引擎支持灵活易懂的图查询语言TranswarpExtended-OpenCypher,拥有丰富的图操作语法。同时提供SQL支持,多模场景灵活切换。深度分析能力:支持10层及以上的图深度遍历和复杂分析。丰富的算法库:内置丰富的算法库,几十种图算法开箱即用,优化的分布式并行图算法,千万级子图计算效率达到行业先进水平。企业级功能:支持用户权限认证、集群状态监控、日...
星环科技致力于打造企业级大数据基础软件,基于在大数据、分布式数据库、隐私计算、数据安全流通领域有着多年积累,研发了数据要素流通全过程的一系列工具,在各方数据不出域的前提下,为数据资源方和数据消费方提供数据交付服务。2022年9月星环科技曾受邀出席“深数交”数据合规活动,分享数据安全出境解决方案。2021年星环科技成为上海数据交易所首批签约数商。2022年12月星环科技与中国东信旗下北部湾大数据交易中心达成了战略合作。伴随数字经济蓬勃发展,融入全球数据跨境流动的趋势不可避免。数据出境安全治理受到广泛重视,为进一步规范数据出境活动,保护个人信息权益,维护国家安全和社会公共利益,促进数据跨境安全,国家互联网信息办公室发布了《数据出境安全评估办法》。国内运营的外企(尤其是零售、化工等)、新能源汽车以及生态企业(含自动驾驶等)、国际化企业与出海企业、跨境电商和物流、有融资需求的基于数字化做业务创新的创业公司等是国内迫切需要落实数据安全出境的企业。然而企业在落地数据出境安全方面存在一些实际困难,主要体现在:错综复杂的数据如何分类分级,如何识别重要数据;重要数据如何存储和管理,才能达到相关法律法规的...
图数据库是现代数据库系统中的一种,它主要的特点就是使用了图论的概念来进行数据管理。传统的关系型数据库通常是基于表和列的结构进行数据管理,而图数据库则是构建了节点和边的图形结构,可以更好的表示现实世界中的复杂关系。下面是图数据库的几个主要特点:1.基于图形结构:图数据库是基于图形结构来进行数据管理的。它通过节点和边来构建数据的表示形式,使得数据之间的关系和结构更加直观和清晰。这对于处理关联复杂、数据关系复杂的场景具有重要意义。2.高效地关系查询和分析:图数据库具有高效的关系查询和分析能力。对于一个大规模的图,传统的SQL查询方式显然不能满足查询时间的要求。而图数据库则可以通过图数据库内部的算法来进行实时的查询和分析。尤其是针对一些复杂的图分析算法,图数据库更能够快速地获得结果,提高查询速度。3.可扩展性:由于采用了分布式的技术设计,使图数据库的可扩展性极佳。当需要管理的数据量增加时,图数据库可以通过简单的集群扩展方式来实现性能的提升。而且,图数据库的分布式能力也可以让其在多个节点上进行操作,提高了系统的容错能力和加载能力。4.元素和关系度量:图数据库具有丰富的元素数据和关系数据量度方式。...
新时代需要新技术,企业应抓住机遇实现旧平台的改造升级数据库技术经过不断的发展,已经从以Oracle、IBM为代表的集中式数据库,演进到分布式、多模型、云原生的形态,并在很多场景应用落地,带来了真实的业务价值。当前得益于国家政策的大力扶持以及国内市场环境的快速发展,国产软件加速发展,国产化替代进程正在不断加速。自主可控是国产化替代的核心,同时也是一个阶段性的目标。我们不应该满足于此,应该抓住国产化改造的机遇,用新技术去替代老技术,实现自主可控的同时,完成旧系统的改造升级,这也是信创的主旨。星环科技致力于打造企业级大数据基础软件,围绕数据全生命周期提供基础软件与服务,在分布式技术、多模型技术、数据云技术等方面有很多技术突破。比如大数据基础平台TDH是全球首个通过TPC-DS基准测试的产品;提出了创新的多模型统一技术架构,支持业内主流的10种数据模型,Gartner®发布的中国数据库技术发展趋势报告引用星环科技多模型联合分析用例,论证了多模型融合分析的趋势和价值。基于多年积累的分布式技术、多模型统一技术、数据云技术等,星环科技打造了分布式数据库ArgoDB、分布式交易型数据库KunDB、分布...
