金融大模型评测

符合相关的法律法规、伦理道德标准以及行业规范。通过评测结果为模型的改进、优化和安全策略的制定提供依据。重要性随着模型在众多关键领域如医疗、金融、政务等的广泛应用,安全评测能够保障这些领域的信息安全和模型安全评测是确保模型可靠、合规和安全应用的关键环节。评测的目标与重要性目标评估模型在各种应用场景下可能带来的安全风险,包括数据隐私泄露、生成有害内容、被恶意利用等方面的风险。确定模型是否稳定运行。有助于建立用户对模型的信任,避免因安全问题导致的社会负面影响和法律责任。评测的主要内容(一)数据安全数据收集阶段评估数据来源是否合法合规,是否获得了数据所有者的明确授权,避免数据侵权问题操纵模型的输出,使模型违反安全策略或生成不符合预期的内容。评测方法(一)自动化测试工具使用专门的安全检测工具对模型进行扫描,这些工具可以检测常见的安全漏洞,如代码中的安全缺陷、数据泄露风险点等。利用敏感数据进行了特殊的保护处理,如加密存储或脱敏处理。数据使用阶段检查在模型训练和推理过程中是否会泄露数据隐私,例如是否会通过生成的内容反向推测出训练数据中的敏感信息。(二)内容安全有害内容生成检测

金融大模型评测 更多内容

开箱即用的工具,方便用户在隐私场景下进行数据处理、分析、特征工程等工作,并快速建立AI模型。加密网络通信模块负责节点间大量多批次加密信息的传输,多种加密安全手段和优异的通信架构,确保平台在数据量下也能中国信通院第七批“可信隐私计算评测”评审会。评审会专家由来自中国科学院、中央财经大学、北京航空航天大学、中国科学院大学、北京交通大学等单位的专家组成。评审环节包括产品资料审核、测试报告审核、质询与答疑、集中评议,共计35家企业的产品通过了本批评测。星环科技隐私计算平台SophonP²C通过了多方安全计算性能专项评测,也是唯一一家通过第七批“可信隐私计算评测”该类别评测的厂商。中国信通院“可信隐私计算评测”体系自2018年起逐步构建,是目前国内隐私计算领域早、全、广受行业认可的评测体系。经过4年的发展,“可信隐私计算评测”已成为隐私计算领域权威的第三方评测品牌,成为供给侧产品研发和需求侧采购获得卓越的性能。星环科技的隐私计算技术已落地如数据流通、政务民生、金融营销等垂直业务场景,为跨企业数据协作提供安全可信的平台支持。
分布式数据库基础能力评测。通过不断打磨产品技术和对业务场景不断的落地实践,星环科技ArgoDB和KunDB已经在金融、政务、能源、医疗、交通等多个行业应用,成功替代Oracle、MySQL等传统业务数据库中国信息通信研究院第十五批“可信数据库”评估评测评审会结束,星环科技两款数据产品通过评测,其中星环科技分布式交易型数据库KunDB通过了关系型数据库安全专项评测;分布式数据库ArgoDB通过了。“可信数据库"系列评估评测是中国信通院自2015年推出的第三方权威评估评测体系。通过严格把关测评流程,筛选出优秀的产品和优质的服务商,圈定了国内数据库产品和服务商第一梯队,成为数据库领域研发和选型的风向标,推动了我国数据库产业快速发展。星环分布式数据库-TranswarpArgoDBArgoDB是星环科技自主研发的高性能分布式数据库,在PB级数据量上提供极致的数据分析能力。多模型数据库ArgoDB兼容SQL,保证事务ACID。KunDB具有业内领先的事务处理性能,SQL兼容性以及新的分布式查询优化技术,支持复杂查询且性能是MySQL的10倍以上,充分满足高并发、数据量的交易型业务场景,能够
金融场景模型:重塑金融行业新格局在数字化浪潮汹涌的当下,金融行业正经历着深刻变革,而金融场景模型的出现,无疑成为推动这场变革的关键力量。它宛如一把神奇的钥匙,开启了金融领域智能化、高效化的全新大门。一、深度剖析金融场景模型金融场景模型,是专门针对金融领域复杂业务场景打造的人工智能模型。它并非普通的AI模型,而是融合海量金融数据、先进算法与强大算力的结晶。通过对金融市场历史数据、经济指标、行业动态等多维度信息的深度学习,模型能够精准捕捉金融市场的细微变化和潜在规律。例如,它可以从过去几十年的股票价格走势、宏观经济数据中,挖掘出影响股价波动的关键因素,从而为投资者提供更具前瞻性的投资建议。与通用模型相比,金融场景模型具有鲜明的独特优势。它对金融专业知识的理解和运用更加深入,能够准确处理金融领域特有的术语、业务逻辑和风险评估方式。在风险评估中,通用模型可能只是泛泛分析,而金融场景模型则能根据金融行业的风险度量标准,精确计算出各种风险指标,为金融机构提供专业、可靠的风险预警。二、多元应用场景,赋能金融全流程(一)智能投顾,开启个性化投资时代在投资领域,金融场景模型的应用正
