大语言模型 向量数据库

利用向量数据库和图数据库,可以构建特定领域的模型应用。在模型应用开发软件栈中,知识图谱、向量数据库模型仓库和图数据库构成的知识语义层,与模型运行层、语言模型、提示工程层、应用前端集成层协同图谱作为语言模型提示即可发起模型微调,以较低代价就可获得行业的专属语言模型问答应用。而向量数据库、图数据库语言模型结合,可以构建业务域知识图谱和业务系统的应用服务,进一步提高人机交互的效率,帮助用户创建模型应用,让每个人都拥有自己的个性化AI助理。其中,向量数据库可用于应用的文本检索,让查询更满足人性化的需求;可以实现语音、图像、视频检索,覆盖如人脸识别、语音识别、视频指纹等各类AI,提供更灵活的组合业务服务,激发出更多更深入的业务场景AI应用。相较于通用模型,结合向量数据库、图数据库与知识图谱所存储的具体行业知识,领域模型更精通特定行业的知识,具备高效的语料匹配能力和知识推理能力,能够有效回答用户的提问。场景;实现个性化推荐,做到千人千面的个性化推荐效果。而图数据库和知识图谱联合,与模型可视化端到端构建工具一起,提供了知识抽取融合、知识建模、知识图谱生成存储、基于模型的知识问答等闭环功能。客户以知识

大语言模型 向量数据库 更多内容

为高维度的多维向量,由此可以结构化地在向量数据库中进行管理,实现快速、高效的数据存储和检索过程,结合相似性检索特性,进而更高效地支撑更广泛的应用场景,比如智能推荐场景等。同时,随着语言模型应用中对化,先进行语义搜索,找到相关的信息,将其拼接成提示词传递给模型模型通过计算分析后反馈结果。星环科技创始人、CEO孙元浩表示,“向量数据库承担了中间存储的角色,我们认为向量数据库就是语言模型的、知识建模、知识图谱生成存储、基于模型的知识问答等闭环功能。客户以知识图谱作为语言模型提示即可发起模型微调,以较低代价就可获得行业的专属语言模型问答应用。将向量数据库、图数据库语言模型结合AI应用场景。在赋予模型拥有“长期记忆”的同时,还可以协助企业解决目前担忧的模型数据隐私泄露问题。模型的快速应用,推动向量数据库向高扩展、高性能、实时性方向发展模型正在与企业应用迅速结合,重塑各种类型的非结构化数据。用户可以通过表示学习的预处理方式将这些数据转化为多维向量,并存储在向量数据库中,从而可以很好地解决上述三个问题。比如,在应用端与模型进行交互时,将输入的文字、图片等问题信息进行向量
与查询向量相似的数据,对于大规模数据的处理非常高效。在模型训练方面,向量数据库的应用非常广泛。例如,在自然语言处理领域,可以使用向量数据库存储和查询单词向量,以提高模型的效率和准确性。在图像识别方面向量数据库是一种专门用于存储和查询向量数据库系统。通过使用向量数据库来存储和查询数据,可以显著提高效率并降低成本。向量数据库主要应用于模型训练、推理和知识补充等场景,并且在接入层、计算层和存储层等方面已实现了全面的人工智能化。当前,模型正快速进入各行业,但这些模型通常包含数十亿甚至更多的参数,其训练成本非常高昂。向量数据库可以用于模型预训练数据的分类、去重和清洗等任务。与传统方式相比,向量数据库能够提升10倍的效率。如果将向量数据库作为外部知识用于模型推理,则可以将成本降低几个数量级。以往,企业要接入一个模型可能需要花费很久的时间,而使用向量数据库后,仅需几天即可完成,大大降低,可以使用向量数据库存储和查询图像特征向量,以加快图像搜索和识别的速度。除了模型训练,向量数据库还可以应用于推理和知识补充等场景。在推理方面,向量数据库可以作为外部知识,为模型提供更加多样化和
