金融大模型 构建

行业资讯
金融大模型
星环无涯金融大模型-TranswarpInfinity针对智能投研领域特定的业务逻辑,星环科技通过预训、提示、增强、推导范式的构建,实现Financial-Specific-LLM的训练,推出了金融策略体系,能够生成策略因子集合,构建立体的归因解释体系。毫无疑问,星环科技长期深耕金融领域,服务大量金融行业客户,积累了上百万金融专业领域的语料;基于星环科技对图数据库、深度图推理算法的技术,形成了大规模高质量的金融类事件训练指令集。二者共同铸就了星环科技开发金融领域大语言模型的坚实底座。行业智能投研大模型无涯Infinity。星环科技基于大模型的事件驱动与深度图引擎,实现对事件语义刻画、定价因子挖掘、时序编码、异构关系图卷积传播,进而构建包含事件冲击、时序变化、截面联动和决策博弈等多个维度的智能投研新范式。星环科技无涯金融大模型,寓意学海无涯,既代表了投资领域终身学习的精神,也蕴含了大模型本身在参数架构方面持续迭代的内涵。可以说无涯是一款面向金融量化领域、超大规模参数量的生成式大,作为基础大模型的二次预训练语料,使得无涯具备对包括基本面、技术面、消息面在内的金融通识领域准确的理解能力,满足行业分析师的需求。其次,星环科技无涯使用了上百类特定事件类型和20多万事件实例,完成对大模型的
金融大模型 构建 更多内容

行业资讯
金融大模型
星环无涯金融大模型-TranswarpInfinity针对智能投研领域特定的业务逻辑,星环科技通过预训、提示、增强、推导范式的构建,实现Financial-Specific-LLM的训练,推出了金融策略体系,能够生成策略因子集合,构建立体的归因解释体系。毫无疑问,星环科技长期深耕金融领域,服务大量金融行业客户,积累了上百万金融专业领域的语料;基于星环科技对图数据库、深度图推理算法的技术,形成了大规模高质量的金融类事件训练指令集。二者共同铸就了星环科技开发金融领域大语言模型的坚实底座。行业智能投研大模型无涯Infinity。星环科技基于大模型的事件驱动与深度图引擎,实现对事件语义刻画、定价因子挖掘、时序编码、异构关系图卷积传播,进而构建包含事件冲击、时序变化、截面联动和决策博弈等多个维度的智能投研新范式。星环科技无涯金融大模型,寓意学海无涯,既代表了投资领域终身学习的精神,也蕴含了大模型本身在参数架构方面持续迭代的内涵。可以说无涯是一款面向金融量化领域、超大规模参数量的生成式大,作为基础大模型的二次预训练语料,使得无涯具备对包括基本面、技术面、消息面在内的金融通识领域准确的理解能力,满足行业分析师的需求。其次,星环科技无涯使用了上百类特定事件类型和20多万事件实例,完成对大模型的

行业资讯
金融领域大模型
一场及时雨,为金融行业的发展注入了新的活力。金融大模型,是基于深度学习技术构建的大规模机器学习模型,它通过对海量金融数据的学习和分析,能够自动提取数据中的特征和规律,从而实现对金融市场的精准预测和决策支持金融大模型:开启金融新时代的智能引擎金融大模型,崭露头角在科技飞速发展的当下,人工智能已成为推动各行业变革的核心力量。从最初的简单数据处理到如今的智能决策支持,AI技术的应用不断拓展和深化。而大模型评估到投资策略制定,每一个环节都离不开海量数据的支撑。传统的金融数据分析方法虽然在一定程度上满足了业务需求,但随着数据量的爆炸式增长和市场环境的日益复杂,其局限性也逐渐显现。而金融大模型的出现,恰如。与传统模型相比,金融大模型具有更强的泛化能力和适应性,能够处理更加复杂和多样化的数据,为金融机构提供更全面、更准确的决策依据。蓬勃发展,现状概览近年来,金融大模型市场规模呈现出迅猛的增长态势。国内众多科技巨头和金融机构敏锐地捕捉到了这一发展机遇,纷纷在金融大模型领域进行战略布局。目前,金融大模型在金融领域的应用场景日益多元化,涵盖了投资研究、合规审核、客户服务等多个重要方面。在投资研究领域,金融

