知识图谱主要应用

可以用于智能问答和信息提取等。问:时序知识图谱与静态知识图谱主要区别是什么?时序知识图谱与静态知识图谱主要区别在于时序知识图谱加入了时间维度,能够记录事物在时间轴上的关系和演化过程。这使得时序知识图谱能够更好地符合实际应用场景,挖掘出更多有用的知识。时序知识图谱是一种以时间为轴心的图谱结构,用于记录事物在时间维度上的关系和演化过程。时序知识图谱是传统知识图谱的扩展,能够更好地符合实际应用场景,挖掘出更多有用的知识。时序知识图谱中的事实被称为三元组,每个三元组由主语、谓语和宾语构成,表示它们之间的关系。其主要特点是将时间变量加入到三元组中,扩展了这种关系模型。时序知识图谱的本质就是时间轴上的知识图谱,是一个多版本、多时刻的动态图谱。建立融合等方面的技术。时序知识图谱需要深度存储,并支持高效的查询。时序知识图谱应用场景非常广泛,例如金融、医疗、自然语言处理等方面都有着广泛的应用。在金融领域,时序知识图谱可以应用于金融风险控制、个性化投资、智能理财等方面。在医疗领域,时序知识图谱可以应用于诊疗决策、疾病预测、药物研发等方面。在自然语言处理领域,时序知识图谱与自然语言处理的结合可以用于智能问答、信息提取等方面。时序知识图谱相关问题问

知识图谱主要应用 更多内容

行业资讯
知识图谱工具
提供更好的解决方案。4、金融风险管理:金融领域的风险管理涉及到多方面的数据、知识和规则,利用了知识图谱工具可以实现对金融风险的智能分析和预测。5、医疗领域:知识图谱工具在医疗领域的应用主要是将临床知识知识图谱工具是一种帮助人们构建、存储和查询知识图谱的工具。知识图谱是一种以图形表示知识之间关联关系的数据结构,可以更好地组织和理解大量的复杂知识知识图谱工具的应用范围十分广泛,下面具体介绍几个应用和病人数据结构化,并利用知识图谱的关联技术,提高医生或患者对医疗数据的理解和应用知识图谱工具帮助人们构建、存储和查询知识图谱的工具,可用于各种领域的知识表示和推理。无论是社交网络分析、搜索引擎还是智能机器人,知识图谱工具都发挥了重要的作用。随着大数据和人工智能的快速发展,相信知识图谱工具将会越来越多地应用于各个领域,并为人们带来更好的智能化体验。星环知识图谱平台-Sophon星环科技自主研发的知识图谱平台Sophon是一款覆盖知识全生命周期,集知识的采集、建模、融合、存储、计算及应用为一体的知识图谱产品。平台支持低代码图谱构建、智能化知识抽取、多模态知识存储与融合、多形式知识计算和推理以及
行业资讯
知识图谱应用
知识图谱是一种结构化的数据模型,用于表示和存储各种实体之间的关系和属性。知识图谱被广泛应用于个领域,包括搜索引擎、自然语言处理、数据分析、机器学习等。以下是知识图谱的一些典型应用域:搜索引擎优化管理欺诈识别、投资决策等金融应用。教育领域:知识图谱可以用于构建教育资源的智能检索系统,帮助学生和教师更好地获取和管理知识。以上只是知识图谱应用的一部分,随着技术的不断发展,将会有越来越多的领域应用知识图谱中。星环知识图谱平台-Sophon星环科技自主研发的知识图谱平台Sophon是一款覆盖知识全生命周期,集知识的采集、建模、融合、存储、计算及应用为一体的知识图谱产品。平台支持低代码图谱构建不同场景下的业务问题。星环科技Sophon已经在金融等多个行业成功落地,在反洗钱、反欺诈、疫情防控、公共安全、企业级营销、保险知识智能问答等场景有着广泛的应用。同时星环科技在推动知识图谱技术创新和成功落地:知识图谱可以帮助搜索引擎更好地理解用户的查询意图,提供精确的搜索结果。问答系统:知识图谱可以用于构建智能问答系统,根据用户的问题从图谱中检索相关信息并给出答案。自然语言处理:知识图谱可以用于语义分析和
