大数据治理 治理大数据

数据治理
星环科技提供体系完善的整体数据治理解决方案,涵盖数据治理战略、组织制度机制、数据管理活动和技术工具落地四个方面,同时,还为企业提供数据管理成熟度评估(DCMM)指导,在数据战略,数据治理数据标准、数据架构、数据安全,数据质量,数据应用,数据生存周期 八大项数据管理能力方面结合企业实际需求,帮助客户制定和实施精准有效的解决方案。

大数据治理 治理大数据 更多内容

大数据治理是指充分运用大数据、云计算、人工智能等先进技术,实现治理手段的智能化。包括对大数据的获取、处理、存储、安全等环节的管理。同时,在数据生命周期管理各阶段,如数据存储、保留、归档、处置时,要考虑大数据保存时间与存储空间的平衡,并对对业务有关键影响的数据元素进行检查和保证数据质量。此外,在隐私方面,应考虑社交数据的隐私保护需求,制定相应政策,同时还要将大数据治理与企业内外部风险管控需求建立联系。除了对大数据的获取、处理、存储、安全等环节的管理外,大数据治理还需要考虑以下几个方面:数据质量管理:大数据治理需要关注数据的质量问题,包括数据的完整性、准确性、一致性、规范性等方面。数据架构管理:大数据治理需要对数据架构进行管理,明确数据的组成结构、数据之间的关系、数据的存储位置等信息。数据生命周期管理:大数据治理需要对数据进行全面的生命周期管理,包括数据的收集、处理、存储、备份、恢复等环节。数据安全管理:大数据治理需要制定完善的数据安全策略,包括数据的保密、完整性、可用性等方面的保护。数据文化管理:大数据治理需要培养良好的数据文化,促进员工对数据的认知和理解,推动数据的广泛应用和价值发挥
行业资讯
大数据治理
大数据治理是对企业内外部海量、多源、异构的数据进行全面管理和治理的过程,旨在提高数据质量、保障数据安全、实现数据价值最大化。大数据治理关键领域元数据管理:对大数据中的元数据进行采集、存储、整合和分析,包括数据的来源、定义、结构、关系等信息,为数据治理提供基础支撑。数据质量管理:建立数据质量评估指标体系,对大数据的质量进行监控、评估和改进,确保数据的准确性、完整性、一致性等。数据安全管理:制定数据大数据治理技术架构数据采集层:负责从各种数据源中采集数据,包括结构化数据、半结构化数据和非结构化数据,如数据库、文件系统、日志文件、社交媒体等。数据存储层:采用分布式存储技术,对采集到的大数据进行存储和管理。数据处理层:运用大数据处理技术,对存储的数据进行清洗、转换、分析和挖掘等处理。数据服务层:将处理后的数据以服务的形式提供给用户和应用,如数据查询服务、数据可视化服务、数据分析服务等。大数据治理实施流程评估现状:对企业的大数据现状进行全面评估,包括数据资产、数据质量、数据安全、数据管理流程等方面,找出存在的问题和差距。制定策略:根据评估结果,制定大数据治理的策略和规划,明确治理的目标、范围
行业资讯
大数据治理
大数据治理是指对大数据进行合理、高效的管理和维护,以保证数据的质量、安全和可用性的过程。随着互联网时代的到来和信息技术的迅猛发展,各行各业都面临着庞大的数据量和多样化数据来源。而这些数据的管理和运用对于企业的决策和战略有着重要的影响,因此大数据治理成为了今企业信息管理和数据管理的重要环节。大数据治理要保证数据的质量。数据质量是大数据治理的核心目标之一,质量低劣的数据会导致企业无法有效地利用数据进行分析和决策。因此,大数据治理需要确保数据的准确性、完整性和一致性。针对数据的准确性,可以通过数据清洗和数据验证等步骤来排除数据中的错误和不一致之处;对于数据的完整性,可以通过数据采集和存储的规范来保证数据的完整性;对于数据的一致性,可以通过定义数据标准和数据规范来统一数据的格式和表方式。大数据治理要保证数据的安全性。随着大数据时代的到来,企业面临着越来越多的数据安全威胁,如数据泄露、数据篡改等问题。因此,大数据治理需要采取一系列措施来保护数据的安全。这括数据加密、访问控制、身份认证等技术手段,以及建立完善的信息安全管理制度和监控体系。同时,还需要对数据进行备份和灾备,以防止因自然灾害或硬件
行业资讯
大数据治理