数据库通过将高维向量进行近似相似度比较,能够高效地处理规模的向量数据。相比传统的关系型数据库向量数据库能够更好地支持向量数据的查询和检索,并能够提供更加丰富的数据分析功能。在模型时代,向量数据库向量数据库是一种专门用于存储和管理高维向量数据库系统。随着深度学习和大数据技术的不断发展,向量数据库逐渐成为了一种重要的数据处理工具,尤其在推荐系统、搜索引擎、图像识别等领域中得到了广泛应用。向量的应用场景越来越广泛。例如,在推荐系统中,通过将用户行为和物品特征转化为高维向量向量数据库可以高效地实现用户和物品的相似度匹配,从而为用户推荐更加精准的物品。在搜索引擎中,向量数据库可以用于实现语义搜索和图像识别等功能,提高搜索的准确性和效率。星环分布式向量数据库-TranswarpHippo星环分布式向量数据库Hippo作为一款企业级云原生分布式向量数据库,基于分布式特性,可以对文档、图片数据库不同,星环分布式向量数据库Hippo具备高可用、高性能、易拓展等特点,支持多种向量搜索索引,支持数据分区分片、数据持久化、增量数据摄取、向量标量字段过滤混合查询等功能,很好地满足了企业针对海量向量数据的高实时性检索等场景。
知识图谱作为语言模型提示即可发起模型微调,以较低代价就可获得行业的专属语言模型问答应用。将向量数据库、图数据库语言模型结合,可以构建业务域知识图谱和业务系统的应用服务,进一步提高人机交互的效率基于星环分布式向量数据库Hippo,可以有效地解决模型在知识时效性低、输入能力有限、准确度低等问题。通过将新资料、专业知识、个人习惯等海量信息向量存储在星环分布式向量数据库Hippo中,可以极大,通过星环分布式向量数据库Hippo对向量数据进行存储,有效解除模型对输入的限制,并且模型在安全机制下访问向量数据库中的隐私数据,可以充分保证数据安全,杜绝隐私泄露风险。然而,模型只有向量数据库图谱和向量数据库结合后,可以从知识图谱中去获取或者补充模型的答案,使其可以精确地回答新收猪价以及价格影响等。通过这样的组合可以解决模型目前存在的三问题。一是能够把实时的知识、变化的信息放到模型中,二是能够校正结果的准确性,极大地提升精准度,三是构建相应的知识图谱,增强大模型的能力。成本、更高效地构建特定领域的模型应用。图数据库StellarDB和知识图谱联合,与模型可视化端到端构建工具一起,提供了知识抽取融合、知识建模、知识图谱生成存储、基于模型的知识问答等闭环功能。客户以
语言模型语料是指用于训练语言模型的大量文本数据集合。这些语料通常包含各种类型的文本,如书籍、新闻文章、网页内容、社交媒体帖子、学术论文等,以确保模型能够学习到广泛的语言模式和知识。以下是嵌入。数据聚类:将相似的文本聚类,以便模型更好地学习语言模式和主题。3.语料的类型通用语料:包含多种类型的文本,覆盖广泛的主题和领域。领域特定语料:针对特定领域或行业,如医疗、金融、法律等,提供更语料存储在本地或分布式文件系统中等。数据库:使用关系型数据库或非关系型数据库存储和管理语料向量数据库:用于存储和检索向量化的文本数据。6.语料的更新和维护定期更新:定期从各种来源收集新的数据,更新语料,确保模型能够学习到最新的知识和语言模式。质量监控:监控语料的质量,及时发现和处理数据质量问题。版本管理:对语料进行版本管理,记录每次更新的内容和时间,便于回溯和审计。语言模型语料的详细解释:1.语料的来源书籍:经典著作、畅销书、专业书籍等,提供深度的知识和良好的语言表达范例。新闻文章:涵盖各种新闻事件和时事,帮助模型了解当前的社会动态和热点话题。网页内容:来自
大型语言模型(LLM)的进一步发展需要实现更相关和更连贯的文本生成,而向量数据库的存储机制可以为此提供支持。向量数据库是一种高效的数据存储和检索方式,特别适合处理多维度的数据向量数据库在自然语言嵌入函数生成的。这些嵌入函数可以基于多种方法,包括机器学习模型、词嵌入、特征提取算法等。这些方法可以将原始数据转化为高维向量,这些向量可以在向量数据库中进行存储和检索。向量数据库优点是它能够通过个向量。与传统数据库相比,向量数据库在处理大规模数据时的速度更快,效率更高。为什么近的生成式AI模型能促进向量数据库的火爆?1、生成式AI模型需要大量的数据进行训练以获取丰富的语义和上下文信息。这些大量的数据需要高效的管理工具,而向量数据库可以满足这一需求。2、生成式AI模型生成的文本往往需要进行相似性搜索和匹配以提供准确的回复、推荐或匹配结果。传统的基于关键词的搜索方法无法满足这种复杂的需求,而向量数据库可以通过计算向量间的相似度来提供准确的搜索结果。3、生成式AI模型不仅可以处理文本数据,还可以处理图像、语音等多模态数据。而向量数据库可以有效地支持多模态数据的存储、索引和查询。这种