图数据库有许多适用场景,常见的应用场景有:社交媒体:社交媒体中的用户和关系可以建模为图结构。用图数据库来管理和查询这些社交数据,可以实现更精确的社交关系分析。金融:在金融领域中,图数据库可以用于合规风控、反欺诈、投资和信贷决策等众多场景。例如,通过在图中存储和分析不同实体(如银行账户、信用卡、电话、邮箱、运单等)之间的关系,可以准确识别欺诈降低风险。物流和运输:物流和运输领域也是图数据库的应用场景之一。例如,通过在图中存储城市、仓库、货物、运输路线等信息,可以进行物流管理、运输计划优化、货物追踪等任务。生命科学:在生命科学领域,图数据库可以用于存储和分析复杂的基因、蛋白质、代谢物等数据,帮助科学家发现新的治疗方法和疾病机制。游戏:游戏开发者可以使用图数据库来管理玩家角色、各种装备、地图、任务等复杂的游戏数据,实现更好的游戏体验。图数据库的灵活性和高效性使其在多个领域都有着广泛的应用。星环分布式图数据库StellarDB星环科技致力于打造企业级大数据基础软件,围绕数据的集成、存储、治理、建模、分析、挖掘和流通等数据全生命周期提供基础软件与服务,在图计算领域深耕多年,自主研发了分布式图数据...
时空数据库(Spacial-temporaldatabase)是一种专门用于存储和管理时空数据的数据库管理系统,它是传统关系型数据库的一个扩展,可以实现对时空数据进行有效管理和处理。时空数据是指带有时空坐标或时间戳的数据,例如地图、气象数据、交通、城市规划等。因此,时空数据库可以用于多种应用程序,如地理信息系统、航空航天、气象预报、GPS导航等。时空数据库与传统数据库不同的是,它提供了额外的功能和数据类型,例如点、线、面等空间对象和时间序列数据类型。此外,时空数据库还支持空间查询和时空查询,例如常见的缓冲区查询,使得用户可以在时空范围内进行查询和分析。这种数据库可以对时空数据进行高效的存储、查询、更新和分析,并通过插件技术集成其他地理信息数据源。星环分布式时空数据库-SpactureSpacture是星环科技自主研发的一款面向空间、时空数据的存储与管理,集计算与存储为一体的分布式数据库产品,支持大规模矢量数据、时空轨迹数据的存储与计算,具有完备的数据查询、分析和挖掘能力,可用于时空查询分析、时空模式挖掘、时空轨迹聚类等时空轨迹数据分析场景,广泛应用于交通物流、城市管理、位置服务等场景。
星环科技分布式隐私计算平台SophonP²C集多方安全计算、联邦学习等多种功能,为隐私计算提供完整的解决方案,以隐私保护为前提,解决了跨组织协作时无法安全利用各方数据的困境。平台支持联邦学习、多方安全计算、匿踪查询等功能;性能方面,联邦学习与多方安全计算可达亿级数据量,助力数据要素安全流通和价值迸发,实现数字经济时代下的跨企业和行业的AI协作。星环科技的隐私计算技术已落地如数据流通、政务民生、金融营销等垂直业务场景,为跨企业数据协作提供安全可信的平台支持。在政务民生场景,SophonP²C通过纵向联邦学习联合居民用电数据与用水数据,生成群租房预测名单。在联合建模过程中,全程明文数据不出,有效保护了居民用水用电的数据隐私信息。联合训练模型比本地单独用电数据训练的模型AUC提升20%以上,赋能政务决策高效的处理分析能力,为政府有效排查群租房,消除群租房造成的消防、安全隐患,打造和谐、安全、美丽的生活环境作出了突出贡献,为政务决策、民生建设发挥信息化支撑保障作用。在精准营销场景,通过纵向联邦学习,车企安全引入了多方数据,丰富用户特征维度,对用户行为进行统计分析。在联合建模过程中,全程明文数据...
数据要素是数字经济发展的关键生产要素,是数字经济发展的基础。加快培育数据要素市场是全面建设社会主义现代化国家的一项基础性工作,对推动经济高质量发展、建设数字中国和数字强省、促进经济社会数字化转型具有重要意义。星环科技致力于打造企业级大数据基础软件,围绕数据全生命周期提供基础软件与服务。基于在大数据、分布式数据库、隐私计算、数据安全流通领域的多年积累,星环科技研发了数据要素流通全过程的一系列工具,在各方数据不出域的前提下,为数据资源方和数据消费方提供数据交付服务。2021年星环科技成为上海数据交易所首批签约数商。2022年9月星环科技曾受邀出席“深数交”数据合规活动,分享数据安全出境解决方案。2022年12月星环科技与中国东信旗下北部湾大数据交易中心达成了战略合作。星环科技在产品的各层级上都完善了安全技术,从而可以给用户提供体系化的数据安全防护能力,助力企业高效、合规的开展数据流通业务。在基础设施层,星环科技提供基于容器的云原生操作系统TCOS,它不仅能够提供容器隔离和镜像扫描,还新增了漏洞检测以及面向业务的微隔离安全技术,从而可以为用户开辟一个独立的数据与计算环境,外部的服务未经授权无...