大数据治理是指对企业或组织的大数据进行全面管理和优化的一系列活动,旨在确保数据的质量、安全、可用性和价值最大化。以下是关于大数据治理的详细介绍:目标提高数据质量:确保数据的准确性、完整性、一致性、存储、管理和查询,帮助用户理解数据的含义和上下文,为数据治理提供基础支持。数据安全管理:建立数据安全策略和制度,采用数据加密、访问控制、数据备份与恢复等技术手段,保障数据的安全和隐私。数据生命周期步骤规划阶段:明确数据治理的目标、范围和策略,制定数据治理的规划和路线图,确定组织架构和职责分工,为数据治理项目的实施奠定基础。评估阶段:对企业现有的数据状况进行全面评估,包括数据质量、数据安全、数据管理流程等方面,找出存在的问题和差距,为制定治理方案提供依据。设计阶段:根据评估结果,设计数据治理的体系架构、流程和规范,包括数据标准、数据质量规则、元数据模型、数据安全策略等,确保数据治理方案的科学性和可行性。实施阶段:按照设计方案,逐步实施数据治理的各项措施,包括数据标准的制定和推广、数据质量的提升、元数据的采集和管理、数据安全的保障等,同时建立数据治理的监控和评估机制,确保治理工作的顺利进行
大数据数据治理是一个针对海量、多样、高速增长的数据所开展的全面管理活动,旨在确保大数据的质量、安全性、可用性以及合规性,从而最大化其价值。数据治理面临的大数据挑战数据量与速度:大数据的海量和高速产生载到数据存储系统中,同时保证数据的质量和一致性,是大数据数据治理需要解决的关键问题之一。数据多样性:大数据涵盖结构化、半结构化和非结构化等多种数据类型,每种类型的数据都有其独特的格式和语义。这使得制定统一的数据标准和规范变得更加复杂,例如对于文本、图像、音频和视频等非结构化数据,如何定义其元数据数据质量标准以及如何进行有效的存储和管理,是大数据数据治理的难点之一。数据质量与准确性:由于大数据来源错误模式,并进行智能修复。大数据数据治理的关键领域数据标准管理:制定适用于大数据的统一数据标准,包括数据格式、编码规则、数据字典、指标体系等,确保不同来源和类型的数据大数据平台上能够相互兼容和理解,促进和处理安全漏洞和违规行为。元数据管理:对大数据的元数据进行收集、整理、存储和管理,包括数据的定义、来源、结构、关系、业务规则等信息。通过元数据管理,实现数据的快速查找、理解和使用,支持数据治理的各项
行业资讯
AI大数据治理
AI浪潮下,大数据治理如何破局与进阶?AI与大数据:时代的强音在当今数字化浪潮中,AI与大数据无疑是最为耀眼的双子星。AI,凭借其强大的机器学习、深度学习能力,正快速渗透到各个领域,从医疗诊断到智能融合和广泛应用,一系列问题也随之而来,数据安全、隐私保护、算法偏见、数据质量参差不齐等,这些问题不仅制约着AI和大数据的健康发展,也给社会带来了潜在的风险。于是,大数据治理应运而生,它成为了保障AI与大数据有序发展的关键所在,接下来,让我们一同深入探寻AI大数据治理的奥秘。解锁AI大数据治理的底层逻辑(一)概念剖析AI大数据治理,是一个综合性的概念,它并非简单地将AI技术应用于大数据管理,而是涵盖了数据管理、质量把控、安全保障等多个关键方面。从本质上讲,它是一套全面的体系,旨在确保企业或组织在大数据环境下,能够高效、安全、合规地管理和利用数据资产。在数据管理层面,AI大数据治理涉及数据的全的存储技术和架构,以保障数据的高效读写和长期保存。质量把控是AI大数据治理的核心环节之一。它通过一系列的技术手段和流程,对数据的准确性、完整性、一致性和可靠性进行评估和改进。比如,利用数据清洗技术
大数据治理是指在组织内部对大数据的管理和控制框架,它涵盖了从数据的获取、存储、处理、分析、共享到归档和删除的整个生命周期。大数据治理的目标是确保数据的质量、安全性、合规性、透明度和可访问性,同时最大化数据的价值。以下是大数据治理的几个关键组成部分:数据质量管理:确保数据的准确性、一致性、完整性和可靠性。数据安全:保护数据免受未授权访问、泄露、篡改和破坏。数据隐私:遵守隐私法规,保护个人和敏感信息调整和优化。大数据治理是一个动态的、跨部门的、涉及整个组织的过程,它需要高层的支持、明确的策略、有效的工具和持续的维护。随着数据量的增加和数据类型的多样化,大数据治理变得越来越重要,以确保组织能够有效地管理和利用其数据资产。谁可以访问数据,以及他们可以进行哪些操作。数据共享和数据开放:进数据在组织内部和外部合作伙伴之间的安全共享。数据审计和监控:监控数据使用情况,进行定期审计以确保合规性和安全性。数据治理技术工具:使用技术工具支持数据治理活动,如数据目录、数据质量管理工具、数据安全工具等。数据治理培训和文化:提升员工对数据治理的意识和能力,建立数据治理文化。数据治理评估和优化:定期评估数据治理的效果,并根据反馈进行