行业资讯
向量数据库
向量数据库是一种新型的数据库架构,它使用向量表示法来存储和检索数据。这些向量是由深度学习模型生成的,可以简化处理多结构化内容的方式。与传统的关系型数据库不同,向量数据库设计为多语言和多模态,可以在同一向量空间内处理任何形式的自然语言和非结构化数据,如图像、视频、音频、文本等。这意味着,无论数据的形式如何,都可以使用相同的向量表示法进行处理。向量数据库通过处理深度学习模型的嵌入式向量来存储、索引和搜索大型非结构化数据集。这些向量是通过对原始数据应用某种转换或嵌入函数来生成的。嵌入函数可以基于各种方法,如机器学习模型、词嵌入、特征提取算法等。在向量数据库中搜索使用相似性指标和索引。相似性指标定义了数据库如何评估两个向量之间的距离和差值。常用的相似性度量是欧几里得距离,也称为L2范数。此外,索引也在加快查询速度和处理并发性方面发挥着关键作用。与传统的基于文本的数据库相比,向量数据库的主要优点是允许根据向量距离或相似性快速准确地搜索和检索数据。这意味着,用户可以使用向量数据库根据语义或上下文含义查找相似或相关的数据,而不是使用基于完全匹配或预定义条件查询数据库的传统方法。这种基于相似性的搜索方法可以更好地处理语义层面的查询,而不仅仅是基于关键词的匹配。
这种搜索过程能够在短的时间内完成,提供了快速的响应时间。这不仅简化了开发者对向量数据的管理,还为模型提供了强大的记忆和检索能力,使得模型能够更好地应对复杂的数据分析任务。这种能力使得向量数据库成为推荐系统、异常检测和自然语言处理等应用的理想选择,推动了人工智能技术的进一步发展。。通过将非结构化数据转换为向量表示,向量数据库为复杂的数据分析提供了有力的支持。向量数据库之所以被称为模型的“海马体”,是因为为模型提供了强大的记忆和检索能力,使得模型能够更好地处理非结构化数据中,模型可以获取这些数据向量表示,从而拥有了对过去学习经验的“长期记忆”。这种记忆能力使得模型能够在处理新数据时更加准确和高效,减少了产生“幻觉”或错误预测的可能性。向量数据库通过执行近似近邻(ANN)搜索,能够在大规模数据集中快速识别相似的项目。这种能力使得模型能够迅速从海量的数据中检索出与当前任务相关的信息,进一步提高了模型的性能和准确性。向量数据库使用的降维和索引算法等技术,使得并提高性能。海马体在人的脑中扮演着记忆和学习的关键角色,尤其是与长期记忆的形成和巩固密切相关。类似地,向量数据库在人工智能系统中起到了存储和检索“记忆”的作用。通过将非结构化数据转换为向量并存储在数据库
模型知识使用向量数据库还是图数据库?在构建模型知识时,选择合适的数据库技术尤为重要。当前主要有两种数据库类型备受关注:向量数据库和图数据库。这两种技术各有特点,适用于不同的应用场景。向量数据库是专门为处理高维向量数据而设计的。它能够有效存储和检索以向量形式表示的数据,这种表示方式正是现代模型处理信息的核心方法。当模型将文本、图像或其他类型的数据转换为嵌入向量后,向量数据库可以快速找到语义上相似的条目。这种能力使得向量数据库特别适合用于模型的记忆扩展、上下文检索等任务。它的优势在于相似性搜索的快速性,即使面对数十亿级别的向量数据,也能保持较快的查询速度。图数据库则以不同的方式组织数据,它专注于实体之间的关系。在图数据库中,数据以节点和边的形式存储,节点代表实体,边代表实体间的关系。这种结构天然适合表示复杂的关联网络,如社交网络、知识图谱等。对于需要深度推理和关系挖掘的模型关系查询方面效率更高,尤其是当需要遍历复杂关系网络时。在可扩展性方面,向量数据库通常更容易水平扩展,而图数据库的扩展往往面临更多挑战。数据模型方面,向量数据库使用简单的向量集合,结构相对扁平;图数据库