,第九批数据产品能力评测结果正式公布。星环知识图谱软件(简称:TranswarpSophon)通过知识图谱工具基础能力评测,这是继在第八批数据产品能力观察中,星环科技成为数据产品线丰富的厂商后,再次。关于中国信通院数据产品评测数据产品能力评测”是国内首个大数据产品的评测体系,经过5年的发展,“中国信通院数据产品评测”已经成为权威的数据及数据库产品评测体系,成为厂商产品研发和用户采购选型的风向标。第九批数据产品测评工作开始于2019年6月,经过了前期的参评受理,10月进行实地封闭技术测试,11月在由中国信息通信研究院、清华大学、人民大学等多种特征,将知识图谱与深度学习融合全面有效地对知识进行表达,实现在智慧金融、智慧能源等场景的落地应用,结合客户的实际需求实现企业智能化的转型。星环科技数据产品线坚持自主研发,技术上不断更新迭代12月10日,由中国信息通信研究院、中国通信标准化协会、中国互联网协会联合举办的“2019数据资产管理大会”在京召开,来自全国各地的600多名数据行业专家出席会议。会上
金融领域的模型是指应用于金融领域的规模机器学习或深度学习模型,用于解决金融市场和金机构所面临的复杂问题。这些模型通常具有较大的数据规模和参数数量,并能够从大量历史数据中学习并提供预测、风险评估、投资决策等功能。金融领域的模型可以应用于很多不同的方面,包括股票市场预测、期货交易策略、贷款违约风险评估、信用评级、金融欺诈检测、证券交易监管等。星环无涯金融模型-TranswarpInfinity针对智能投研领域特定的业务逻辑,星环科技通过预训、提示、增强、推导范式的构建,实现Financial-Specific-LLM的训练,推出了金融行业智能投研模型无涯Infinity。星环科技基于模型的事件驱动与深度图引擎,实现对事件语义刻画、定价因子挖掘、时序编码、异构关系图卷积传播,进而构建包含事件冲击、时序变化、截面联动和决策博弈等多个维度的智能投研新范式。星环科技无涯金融模型,寓意学海无涯,既代表了投资领域终身学习的精神,也蕴含了模型本身在参数架构方面持续迭代的内涵。可以说无涯是一款面向金融量化领域、超大规模参数量的生成式语言模型。主要通过自监督的增量训练和有监督的指令微调
金融模型,也被称为金融机器学习模型金融人工智能模型,利用数据和机器学习技术进行金领域的预测、风险管理和决策支持等任务的模型。随着金融行业的数字化和数据爆炸式增长,金融模型的应用越来越广泛。金融模型的应用主要包括以下几个方面:风险管理:金融模型可以通过分析历史数据和实时数据,对金融市场中的风险进行预测和识别。比如,通过对过去的金融危机事件进行分析,可以利用模型预测未来金融危机的可能性,帮助金融机构制定相应的风险管理策略。另外,金融模型还可以在交易中实时监测市场风险,并及时发出风险警报。投资决策:金融模型可以通过对历史数据和市场数据的分析,生成投资决策建议。模型可以识别出市场的组合。金融产品创新:金融模型可以利用大量的数据进行金融产品的创新和优化。模型可以通过对市场需求和客户行为的分析,提供创新的金融产品设计。比如,利用深度学习模型和自然语言处理技术,可以对客户的文本数据进行情感分析,帮助金融机构设计出满足客户需求的个性化产品。反欺诈和合规风控:金融模型可以通过对大量的历史交易数据进行分析,识别出潜在的欺诈行为和违规交易。模型可以建立起交易模式的基准,实时监测和识别
行业资讯
金融模型