大数据公共治理是指政府部门及其他公共机构利用大数据技术和方法,对公共事务进行管理和决策的过程,涉及数据收集、存储、分析和应用等环节,旨在提高治理的科学性、精准性和有效性。核心目标提升决策质量:通过对空气质量。医疗卫生:涵盖疾病监测与预防、医疗资源配置、公共卫生应急等领域。如利用医疗大数据开展疾病流行趋势分析,提前做好防控措施;根据患者分布和需求情况,合理调配医疗资源。教育领域:涉及教育资源分配、教学质量评估、学生个性化学习等。例如,通过分析学生学习数据,为其提供个性化的学习建议和辅导;依据区域教育需求,优化学校布局和师资配置。社会安全:在社会治安防控、网络安全监管、应急管理等方面发挥重要作用。比如,利用大数据分析犯罪模式和趋势,有针对性地部署警力;实时监测网络舆情和安全态势,及时处置网络安全事件。和把握数据内涵,做出准确判断。应用领域城市治理:包括交通管理、环境保护、城市规划、公共安全等方面。例如,通过分析交通流量数据,优化交通信号灯设置,缓解拥堵;利用环境监测数据,加强污染源监管,改善海量、多源数据的分析,挖掘数据背后的规律和趋势,为政府决策提供更全面、准确的依据,使决策更加科学、合理。优化公共服务:深入了解公众需求,实现公共服务的个性化、精准化供给,提高服务质量和效率,提升公众
大数据开发治理平台是一种集成了数据采集、存储、处理、分析和治理的综合性软件工具,旨在帮助企业高效管理和利用海量数据。其目标是通过提供一站式的解决方案,确保数据的质量、安全和合规性,同时提升数据的业务价值。功能架构大数据开发治理平台的功能架构通常分为以下几个层次:基础支撑层:功能:构建大数据基础支撑平台,提供数据存储、分析计算以及深度数据挖掘分析处理的基础运行支撑环境和工具,包括分布式计算与分布式存储能力、并行数据库等大数据基础支撑能力。采集汇聚层:功能:实现政府、行业与互联网等异构多源、分散多样的各类数据的采集汇聚,具备批量采集和基于流处理的准实时采集能力。数据治理管控层:功能:包括大数据治理平台、大数据资源池和数据资源目录,负责数据的清洗、稽核、转换、存储和共享管理。数据服务层:功能:提供统一的数据接口,支持数据在不同系统或部门之间的共享和交换,同时进行数据共享服务的监测,确保数据的安全和合规性。关键功能数据接入管理:功能:负责配置大数据平台可以接入的数据源,记录数据源相关信息,并定期检测数据可用状态。支持多种接入方式,如ETL、数据复制、Web服务、数据采集、数据爬虫等。数据存储
图数据库的应用场景非常广泛,可以应用于各个行业。以下是一些常见的应用场景:金融:在金融领域,图数据库可以帮助银行、保险公司等企业处理复杂的数据结构,支持欺诈检测、交易路由、投资组合分析等操作。社交网络:图数据库可以存储和处理社交网络中的复杂关系图谱和大量用户数据,支持好友推荐、社区发现、个性化内容推荐等操作。物流:在物流领域,图数据库可以帮助企业优化路径规划、物流运输等操作,加速发货、配送时间并提高效率。制造业:图数据库可以支持企业处理复杂的设备关系结构图,进行维修保养、设备性能分析、生产计划优化等操作。能源行业:在能源领域,图数据库可以处理复杂的电网、管道等结构图谱,并支持多种能源趋势分析和紧急事件监测等操作。电商:图数据库可以应用于电商业务中,存储和处理复杂的商品与用户之间的关系,支持个性化推荐、购物车分析、用户行为预测等操作。图数据库可以在各个领域中应用,并且在处理复杂的数据结构和大量的数据时比传统数据库具有更高的性能和效率。星环分布式图数据库StellarDB星环科技致力于打造企业级大数据基础软件,围绕数据的集成、存储、治理、建模、分析、挖掘和流通等数据全生命周期提供基础软件与...