人们更好地理解和利用知识。数据挖掘和知识图谱可以相互结合,通过在知识图谱应用数据挖掘技术,可以发现更多的知识和关联。数据挖掘可以帮助充和扩展知识图谱中的信息,而知识图谱可以提供更结构化和有意义的上下文信息来指导数据挖掘的过程。综合应用数据挖掘和知识图谱技术,可以进一步挖掘隐藏在数据中的知识,提供更准确和精细化的分析和应用。星环知识图谱平台-Sophon星环科技自主研发的知识图谱平台Sophon是一款覆盖知识全生命周期,集知识的采集、建模、融合、存储、计算及应用为一体的知识图谱产品。平台支持低代码图谱构建、智能化知识抽取、多模态知识存储与融合、多形式知识计算和推理以及多维度的图谱分析。除了具备链路防控、公共安全、企业级营销、保险知识智能问答等场景有着广泛的应用。同时星环科技在推动知识图谱技术创新和成功落地的过程中,也获得了多项荣誉和权威认可:入选Gartner数据挖掘是从大量数据中发现并提取有用信息的过程,其中包括处理和分析数据的技术和工具。数据挖掘可以用于识别模式、关联、聚类、分类、预测等任务,以帮助人们做出决策和发现隐藏在数据中的知识知识图谱是一种
多种应用知识图谱工具是用于创建、管理和查询知识图谱的软件工具。知识图谱工具通常提供一系列功能,包括知识图谱的建模、数据导入、查询与分析等。知识图谱工具可以帮助用户使用图形化界面或编程接口来操作和使用的采集、建模、融合、存储、计算及应用为一体的知识图谱产品。平台支持低代码图谱构建、智能化知识抽取、多模态知识存储与融合、多形式知识计算和推理以及多维度的图谱分析。除了具备链路完备性,平台还从业务场景科技近期也推出了结合知识图谱、图数据库和向量大模型的问答系统,企业基于具体的行业知识语料,可快速构建更精通特定行业知识的领域大模型,打造具备高效人机交互的业务应用。在赋予大模型拥有“长期记忆”的同时知识图谱是一种用于组织和表示知识的图形数据结构。知识图谱将现实世界的实体、概念、关系和属性以图形化方式进行建模的技术。知识图谱可以帮助人们更好地理解和获取知识,从而进行智能推理、问题解答和决策支持等知识图谱,从而实现对知识图谱的有效管理和利用。星环知识图谱平台-Sophon星环科技在知识图谱领域深耕多年,有着深厚的技术沉淀和积累,自主研发的知识图谱平台Sophon是一款覆盖知识全生命周期,集知识
行业资讯
金融知识图谱
金融领域中的各种实体和关系,从而提供全面的金融知识。金融知识图谱应用非常广泛,主要包括以下几个方面:智能投顾:基于金融知识图谱和自然语言处理技术,为用户提供个性化的投资建议和风险评估,实现智能化金融知识图谱是一种基于图谱的金融知识表示和建模方法,知识图谱以图的形式描述了金融领域中的实体、属性、关系以及实体间的复杂语义关系,从而为金融领域的自然语言处理、智能决策、风险控制等应用提供了有力的支持。金融知识图谱主要由节点和边组成。节点通常代表金融领域中的实体,如金融产品、金融机构、投资者、交易、市场等。边则表示实体间的关系,如购买、投资、交易、借贷等。通过节点和边,金融知识图谱能够清晰地描述技术,能够提供全面的金融知识,为金融领域的各种应用提供有力的支持。随着人工智能技术的不断发展,金融知识图谱应用前景将更加广阔。星环知识图谱平台-Sophon星环科技自主研发的知识图谱平台Sophon是一款覆盖知识全生命周期,集知识的采集、建模、融合、存储、计算及应用为一体的知识图谱产品。平台支持低代码图谱构建、智能化知识抽取、多模态知识存储与融合、多形式知识计算和推理以及多维度的图谱分析。除了
行业资讯
知识图谱公司
知识全生命周期,集知识的采集、建模、融合、存储、计算和应用为一体,为用户提供全面的知识图谱解决方案。Sophon平台支持低代码图谱构建,使得用户能够以更快速、高效的方式构建知识图谱。同时,平台还具营销、保险知识智能问答等场景中有着广泛的应用。在推动知识图谱技术创新和成功落地的过程中,星环科技也受到了行业的肯定。公司入选Gartner白皮书和知识图谱选型与实施指南。这些标准的制定对于行业的规范发展起到了积极的推动作用。星环知识图谱平台Sophon为企业和机构在知识处理、智能决策等方面提供了强有力的支持。未来,星环科技将继续致力于知识图谱技术的创新和应用,为各行业提供更加智能化和个性化的解决方案,推动人工智能领域的进一步发展。知识图谱是近年来人工智能领域的热门技术之一,对于构建智能化系统和解决复杂问题具有重要意义。在众多知识图谱公司中,星环科技凭借自主研发的知识图谱平台Sophon,成为该领域的领先企业。Sophon覆盖、一致的知识图谱。平台还提供多形式知识计算和推理功能,通过对知识图谱中的数据进行分析和推理,帮助用户发现隐藏的模式和规律。除了具备技术上的优势,Sophon平台还从业务场景出发,积极沉淀金融、保险等