行业资讯
金融大模型
星环无涯金融大模型-TranswarpInfinity针对智能投研领域特定的业务逻辑,星环科技通过预训、提示、增强、推导范式的构建,实现Financial-Specific-LLM的训练,推出了金融策略体系,能够生成策略因子集合,构建立体的归因解释体系。毫无疑问,星环科技长期深耕金融领域,服务大量金融行业客户,积累了上百万金融专业领域的语料;基于星环科技对图数据库、深度图推理算法的技术,形成了大规模高质量的金融类事件训练指令集。二者共同铸就了星环科技开发金融领域大语言模型的坚实底座。行业智能投研大模型无涯Infinity。星环科技基于大模型的事件驱动与深度图引擎,实现对事件语义刻画、定价因子挖掘、时序编码、异构关系图卷积传播,进而构建包含事件冲击、时序变化、截面联动和决策博弈等多个维度的智能投研新范式。星环科技无涯金融大模型,寓意学海无涯,既代表了投资领域终身学习的精神,也蕴含了大模型本身在参数架构方面持续迭代的内涵。可以说无涯是一款面向金融量化领域、超大规模参数量的生成式大,作为基础大模型的二次预训练语料,使得无涯具备对包括基本面、技术面、消息面在内的金融通识领域准确的理解能力,满足行业分析师的需求。其次,星环科技无涯使用了上百类特定事件类型和20多万事件实例,完成对大模型的

行业资讯
金融大模型
星环无涯金融大模型-TranswarpInfinity针对智能投研领域特定的业务逻辑,星环科技通过预训、提示、增强、推导范式的构建,实现Financial-Specific-LLM的训练,推出了金融策略体系,能够生成策略因子集合,构建立体的归因解释体系。毫无疑问,星环科技长期深耕金融领域,服务大量金融行业客户,积累了上百万金融专业领域的语料;基于星环科技对图数据库、深度图推理算法的技术,形成了大规模高质量的金融类事件训练指令集。二者共同铸就了星环科技开发金融领域大语言模型的坚实底座。行业智能投研大模型无涯Infinity。星环科技基于大模型的事件驱动与深度图引擎,实现对事件语义刻画、定价因子挖掘、时序编码、异构关系图卷积传播,进而构建包含事件冲击、时序变化、截面联动和决策博弈等多个维度的智能投研新范式。星环科技无涯金融大模型,寓意学海无涯,既代表了投资领域终身学习的精神,也蕴含了大模型本身在参数架构方面持续迭代的内涵。可以说无涯是一款面向金融量化领域、超大规模参数量的生成式大,作为基础大模型的二次预训练语料,使得无涯具备对包括基本面、技术面、消息面在内的金融通识领域准确的理解能力,满足行业分析师的需求。其次,星环科技无涯使用了上百类特定事件类型和20多万事件实例,完成对大模型的

行业资讯
金融大模型
星环无涯金融大模型-TranswarpInfinity针对智能投研领域特定的业务逻辑,星环科技通过预训、提示、增强、推导范式的构建,实现Financial-Specific-LLM的训练,推出了金融策略体系,能够生成策略因子集合,构建立体的归因解释体系。毫无疑问,星环科技长期深耕金融领域,服务大量金融行业客户,积累了上百万金融专业领域的语料;基于星环科技对图数据库、深度图推理算法的技术,形成了大规模高质量的金融类事件训练指令集。二者共同铸就了星环科技开发金融领域大语言模型的坚实底座。行业智能投研大模型无涯Infinity。星环科技基于大模型的事件驱动与深度图引擎,实现对事件语义刻画、定价因子挖掘、时序编码、异构关系图卷积传播,进而构建包含事件冲击、时序变化、截面联动和决策博弈等多个维度的智能投研新范式。星环科技无涯金融大模型,寓意学海无涯,既代表了投资领域终身学习的精神,也蕴含了大模型本身在参数架构方面持续迭代的内涵。可以说无涯是一款面向金融量化领域、超大规模参数量的生成式大,作为基础大模型的二次预训练语料,使得无涯具备对包括基本面、技术面、消息面在内的金融通识领域准确的理解能力,满足行业分析师的需求。其次,星环科技无涯使用了上百类特定事件类型和20多万事件实例,完成对大模型的