金融模型:开启金融新时代的智能引擎金融模型的崛起在当今数字化浪潮汹涌澎湃的时代,金融领域正经历着深刻的变革,而金融模型的横空出世,无疑成为这场变革中最为耀眼的明星。它就像一位拥有超凡智慧的金融模型的构建是一项复杂而精妙的工程,融合了多种先进的技术,其中自然语言处理(NLP)、机器学习(ML)和深度学习(DL)技术是其核心支撑。自然语言处理技术赋予金融模型理解和处理人类语言的能力,使其能够解读金融领域的专业文本,如研究报告、新闻资讯、政策法规等。通过词嵌入、序列到序列模型等技术,金融模型可以将文本转化为机器能够理解的向量表示,进而实现信息抽取、情感分析、文本分类等任务。在分析金融新闻时,模型能够快速准确地提取关键信息,判断市场情绪,为投资者提供及时的决策参考。机器学习技术则是金融模型的“学习引擎”,通过对海量金融数据的学习,模型能够自动发现数据中的规律和模式,从而实现风险评估、投资策略制定、客户行为分析等功能。常见的机器学习算法,如逻辑回归、决策树、支持向量机等,在金融模型中被广泛应用。以风险评估为例,模型可以通过学习历史数据中的风险特征,建立风险评估模型,对新的业务
行业资讯
金融模型
金融模型:开启金融行业的智能化变革什么是金融模型金融模型,简单来说,是基于深度学习技术,专门为金融领域打造的大型人工智能模型。它通过对海量金融数据的学习,能够理解金融领域的各种概念、关系和规律,从而实现诸如风险评估、投资决策、客户服务等多种金融业务的智能化处理。从技术原理上看,金融模型与其他深度学习模型一样,基于神经网络架构。它包含大量的神经元和层级,这些层级之间通过复杂的权重连接。在训练过程中,模型会不断调整这些权重,以最小化预测结果与真实数据之间的误差。与通用模型不同,金融模型在数据和算法上都具有高度的专业性。核心技术与应用场景(一)核心技术金融模型的核心技术涵盖多个关键领域,其中深度学习是其基石。深度学习通过构建具有多个层次的神经网络,让计算机能够自动从大量数据中学习特征和模式。在金融模型中,神经网络的结构复杂且精细,包含输入层、隐藏层和输出层。输入层接收各种金融,如风险评估等级、投资策略推荐等。自然语言处理(NLP)技术在金融模型中也发挥着至关重要的作用。金融领域存在大量的文本数据,如研报、新闻资讯、政策文件等,NLP技术使得金融模型能够理解、分析和处理
什么是金融模型金融模型是指应用于金融领域的拥有大量参数和复杂结构的机器学习和人工智能模型。它们通过分析金融相关数据,并基于历史数据和主流的金融理论型进行训练,从而识别和预测市场趋势,制定相关策略,提高金融决策的精度和效率。金融模型的发展得益于人工智能和数据科学技术的不断进步,例如深度学习、强化学习、自然语言处理、数据挖掘和计算机视觉等技术。它们可以从海量的金融和经济数据中提取特征和规律,并建立高效的预测或分类模型,帮助金融机构做出更好的决策。星环无涯金融模型-TranswarpInfinity针对智能投研领域特定的业务逻辑,星环科技通过预训、提示、增强、推导范式的构建,实现Financial-Specific-LLM的训练,推出了金融行业智能投研模型无涯Infinity。星环科技基于模型的事件驱动与深度图引擎,实现对事件语义刻画、定价因子挖掘、时序编码、异构关系图卷积传播,进而构建包含事件冲击、时序变化、截面联动和决策博弈等多个维度的智能投研新范式。星环科技无涯金融模型,寓意学海无涯,既代表了投资领域终身学习的精神,也蕴含了模型本身在参数架构方面持续迭代的内涵
行业资讯
数据中台建设
随着行业和技术领域的变化日新月异,从数据仓库、动态数仓,到数据湖,从新一代湖仓一体技术到可插拔数据库,概念的引入虽然简单,但如何做到更有效,更复杂的数据资产管理就考验着对生产能力和工艺过程的管理能力。星环科技认为数据中台是一种能力、是一种组织上的策略而不仅仅是一种技术架构,它是在信息化基础上建立的可编织和可复用的数据可分析能力,从而支撑企业数字化转型。星环科技的数据中台三中心、六能力、两个体系星环科技很早就在数据中台领域布局,结合星环科技全系产品的相关组件实现数据中台能力建设。星环科技把数据中台建设归纳为三中心、六能力、两个体系,这当中都会有星环科技产品作为支撑,从而保证企业能够快速实现,并搭建起数据中台,满足企业未来发展变化。数据存储、分析探索、业务赋能三中心第一,帮助企业构建存储中心,提升数据的汇聚和整合能力;第二,构建数据分析探索中心,专注于智能分析能力和实时计算能力的提升,推动智能推荐能力和全链路实时监测和保障能力;第三,构建业务赋能中心,提供统一的访问能力实现跨平台联邦,统一的访问层控制,确保数据安全可用,同时搭建统一的服务能力,面向多场景的服务应用支撑。安全和运维、数据和分...