作为一家企业级大数据基础软件开发商,星环科技很早就在数据中台领域布局,结合星环科技全系产品的相关组件实现数据中台能力建设。星环科技把数据中台建设归纳为三中心、六能力、两个体系,这当中都会有星环科技产品作为支撑,从而保证企业能够快速实现,并搭建起数据中台,满足企业未来发展变化。其中,三中心分别是存储中心、分析探索中心、业务赋能中心;六能力包括数据汇聚能力、数据整合能力、智能分析能力、实时计算能力、统一访问能力、统一服务能力;两个体系则是安全和运维保障体系与数据和分析支撑体系。三中心、六能力、两个保障体系都构建在一个云底座之上,满足企业私有化或者混合云多云的部署形态,同时灵活组件式的可插拔式部署形态,能够帮助企业更迅速的起步,按规划分步完善数据中台建设。除了提供基础组件和相应的工具帮助客户快速构建数据中台之外,星环科技还提供咨询实施服务,可以为企业提供量身定制的“数据云基础设施+咨询服务的端到端产品+服务”的综合解决方案。在星环科技的咨询服务产品体系中,包括为企业构建中台的架构规划、应用规划,以及帮助企业实施建设数据底座、数据中台、数据仓库,以及数据治理服务,也包括了数据的分析、业务分析、...
行业资讯
数据中台建设
随着行业和技术领域的变化日新月异,从数据仓库、动态数仓,到数据湖,从新一代湖仓一体技术到可插拔数据库,概念的引入虽然简单,但如何做到更有效,更复杂的数据资产管理就考验着对生产能力和工艺过程的管理能力。星环科技认为数据中台是一种能力、是一种组织上的策略而不仅仅是一种技术架构,它是在信息化基础上建立的可编织和可复用的数据可分析能力,从而支撑企业数字化转型。星环科技的数据中台三中心、六能力、两个体系星环科技很早就在数据中台领域布局,结合星环科技全系产品的相关组件实现数据中台能力建设。星环科技把数据中台建设归纳为三中心、六能力、两个体系,这当中都会有星环科技产品作为支撑,从而保证企业能够快速实现,并搭建起数据中台,满足企业未来发展变化。数据存储、分析探索、业务赋能三中心第一,帮助企业构建存储中心,提升数据的汇聚和整合能力;第二,构建数据分析探索中心,专注于智能分析能力和实时计算能力的提升,推动智能推荐能力和全链路实时监测和保障能力;第三,构建业务赋能中心,提供统一的访问能力实现跨平台联邦,统一的访问层控制,确保数据安全可用,同时搭建统一的服务能力,面向多场景的服务应用支撑。安全和运维、数据和分...