行业资讯
金融大模型
星环无涯金融大模型-TranswarpInfinity针对智能投研领域特定的业务逻辑,星环科技通过预训、提示、增强、推导范式的构建,实现Financial-Specific-LLM的训练,推出了金融策略体系,能够生成策略因子集合,构建立体的归因解释体系。毫无疑问,星环科技长期深耕金融领域,服务大量金融行业客户,积累了上百万金融专业领域的语料;基于星环科技对图数据库、深度图推理算法的技术,形成了大规模高质量的金融类事件训练指令集。二者共同铸就了星环科技开发金融领域大语言模型的坚实底座。行业智能投研大模型无涯Infinity。星环科技基于大模型的事件驱动与深度图引擎,实现对事件语义刻画、定价因子挖掘、时序编码、异构关系图卷积传播,进而构建包含事件冲击、时序变化、截面联动和决策博弈等多个维度的智能投研新范式。星环科技无涯金融大模型,寓意学海无涯,既代表了投资领域终身学习的精神,也蕴含了大模型本身在参数架构方面持续迭代的内涵。可以说无涯是一款面向金融量化领域、超大规模参数量的生成式大,作为基础大模型的二次预训练语料,使得无涯具备对包括基本面、技术面、消息面在内的金融通识领域准确的理解能力,满足行业分析师的需求。其次,星环科技无涯使用了上百类特定事件类型和20多万事件实例,完成对大模型的

行业资讯
金融大模型
星环无涯金融大模型-TranswarpInfinity针对智能投研领域特定的业务逻辑,星环科技通过预训、提示、增强、推导范式的构建,实现Financial-Specific-LLM的训练,推出了金融策略体系,能够生成策略因子集合,构建立体的归因解释体系。毫无疑问,星环科技长期深耕金融领域,服务大量金融行业客户,积累了上百万金融专业领域的语料;基于星环科技对图数据库、深度图推理算法的技术,形成了大规模高质量的金融类事件训练指令集。二者共同铸就了星环科技开发金融领域大语言模型的坚实底座。行业智能投研大模型无涯Infinity。星环科技基于大模型的事件驱动与深度图引擎,实现对事件语义刻画、定价因子挖掘、时序编码、异构关系图卷积传播,进而构建包含事件冲击、时序变化、截面联动和决策博弈等多个维度的智能投研新范式。星环科技无涯金融大模型,寓意学海无涯,既代表了投资领域终身学习的精神,也蕴含了大模型本身在参数架构方面持续迭代的内涵。可以说无涯是一款面向金融量化领域、超大规模参数量的生成式大,作为基础大模型的二次预训练语料,使得无涯具备对包括基本面、技术面、消息面在内的金融通识领域准确的理解能力,满足行业分析师的需求。其次,星环科技无涯使用了上百类特定事件类型和20多万事件实例,完成对大模型的

行业资讯
金融大模型
星环无涯金融大模型-TranswarpInfinity针对智能投研领域特定的业务逻辑,星环科技通过预训、提示、增强、推导范式的构建,实现Financial-Specific-LLM的训练,推出了金融策略体系,能够生成策略因子集合,构建立体的归因解释体系。毫无疑问,星环科技长期深耕金融领域,服务大量金融行业客户,积累了上百万金融专业领域的语料;基于星环科技对图数据库、深度图推理算法的技术,形成了大规模高质量的金融类事件训练指令集。二者共同铸就了星环科技开发金融领域大语言模型的坚实底座。行业智能投研大模型无涯Infinity。星环科技基于大模型的事件驱动与深度图引擎,实现对事件语义刻画、定价因子挖掘、时序编码、异构关系图卷积传播,进而构建包含事件冲击、时序变化、截面联动和决策博弈等多个维度的智能投研新范式。星环科技无涯金融大模型,寓意学海无涯,既代表了投资领域终身学习的精神,也蕴含了大模型本身在参数架构方面持续迭代的内涵。可以说无涯是一款面向金融量化领域、超大规模参数量的生成式大,作为基础大模型的二次预训练语料,使得无涯具备对包括基本面、技术面、消息面在内的金融通识领域准确的理解能力,满足行业分析师的需求。其次,星环科技无涯使用了上百类特定事件类型和20多万事件实例,完成对大模型的