双碳目标下,全国碳排放监测服务平台启动建设力争2030年前实现碳达峰、2060年前实现碳中和,我国明确提出“双碳”目标,充分彰显了在构建人类命运共同体进程中的大国担当。国家电网公司主动担当重要使命,提出“实现双碳目标,能源是主战场,电力是主力军,电网是排头兵”的战略部署,率先行动,发布《全国碳排放监测服务平台建设工作方案》。“双碳”目标的实现离不开科技支撑。《全国碳排放监测服务平台建设工作方案》指出,全国碳排放监测服务平台建设的总体目标是以电网数字化赋能和助力国家碳达峰碳中和,实现“电力看双碳”,“双碳看经济”,为国家碳排放统计核算体系建设、宏观调控政策制定、经济社会全面绿色转型发展等工作提供决策支持。平台建设需要解决以下问题:以数字化平台技术解决各省的地市、区县、重点行业碳排放数据维度不全面、核算方法不完善、碳核算体系不统一等方面的问题;强化数据应用,发挥好决策支撑作用,深挖电力大数据价值,开展“电力看环保”“电力看经济”等大数据应用。积极响应号召,星环科技打造碳排放监测服务平台解决方案星环科技作为大数据基础软件领域的代表性企业,有着高度的责任感和使命感,为响应“全国碳排放监测服务平...
星环科技作为一家企业级大数据基础软件开发商,在图计算领域深耕多年,有着深厚的技术积淀和丰富的实践经验。星环科技自主研发的分布式图数据库StellarDB,兼容openCypher查询语言,提供海量图数据的存储和分析能力,支持原生图存储结构,支持万亿边PB级数据存储。同时,StellarDB具备毫秒级点边查询能力,10+层的深度链路分析能力,提供近40种的图分析算法,具备数据2D和3D展示能力。StellarDB克服了海量关联图数据存储的难题,通过集群化存储和丰富算法,实现了传统数据库无法提供的低延时多层关系查询,目前已经用于金融、政府、交通等众多行业,用于反洗钱、风险控制、营销等多种场景。同时StellarDB还获得了多项行业权威认可:入选信通院2022大数据十大关键词“图计算平台”代表厂商;通过了中国信通院图数据库和图计算平台基础能力两项专项测评;入选著名咨询机构Gartner《中国数据库市场指南》、《工具:中国数据库管理系统供应商甄选》报告等,彰显了其产品技术领先性。如今,5G、物联网、AI等技术的发展应用让数据呈指数倍增长,为图数据库发展提供了更广阔的应用空间。顺势而为,乘势而上...