星环科技作为一家企业级大数据基础软件开发商,在图计算领域深耕多年,有着深厚的技术积淀和丰富的实践经验。星环科技自主研发的分布式图数据库StellarDB,兼容openCypher查询语言,提供海量图数据的存储和分析能力,支持原生图存储结构,支持万亿边PB级数据存储。同时,StellarDB具备毫秒级点边查询能力,10+层的深度链路分析能力,提供近40种的图分析算法,具备数据2D和3D展示能力。StellarDB克服了海量关联图数据存储的难题,通过集群化存储和丰富算法,实现了传统数据库无法提供的低延时多层关系查询,目前已经用于金融、政府、交通等众多行业,用于反洗钱、风险控制、营销等多种场景。同时StellarDB还获得了多项行业权威认可:入选信通院2022大数据十大关键词“图计算平台”代表厂商;通过了中国信通院图数据库和图计算平台基础能力两项专项测评;入选著名咨询机构Gartner《中国数据库市场指南》、《工具:中国数据库管理系统供应商甄选》报告等,彰显了其产品技术领先性。如今,5G、物联网、AI等技术的发展应用让数据呈指数倍增长,为图数据库发展提供了更广阔的应用空间。顺势而为,乘势而上...
双碳目标下,全国碳排放监测服务平台启动建设力争2030年前实现碳达峰、2060年前实现碳中和,我国明确提出“双碳”目标,充分彰显了在构建人类命运共同体进程中的大国担当。国家电网公司主动担当重要使命,提出“实现双碳目标,能源是主战场,电力是主力军,电网是排头兵”的战略部署,率先行动,发布《全国碳排放监测服务平台建设工作方案》。“双碳”目标的实现离不开科技支撑。《全国碳排放监测服务平台建设工作方案》指出,全国碳排放监测服务平台建设的总体目标是以电网数字化赋能和助力国家碳达峰碳中和,实现“电力看双碳”,“双碳看经济”,为国家碳排放统计核算体系建设、宏观调控政策制定、经济社会全面绿色转型发展等工作提供决策支持。平台建设需要解决以下问题:以数字化平台技术解决各省的地市、区县、重点行业碳排放数据维度不全面、核算方法不完善、碳核算体系不统一等方面的问题;强化数据应用,发挥好决策支撑作用,深挖电力大数据价值,开展“电力看环保”“电力看经济”等大数据应用。积极响应号召,星环科技打造碳排放监测服务平台解决方案星环科技作为大数据基础软件领域的代表性企业,有着高度的责任感和使命感,为响应“全国碳排放监测服务平...
星环科技致力于打造企业级大数据基础软件,具备大数据与云基础平台、分布式关系型数据库、数据开发与智能分析工具的软件产品矩阵,多年来深耕电力领域,覆盖电力产业“发-输-变-配-用”五大环节,为推动电力行业数字化转型做出了重要贡献。在国网上海电力智能配用电大数据应用系统建设项目中,基于星环科技大数据基础平台TDH构建的智能配用电大数据应用系统汇集了浦东1210平方千米的236万户的用电数据,高负荷738万千瓦,年用电量329亿度,占上海全网四分之一。集成的内外部数据源有10个,整个数据量到现在已经接近8个T了,台账的数据总量有29.14万条。在多元数据集成及大数据平台基础之上,应用系统实现了用电查询,电力地图等基础功能及用户用电行为分析,节电用电预测网架优化和错峰调度等业务应用。基于多源异构数据的关联解析,和海量用电负荷实际数据存储、索引,实现了用电查询的基础应用,包括230万用户,26000个台区,4000余中压馈线的基本台账及用电数据的快速查询,并可以进行用户用电画像、地图定位、供电范围等数据的查询,服务响应时间在三秒以内。此前,星环科技还曾凭借《星环科技电力智慧供应链智能决策平台建设方...
为解决AI落地难的问题,星环科技从用户需求端出发,研发了一款基于云原生架构的企业级AI能力运营平台SophonMLOps,助推AI模型落地。SophonMLOps是基于云原生架构构建的企业级AI能力运营平台,聚焦于机器学习模型全生命周期中的模型管理、模型部署、模型监控预警、模型评估和模型迭代等关键环节。通过统一纳管、统一运维、统一应用、统一监控、统一评估、统一解释,赋予企业客户易用、高效且安全可靠的AI能力运营服务,协助客户规模化管理日益增长的机器学习模型,提升模型使用效率,降低模型集成管理成本,控制模型生产环境风险。SophonMLOps针对企业AI运营的痛点,围绕企业AI模型接入、运营管理、持续训练的全生命周期,分别提供规模化集成管理、高效模型推理、模型监控预警、模型性能评估、隐私安全保障等功能,为企业的AI日常运营插上翅膀。SophonMLOps打通了AI的全生命周期,为企业的各类用户角色搭建了统一的AI协作平台。对于企业而言,MLOps规模化集成管理了多源异构的机器学习模型,并提供高效且保障隐私安全的模型推理、监控预警及性能评估服务;对用户而言,能感受到操作上的快捷,AI应用与...