双碳目标下,全国碳排放监测服务平台启动建设力争2030年前实现碳达峰、2060年前实现碳中和,我国明确提出“双碳”目标,充分彰显了在构建人类命运共同体进程中的大国担当。国家电网公司主动担当重要使命,提出“实现双碳目标,能源是主战场,电力是主力军,电网是排头兵”的战略部署,率先行动,发布《全国碳排放监测服务平台建设工作方案》。“双碳”目标的实现离不开科技支撑。《全国碳排放监测服务平台建设工作方案》指出,全国碳排放监测服务平台建设的总体目标是以电网数字化赋能和助力国家碳达峰碳中和,实现“电力看双碳”,“双碳看经济”,为国家碳排放统计核算体系建设、宏观调控政策制定、经济社会全面绿色转型发展等工作提供决策支持。平台建设需要解决以下问题:以数字化平台技术解决各省的地市、区县、重点行业碳排放数据维度不全面、核算方法不完善、碳核算体系不统一等方面的问题;强化数据应用,发挥好决策支撑作用,深挖电力大数据价值,开展“电力看环保”“电力看经济”等大数据应用。积极响应号召,星环科技打造碳排放监测服务平台解决方案星环科技作为大数据基础软件领域的代表性企业,有着高度的责任感和使命感,为响应“全国碳排放监测服务平...
近年来,企业数据安全问题的重要性被提上了前所未有的高度。星环科技提供了从云基础设施、数据平台、数据资源、数据应用的数据安全能力。覆盖数据生命周期的各个阶段,涉及数据的收集、存储、使用、加工以及开放流通。全方位保障企业的数据安全,支撑业务合法合规的开展。星环科技凭借全面的数据安全能力助力某支付机构构建安全防线的落地实践。该支付机构拥有大量数据资产,目前机构面临着较大的挑战,需要加强数据安全管理,为此,机构决定与星环科技合作,利用星环科技的技术来提升数据安全管理能力,共同打造一个基于隐私计算的数据服务平台DaaS。根据客户需求,星环科技在基础设施层提供了基于容器的云原生操作系统TCOS,可以为用户提供独立的数据与计算环境,减少数据对外暴露的风险。在数据平台层,星环科技大数据基础平台TDH新版本增强了安全技术,支持行列级权限控制、动态脱敏等。在数据资产层,星环科技借助两款新产品:数据安全管理平台Defensor帮助企业构建整个数据安全管理域及数据流通平台Navier:包含隐私计算平台SophonP²C和数据交易门户datamall,提供包括联邦学习和差分隐私等技术能力。该支付机构的数据管理平...
星环科技作为一家企业级大数据基础软件开发商,在图计算领域深耕多年,有着深厚的技术积淀和丰富的实践经验。星环科技自主研发的分布式图数据库StellarDB,兼容openCypher查询语言,提供海量图数据的存储和分析能力,支持原生图存储结构,支持万亿边PB级数据存储。同时,StellarDB具备毫秒级点边查询能力,10+层的深度链路分析能力,提供近40种的图分析算法,具备数据2D和3D展示能力。StellarDB克服了海量关联图数据存储的难题,通过集群化存储和丰富算法,实现了传统数据库无法提供的低延时多层关系查询,目前已经用于金融、政府、交通等众多行业,用于反洗钱、风险控制、营销等多种场景。同时StellarDB还获得了多项行业权威认可:入选信通院2022大数据十大关键词“图计算平台”代表厂商;通过了中国信通院图数据库和图计算平台基础能力两项专项测评;入选著名咨询机构Gartner《中国数据库市场指南》、《工具:中国数据库管理系统供应商甄选》报告等,彰显了其产品技术领先性。如今,5G、物联网、AI等技术的发展应用让数据呈指数倍增长,为图数据库发展提供了更广阔的应用空间。顺势而为,乘势而上...