作为一家企业级大数据基础软件开发商,星环科技很早就在数据中台领域布局,结合星环科技全系产品的相关组件实现数据中台能力建设。星环科技把数据中台建设归纳为三中心、六能力、两个体系,这当中都会有星环科技产品作为支撑,从而保证企业能够快速实现,并搭建起数据中台,满足企业未来发展变化。其中,三中心分别是存储中心、分析探索中心、业务赋能中心;六能力包括数据汇聚能力、数据整合能力、智能分析能力、实时计算能力、统一访问能力、统一服务能力;两个体系则是安全和运维保障体系与数据和分析支撑体系。三中心、六能力、两个保障体系都构建在一个云底座之上,满足企业私有化或者混合云多云的部署形态,同时灵活组件式的可插拔式部署形态,能够帮助企业更迅速的起步,按规划分步完善数据中台建设。除了提供基础组件和相应的工具帮助客户快速构建数据中台之外,星环科技还提供咨询实施服务,可以为企业提供量身定制的“数据云基础设施+咨询服务的端到端产品+服务”的综合解决方案。在星环科技的咨询服务产品体系中,包括为企业构建中台的架构规划、应用规划,以及帮助企业实施建设数据底座、数据中台、数据仓库,以及数据治理服务,也包括了数据的分析、业务分析、...
近年来,企业数据安全问题的重要性被提上了前所未有的高度。星环科技提供了从云基础设施、数据平台、数据资源、数据应用的数据安全能力。覆盖数据生命周期的各个阶段,涉及数据的收集、存储、使用、加工以及开放流通。全方位保障企业的数据安全,支撑业务合法合规的开展。星环科技凭借全面的数据安全能力助力某支付机构构建安全防线的落地实践。该支付机构拥有大量数据资产,目前机构面临着较大的挑战,需要加强数据安全管理,为此,机构决定与星环科技合作,利用星环科技的技术来提升数据安全管理能力,共同打造一个基于隐私计算的数据服务平台DaaS。根据客户需求,星环科技在基础设施层提供了基于容器的云原生操作系统TCOS,可以为用户提供独立的数据与计算环境,减少数据对外暴露的风险。在数据平台层,星环科技大数据基础平台TDH新版本增强了安全技术,支持行列级权限控制、动态脱敏等。在数据资产层,星环科技借助两款新产品:数据安全管理平台Defensor帮助企业构建整个数据安全管理域及数据流通平台Navier:包含隐私计算平台SophonP²C和数据交易门户datamall,提供包括联邦学习和差分隐私等技术能力。该支付机构的数据管理平...
图数据库的应用场景非常广泛,可以应用于各个行业。以下是一些常见的应用场景:金融:在金融领域,图数据库可以帮助银行、保险公司等企业处理复杂的数据结构,支持欺诈检测、交易路由、投资组合分析等操作。社交网络:图数据库可以存储和处理社交网络中的复杂关系图谱和大量用户数据,支持好友推荐、社区发现、个性化内容推荐等操作。物流:在物流领域,图数据库可以帮助企业优化路径规划、物流运输等操作,加速发货、配送时间并提高效率。制造业:图数据库可以支持企业处理复杂的设备关系结构图,进行维修保养、设备性能分析、生产计划优化等操作。能源行业:在能源领域,图数据库可以处理复杂的电网、管道等结构图谱,并支持多种能源趋势分析和紧急事件监测等操作。电商:图数据库可以应用于电商业务中,存储和处理复杂的商品与用户之间的关系,支持个性化推荐、购物车分析、用户行为预测等操作。图数据库可以在各个领域中应用,并且在处理复杂的数据结构和大量的数据时比传统数据库具有更高的性能和效率。星环分布式图数据库StellarDB星环科技致力于打造企业级大数据基础软件,围绕数据的集成、存储、治理、建模、分析、挖掘和流通等数据全生命周期提供基础软件与...
在国产数据库产品方面,星环科技坚持自主研发与技术创新,打造了自主可控的高性能分布式数据库ArgoDB和分布式交易型数据库KunDB,以及分布式图数据库StellarDB等产品。KunDB具备较强的SQL兼容性,同时具备高可用、高并发、在线扩缩容、数据强一致性等能力,适用于操作型业务、高并发业务等场景。ArgoDB具备完整的SQL兼容性,同时具备高扩展、高可靠、多模型、存算解耦等能力,一站式满足数据仓库、实时数据仓库、数据集市、OLAP、联邦计算等场景。通过不断的打磨和对业务场景不断的落地实践,ArgoDB和KunDB已成为具有完全自主知识产权的成熟的国产数据库,能够为更多的客户提供高性能、高可靠、成熟的数据库产品服务,帮助用户应对智能数据时代海量数据的分析与探索。分布式图数据库StellarDB兼容openCypher查询语言,提供海量图数据的存储和分析能力,支持原生图存储结构,支持万亿边PB级数据存储。同时,StellarDB具备毫秒级点边查询能力,10+层的深度链路分析能力,提供近40种的图分析算法,具备数据2D和3D展示能力。星环科技StellarDB在金融、政府和社交网络等领域...