行业资讯
金融大模型
星环无涯金融大模型-TranswarpInfinity针对智能投研领域特定的业务逻辑,星环科技通过预训、提示、增强、推导范式的构建,实现Financial-Specific-LLM的训练,推出了金融策略体系,能够生成策略因子集合,构建立体的归因解释体系。毫无疑问,星环科技长期深耕金融领域,服务大量金融行业客户,积累了上百万金融专业领域的语料;基于星环科技对图数据库、深度图推理算法的技术,形成了大规模高质量的金融类事件训练指令集。二者共同铸就了星环科技开发金融领域大语言模型的坚实底座。行业智能投研大模型无涯Infinity。星环科技基于大模型的事件驱动与深度图引擎,实现对事件语义刻画、定价因子挖掘、时序编码、异构关系图卷积传播,进而构建包含事件冲击、时序变化、截面联动和决策博弈等多个维度的智能投研新范式。星环科技无涯金融大模型,寓意学海无涯,既代表了投资领域终身学习的精神,也蕴含了大模型本身在参数架构方面持续迭代的内涵。可以说无涯是一款面向金融量化领域、超大规模参数量的生成式大,作为基础大模型的二次预训练语料,使得无涯具备对包括基本面、技术面、消息面在内的金融通识领域准确的理解能力,满足行业分析师的需求。其次,星环科技无涯使用了上百类特定事件类型和20多万事件实例,完成对大模型的
猜你喜欢
产品文档
2 Quick Start
ThistutorialwillguideyouthroughthefollowingtaskswithinHippoCloud:EstablishingatablePerusingthetableIncorporatingdataExecutingsearchoperationsEliminatingrowsDissolvingthetableBeforeyoustartInthisguide,wewillbeutilizingthePythonAPI.Priortocommencement,ensurethatyouhave:RegisteredforaHippoCloudaccount.SubscribedtothecomplimentaryplanandestablishedatrialclusterwithinHippoCloud,orsubscribedtothestandard/enterpriseplansandconstructedadedicatedcluster.IfyouanticipateemployingPythonfordevelopment,ascert...
产品文档
5.8 查看集群信息
查看Master节点通过以下命令,查看集群Master节点信息:curl-ushiva:shiva-XGET'localhost:8902/hippo/v1/_cat/master?v'返回结果:epochtimestampactive.master.hostactive.master.portmaster.group169079683909:47:19172.29.203.18926841172.29.203.189:26841,172.29.203.189:26851,172.29.203.189:26861查看数据节点curl-ushiva:shiva-XGET'localhost:8902/hippo/v1/_cat/nodes?v'//查看所有节点curl-ushiva:shiva-XGET'localhost:8902/hippo/v1/_cat/nodes/{node}?v'//{node}表示待匹配的节点地址,支持以*通配,支持指定多个pattern,多个pattern以逗号分割返回结果:
产品文档
5.10 任务相关
在Hippo中,比较耗时的操作如激活、加载向量索引实际上是一个分布式任务,用户可以通过任务相关接口查看、删除任务。查看任务curl-ushiva:shiva-XGET"localhost:8902/hippo/v1/_jobs?pretty"-H'Content-Type:application/json'-d'{"job_ids":["fc6feff4f303455a9347f9aab323dfc8"],"action_patterns":["hippo*"]}';返回结果:{"jobs":[{"job_id":"810935a1d91a46b7af2ec35013454fed","job_status":"SHIVA_JOB_SUCCESS","embedding_number":100,"task_results":[{"id":"54ab52493dfb4bab9fb7742d850c64c4","status":"TASK_SUCCESS","server":"172.29.40.26:27841","embedding_number":100,"execute_time":...
产品文档
5.3 写入类操作
本节介绍Hippo表写入相关操作。Hippo会返回写入成功数据的下标以及总共写入成功的数据条数,如果出现行级错误(比如主键冲突),Hippo会返回具体的行级错误。插入本节介绍如何向Hippo中插入数据。curl-ushiva:shiva-XPUT'localhost:8902/hippo/v1/{table}/_bulk?database_name={database_name}&pretty'-H'Content-Type:application/json'-d'{"fields_data":[{"field_name":"book_id","field":[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74...
产品文档
5.7 查询类操作