为解决AI落地难的问题,星环科技从用户需求端出发,研发了一款基于云原生架构的企业级AI能力运营平台SophonMLOps,助推AI模型落地。SophonMLOps是基于云原生架构构建的企业级AI能力运营平台,聚焦于机器学习模型全生命周期中的模型管理、模型部署、模型监控预警、模型评估和模型迭代等关键环节。通过统一纳管、统一运维、统一应用、统一监控、统一评估、统一解释,赋予企业客户易用、高效且安全可靠的AI能力运营服务,协助客户规模化管理日益增长的机器学习模型,提升模型使用效率,降低模型集成管理成本,控制模型生产环境风险。SophonMLOps针对企业AI运营的痛点,围绕企业AI模型接入、运营管理、持续训练的全生命周期,分别提供规模化集成管理、高效模型推理、模型监控预警、模型性能评估、隐私安全保障等功能,为企业的AI日常运营插上翅膀。SophonMLOps打通了AI的全生命周期,为企业的各类用户角色搭建了统一的AI协作平台。对于企业而言,MLOps规模化集成管理了多源异构的机器学习模型,并提供高效且保障隐私安全的模型推理、监控预警及性能评估服务;对用户而言,能感受到操作上的快捷,AI应用与...
图数据库的应用场景非常广泛,可以应用于各个行业。以下是一些常见的应用场景:金融:在金融领域,图数据库可以帮助银行、保险公司等企业处理复杂的数据结构,支持欺诈检测、交易路由、投资组合分析等操作。社交网络:图数据库可以存储和处理社交网络中的复杂关系图谱和大量用户数据,支持好友推荐、社区发现、个性化内容推荐等操作。物流:在物流领域,图数据库可以帮助企业优化路径规划、物流运输等操作,加速发货、配送时间并提高效率。制造业:图数据库可以支持企业处理复杂的设备关系结构图,进行维修保养、设备性能分析、生产计划优化等操作。能源行业:在能源领域,图数据库可以处理复杂的电网、管道等结构图谱,并支持多种能源趋势分析和紧急事件监测等操作。电商:图数据库可以应用于电商业务中,存储和处理复杂的商品与用户之间的关系,支持个性化推荐、购物车分析、用户行为预测等操作。图数据库可以在各个领域中应用,并且在处理复杂的数据结构和大量的数据时比传统数据库具有更高的性能和效率。星环分布式图数据库StellarDB星环科技致力于打造企业级大数据基础软件,围绕数据的集成、存储、治理、建模、分析、挖掘和流通等数据全生命周期提供基础软件与...
星环科技致力于打造企业级大数据基础软件,具备大数据与云基础平台、分布式关系型数据库、数据开发与智能分析工具的软件产品矩阵,多年来深耕电力领域,覆盖电力产业“发-输-变-配-用”五大环节,为推动电力行业数字化转型做出了重要贡献。在国网上海电力智能配用电大数据应用系统建设项目中,基于星环科技大数据基础平台TDH构建的智能配用电大数据应用系统汇集了浦东1210平方千米的236万户的用电数据,高负荷738万千瓦,年用电量329亿度,占上海全网四分之一。集成的内外部数据源有10个,整个数据量到现在已经接近8个T了,台账的数据总量有29.14万条。在多元数据集成及大数据平台基础之上,应用系统实现了用电查询,电力地图等基础功能及用户用电行为分析,节电用电预测网架优化和错峰调度等业务应用。基于多源异构数据的关联解析,和海量用电负荷实际数据存储、索引,实现了用电查询的基础应用,包括230万用户,26000个台区,4000余中压馈线的基本台账及用电数据的快速查询,并可以进行用户用电画像、地图定位、供电范围等数据的查询,服务响应时间在三秒以内。此前,星环科技还曾凭借《星环科技电力智慧供应链智能决策平台建设方...
行业资讯
数据中台建设
随着行业和技术领域的变化日新月异,从数据仓库、动态数仓,到数据湖,从新一代湖仓一体技术到可插拔数据库,概念的引入虽然简单,但如何做到更有效,更复杂的数据资产管理就考验着对生产能力和工艺过程的管理能力。星环科技认为数据中台是一种能力、是一种组织上的策略而不仅仅是一种技术架构,它是在信息化基础上建立的可编织和可复用的数据可分析能力,从而支撑企业数字化转型。星环科技的数据中台三中心、六能力、两个体系星环科技很早就在数据中台领域布局,结合星环科技全系产品的相关组件实现数据中台能力建设。星环科技把数据中台建设归纳为三中心、六能力、两个体系,这当中都会有星环科技产品作为支撑,从而保证企业能够快速实现,并搭建起数据中台,满足企业未来发展变化。数据存储、分析探索、业务赋能三中心第一,帮助企业构建存储中心,提升数据的汇聚和整合能力;第二,构建数据分析探索中心,专注于智能分析能力和实时计算能力的提升,推动智能推荐能力和全链路实时监测和保障能力;第三,构建业务赋能中心,提供统一的访问能力实现跨平台联邦,统一的访问层控制,确保数据安全可用,同时搭建统一的服务能力,面向多场景的服务应用支撑。安全和运维、数据和分...