为解决AI落地难的问题,星环科技从用户需求端出发,研发了一款基于云原生架构的企业级AI能力运营平台SophonMLOps,助推AI模型落地。SophonMLOps是基于云原生架构构建的企业级AI能力运营平台,聚焦于机器学习模型全生命周期中的模型管理、模型部署、模型监控预警、模型评估和模型迭代等关键环节。通过统一纳管、统一运维、统一应用、统一监控、统一评估、统一解释,赋予企业客户易用、高效且安全可靠的AI能力运营服务,协助客户规模化管理日益增长的机器学习模型,提升模型使用效率,降低模型集成管理成本,控制模型生产环境风险。SophonMLOps针对企业AI运营的痛点,围绕企业AI模型接入、运营管理、持续训练的全生命周期,分别提供规模化集成管理、高效模型推理、模型监控预警、模型性能评估、隐私安全保障等功能,为企业的AI日常运营插上翅膀。SophonMLOps打通了AI的全生命周期,为企业的各类用户角色搭建了统一的AI协作平台。对于企业而言,MLOps规模化集成管理了多源异构的机器学习模型,并提供高效且保障隐私安全的模型推理、监控预警及性能评估服务;对用户而言,能感受到操作上的快捷,AI应用与...
星环科技致力于打造企业级大数据基础软件,具备大数据与云基础平台、分布式关系型数据库、数据开发与智能分析工具的软件产品矩阵,多年来深耕电力领域,覆盖电力产业“发-输-变-配-用”五大环节,为推动电力行业数字化转型做出了重要贡献。在国网上海电力智能配用电大数据应用系统建设项目中,基于星环科技大数据基础平台TDH构建的智能配用电大数据应用系统汇集了浦东1210平方千米的236万户的用电数据,高负荷738万千瓦,年用电量329亿度,占上海全网四分之一。集成的内外部数据源有10个,整个数据量到现在已经接近8个T了,台账的数据总量有29.14万条。在多元数据集成及大数据平台基础之上,应用系统实现了用电查询,电力地图等基础功能及用户用电行为分析,节电用电预测网架优化和错峰调度等业务应用。基于多源异构数据的关联解析,和海量用电负荷实际数据存储、索引,实现了用电查询的基础应用,包括230万用户,26000个台区,4000余中压馈线的基本台账及用电数据的快速查询,并可以进行用户用电画像、地图定位、供电范围等数据的查询,服务响应时间在三秒以内。此前,星环科技还曾凭借《星环科技电力智慧供应链智能决策平台建设方...
时空数据库时空数据库是一种针对时空数据处理的数据库系统。它以时间和空间为基础,整合了空间信息和时间信息,能够对时空数据进行存储、查询和分析。时空数据库广泛应用于交通运输、城市规划、GIS等领域。分布式时空数据库分布式时空数据库是一种对时空数据进行存储和处理的数据库系统,通过分布式存储和分布式计算等技术,可以实现对大规模时空数据的高效处理和分析。与传统的集中式数据库系统不同,分布式时空数据库将数据存储在多个存储节点上,并将计算任务分配给多个计算节点来完成,从而极大地提高了时空数据的处理能力和可靠性。分布式时空数据库的出现,使得处理大规模时空数据成为了可能,也更好地满足了各个领域对时空数据深度分析的需求。星环分布式时空数据库-TranswarpSpactureSpacture是星环科技自主研发的一款面向空间、时空数据的存储与管理,集计算与存储为一体的分布式数据库产品,支持大规模矢量数据、时空轨迹数据的存储与计算,具有完备的数据查询、分析和挖掘能力,可用于时空查询分析、时空模式挖掘、时空轨迹聚类等时空轨迹数据分析场景,广泛应用于交通物流、城市管理、位置服务等场景。