时空数据库时空数据库是一种针对时空数据处理的数据库系统。它以时间和空间为基础,整合了空间信息和时间信息,能够对时空数据进行存储、查询和分析。时空数据库广泛应用于交通运输、城市规划、GIS等领域。分布式时空数据库分布式时空数据库是一种对时空数据进行存储和处理的数据库系统,通过分布式存储和分布式计算等技术,可以实现对大规模时空数据的高效处理和分析。与传统的集中式数据库系统不同,分布式时空数据库将数据存储在多个存储节点上,并将计算任务分配给多个计算节点来完成,从而极大地提高了时空数据的处理能力和可靠性。分布式时空数据库的出现,使得处理大规模时空数据成为了可能,也更好地满足了各个领域对时空数据深度分析的需求。星环分布式时空数据库-TranswarpSpactureSpacture是星环科技自主研发的一款面向空间、时空数据的存储与管理,集计算与存储为一体的分布式数据库产品,支持大规模矢量数据、时空轨迹数据的存储与计算,具有完备的数据查询、分析和挖掘能力,可用于时空查询分析、时空模式挖掘、时空轨迹聚类等时空轨迹数据分析场景,广泛应用于交通物流、城市管理、位置服务等场景。
在国产数据库产品方面,星环科技坚持自主研发与技术创新,打造了自主可控的高性能分布式数据库ArgoDB和分布式交易型数据库KunDB,以及分布式图数据库StellarDB等产品。KunDB具备较强的SQL兼容性,同时具备高可用、高并发、在线扩缩容、数据强一致性等能力,适用于操作型业务、高并发业务等场景。ArgoDB具备完整的SQL兼容性,同时具备高扩展、高可靠、多模型、存算解耦等能力,一站式满足数据仓库、实时数据仓库、数据集市、OLAP、联邦计算等场景。通过不断的打磨和对业务场景不断的落地实践,ArgoDB和KunDB已成为具有完全自主知识产权的成熟的国产数据库,能够为更多的客户提供高性能、高可靠、成熟的数据库产品服务,帮助用户应对智能数据时代海量数据的分析与探索。分布式图数据库StellarDB兼容openCypher查询语言,提供海量图数据的存储和分析能力,支持原生图存储结构,支持万亿边PB级数据存储。同时,StellarDB具备毫秒级点边查询能力,10+层的深度链路分析能力,提供近40种的图分析算法,具备数据2D和3D展示能力。星环科技StellarDB在金融、政府和社交网络等领域...
近年来,企业数据安全问题的重要性被提上了前所未有的高度。星环科技提供了从云基础设施、数据平台、数据资源、数据应用的数据安全能力。覆盖数据生命周期的各个阶段,涉及数据的收集、存储、使用、加工以及开放流通。全方位保障企业的数据安全,支撑业务合法合规的开展。星环科技凭借全面的数据安全能力助力某支付机构构建安全防线的落地实践。该支付机构拥有大量数据资产,目前机构面临着较大的挑战,需要加强数据安全管理,为此,机构决定与星环科技合作,利用星环科技的技术来提升数据安全管理能力,共同打造一个基于隐私计算的数据服务平台DaaS。根据客户需求,星环科技在基础设施层提供了基于容器的云原生操作系统TCOS,可以为用户提供独立的数据与计算环境,减少数据对外暴露的风险。在数据平台层,星环科技大数据基础平台TDH新版本增强了安全技术,支持行列级权限控制、动态脱敏等。在数据资产层,星环科技借助两款新产品:数据安全管理平台Defensor帮助企业构建整个数据安全管理域及数据流通平台Navier:包含隐私计算平台SophonP²C和数据交易门户datamall,提供包括联邦学习和差分隐私等技术能力。该支付机构的数据管理平...