在国产数据库产品方面,星环科技坚持自主研发与技术创新,打造了自主可控的高性能分布式数据库ArgoDB和分布式交易型数据库KunDB,以及分布式图数据库StellarDB等产品。KunDB具备较强的SQL兼容性,同时具备高可用、高并发、在线扩缩容、数据强一致性等能力,适用于操作型业务、高并发业务等场景。ArgoDB具备完整的SQL兼容性,同时具备高扩展、高可靠、多模型、存算解耦等能力,一站式满足数据仓库、实时数据仓库、数据集市、OLAP、联邦计算等场景。通过不断的打磨和对业务场景不断的落地实践,ArgoDB和KunDB已成为具有完全自主知识产权的成熟的国产数据库,能够为更多的客户提供高性能、高可靠、成熟的数据库产品服务,帮助用户应对智能数据时代海量数据的分析与探索。分布式图数据库StellarDB兼容openCypher查询语言,提供海量图数据的存储和分析能力,支持原生图存储结构,支持万亿边PB级数据存储。同时,StellarDB具备毫秒级点边查询能力,10+层的深度链路分析能力,提供近40种的图分析算法,具备数据2D和3D展示能力。星环科技StellarDB在金融、政府和社交网络等领域...
时空数据库时空数据库是一种针对时空数据处理的数据库系统。它以时间和空间为基础,整合了空间信息和时间信息,能够对时空数据进行存储、查询和分析。时空数据库广泛应用于交通运输、城市规划、GIS等领域。分布式时空数据库分布式时空数据库是一种对时空数据进行存储和处理的数据库系统,通过分布式存储和分布式计算等技术,可以实现对大规模时空数据的高效处理和分析。与传统的集中式数据库系统不同,分布式时空数据库将数据存储在多个存储节点上,并将计算任务分配给多个计算节点来完成,从而极大地提高了时空数据的处理能力和可靠性。分布式时空数据库的出现,使得处理大规模时空数据成为了可能,也更好地满足了各个领域对时空数据深度分析的需求。星环分布式时空数据库-TranswarpSpactureSpacture是星环科技自主研发的一款面向空间、时空数据的存储与管理,集计算与存储为一体的分布式数据库产品,支持大规模矢量数据、时空轨迹数据的存储与计算,具有完备的数据查询、分析和挖掘能力,可用于时空查询分析、时空模式挖掘、时空轨迹聚类等时空轨迹数据分析场景,广泛应用于交通物流、城市管理、位置服务等场景。
作为一家企业级大数据基础软件开发商,星环科技很早就在数据中台领域布局,结合星环科技全系产品的相关组件实现数据中台能力建设。星环科技把数据中台建设归纳为三中心、六能力、两个体系,这当中都会有星环科技产品作为支撑,从而保证企业能够快速实现,并搭建起数据中台,满足企业未来发展变化。其中,三中心分别是存储中心、分析探索中心、业务赋能中心;六能力包括数据汇聚能力、数据整合能力、智能分析能力、实时计算能力、统一访问能力、统一服务能力;两个体系则是安全和运维保障体系与数据和分析支撑体系。三中心、六能力、两个保障体系都构建在一个云底座之上,满足企业私有化或者混合云多云的部署形态,同时灵活组件式的可插拔式部署形态,能够帮助企业更迅速的起步,按规划分步完善数据中台建设。除了提供基础组件和相应的工具帮助客户快速构建数据中台之外,星环科技还提供咨询实施服务,可以为企业提供量身定制的“数据云基础设施+咨询服务的端到端产品+服务”的综合解决方案。在星环科技的咨询服务产品体系中,包括为企业构建中台的架构规划、应用规划,以及帮助企业实施建设数据底座、数据中台、数据仓库,以及数据治理服务,也包括了数据的分析、业务分析、...