过滤条件表达式Hippo当前支持如下表达式,可用于标量或向量查询。表46.过滤条件表达式表达式描述and当前版本支持and,不支持or/not==等值<小于⇐小于等于>大于>=大于等于inin[1,2,3]notinnot_in[1,2,3]like'_'表示匹配任一字符,'%'表示匹配任意字符,'\'为转义符向量相似性检索本节描述如何进行向量相似度搜索。Hippo中的向量相似性搜索计算查询向量与表中向量的距离,返回最相似的结果集。通过指定标量过滤条件,用户可以进行向量与标量的混合搜索。curl-ushiva:shiva-XGET'localhost:8902/hippo/v1/{table}/_search?pretty'-H'Content-Type:application/json'-d'{"output_fields":["book_id"],"search_params":{"anns_field":"book_intro","topk":2,"params":{"nprobe":10},"embedding_index":"ivf_flat_index"}...
产品文档
10 Hippo 运维
运维管理界面WebserverWebserver是Hippo提供运维监控的界面。默认访问地址为:4567"class="bare">http://<webserver_ip>:4567。或者在Manager管理界面我们可以通过下图所示的查看链接这里进行跳转。图15.登录HippoWebserverWebserver主要由下面几个部分构成。概况图16.概况该页面展示了Hippo集群的基本信息,包括:Masterstatus:当前的ActiveMaster,MasterGroup,MasterAddress,Master的健康状态TabletServerStatus:TabletServerAddress,健康状态,逻辑机架和数据中心信息,容量使用以及Tablet个数TabletNum:当前集群表的个数Version:Hippo版本信息库表图17.库表页面以库和表的概念集群存储的各类数据信息。库信息:库名库创建时间库内各类表的信息:点击某个库,可以看到库下所有表的信息,主要包括:••表的ID••表的名字••表的状态••表的Tablet数量••表的Engine类型••表的副本数•...
产品文档
1 Introduction
OverviewUnstructureddatamanagementismoreimportantthaneverduetotheriseofbigdata.Managingandgleaningbusinessvaluefromunstructureddataisofutmostimportancetoenterprisestoday.Advancementsinmachinelearning,aswellasdeeplearning,technologiesnowenableorganizationstoefficientlyaddressunstructureddataandimprovequalityassuranceefforts.Inthefieldofartificialintelligenceormachinelearning,embeddingsandvectordatabaseshavebecomeincreasinglyimportantfortacklingawiderangeofproblems.Thesetechniquesareusedtorepresen...
产品文档
5.18 全文检索
Hippo在1.2版本提供了全文索引能力,兼容ElasticSearch6.7.2语法,在底层架构上复用了公司产品TranswarpScope的一部分特性,支持以Java/HTTPRestful的形式通过Hippo的HTTPServer接口进行全文索引的创建、查询、使用等各类需求,通过该能力的支持,可以更好的实现向量与全文的混合检索。通过将向量检索加全文检索的联合召回,可以降低漏检和误检的概率,能够实现比单独使用向量或全文更高的精度。同时,一套数据库系统可避免部署多套系统带来的架构复杂、开发运维成本高等问题。具体的使用方法除了访问端口需要将端口从8902调整为9200外,均可参考《TranswarpScope手册》4.TranswarpScopeAPI介绍。
产品文档
3.3 Cluster
OverviewAclusterisaHippoCloudinstanceassociatedwithspecificcomputingresources.Youcancreaterelatedtables,insertcorrespondingdata,andcompleteproductexperiencewithinacluster.Beforeyouusethedemoenvironment,youneedtocreateacluster.CreateClusterYouneedtogotothespecificproject.Iftherearenoclustersunderthecurrentproject,youcanclickthe'Createcluster'buttonbelowtheclustercreationguidancepagetoentertheclustercreation.Ifthereareclustersunderthecurrentproject,youcanclickthe'+Cluster'buttonabovetheclusterlist...
产品文档
8 性能分析
本节测试主要描述了Hippo1.0在关键测试上的一些性能表现,该份测试同样也是Hippo的基准测试,后续版本发布也会在不同版本上进行该测试进行对比分析。术语表142.Hippo性能测试术语TermDescriptionnq一次搜索请求中搜索的向量个数topk一次请求中对于要检索的每个向量(依赖nq),所能检索到最近距离的向量个数RT一次请求从发起到接受响应的时间]QPS请求在每秒内成功执行的次数dataset测试所用数据集,不同数据集表示不同的业务场景测试集群配置硬件配置表143.性能测试硬件配置硬件规范Nodes3CPUIntel®Xeon®Gold5218RCPU@2.10GHzMemory16*\16GBRDIMM,3200MT/sDISKNVMeSSD2T*4GPUNONE软件配置表144.性能测试软件配置软件版本Hippov1.2TranswarpManagerTDH9.3.0测试集表145.性能测试数据集数据集名称数据集介绍向量维度向量总数查询数量数据总量距离类型Sift-128-euclidean该数据集是基于Texmex的数据集整理,使用SIFT算法得到的图片特征向量。...