和工具来构建知识图谱。星环知识图谱平台-Sophon星环科技自主研发的知识图谱平台Sophon是一款覆盖知识全生命周期,集知识的采集、建模、融合、存储、计算及应用为一体的知识图谱产品。平台支持低代码快速解决不同场景下的业务问题。目前,星环科技Sophon已经在金融等多个行业成功落地,在反洗钱、反欺诈、疫情防控、公共安全、企业级营销、保险知识智能问答等场景有着广泛的应用。同时星环科技在推动知识图谱知识图谱是一种以符号形式描述现实世界中概念和概念之间关系的知识库。它通过节点(实体)和边(关系)的形式,来表示现实世界中各种实体以及它们之间的联系。知识图谱构建过程知识图谱的构建过程一般包括以下处理等技术,识别和提取实体之间的关系,这些关系可以包括分类关系、组成关系、属性关系等。知识表示:将识别出的实体和关系用符号表示出来,构成知识图谱的节点和边。知识推理:利用知识图谱进行推理,可以推导出更多的新知识知识存储和查询:将构建好的知识图谱存储在数据库中,并设计高效的查询算法,以便快速准确地查询和获取知识。在构建知识图谱时,需要考虑诸如数据质量、数据规模、知识更新等问题,以及如何选择适当的算法
行业资讯
领域知识图谱
领域知识图谱是面向某一特定领域的知识图谱,强调知识的深度,通常需要基于该行业的数据库进行构建。领域知识图谱可以帮助人们更好地理解某一特定领域的知识结构和内在联系,支持推理和分析,为研究和应用提供有价值的参考。领域知识图谱应用范围非常广泛,如:辅助搜索:知识图谱可以提供更精准的语义搜索,通过关键词扩展和实体链接,能够搜索到更全面的信息。辅助问答:知识图谱可以用于问答系统,通过对问题的语义解析及应用为一体的知识图谱产品。平台支持低代码图谱构建、智能化知识抽取、多模态知识存储与融合、多形式知识计算和推理以及多维度的图谱分析。除了具备链路完备性,平台还从业务场景出发,沉淀了金融、保险等场景的图有着广泛的应用。同时星环科技在推动知识图谱技术创新和成功落地的过程中,也获得了多项荣誉和权威认可:入选Gartner,匹配问句实体,能够提供更准确的答案。辅助大数据分析:在数据分析与决策过程中,知识图谱可以帮助理清各个因素之间的内在联系,提供更准确的决策支持。推荐计算:知识图谱可以用于推荐系统,通过概念层匹配,对用户
知识图谱管理平台通常包含数据采集、实体识别、关系抽取、图谱构建、图谱存储和查询等功能,同时提供统一的数据接口和开放的API,方便应用开发人员在基础上进行二次开发和扩展。知识图谱管理平台主要的作用是将分散数据组织成一个有意义的整体,该整体可以在各种用中复用,包括自然语言处理、数据分析、智能推荐和机器学习等领域。此外,知识图谱管理平台还可以帮助企业构建自己的知识图谱应用系统,例如企业知识管理、电子商务、计算及应用为一体的知识图谱产品。平台支持低代码图谱构建、智能化知识抽取、多模态知识存储与融合、多形式知识计算和推理以及多维度的图谱分析。除了具备链路完备性,平台还从业务场景出发,沉淀了金融、保险等场景场景有着广泛的应用。同时星环科技在推动知识图谱技术创新和成功落地的过程中,也获得了多项荣誉和权威认可:入选Gartner知识图谱管理平台是一种用于构建、管理、查询和可视化知识图谱的技术工具。帮助企业和机构将分散的数据、文本和图像信息融合成一个连贯的知识图谱,并利用这个图谱提供智能化的推荐、搜索和自动化决策支持功能
图数据库是一种特殊的数据库管理系统,可以高效地存储和查询各种复杂数据间的关系。一般而言,图数据库是基于图形理论和图形模型而建立的,相比于传统的关系数据库(RDBMS),图数据库能够很好的解决复杂数据之间的连接问题,有着优越的效率和性能。图数据库可以看作一个由节点(节点表示具体的数据)和边(边表示节点之间的生物关系)组成的图,这种图称为图形数据。这些节点和边都具有特定的属性,这些属性包含了数据的详细信息,比如名称,性别,地址等内容。这种数据呈现了一个更加真实和可视的方式,具有更加完整的信息和语义,可以用于多种领域,如社交网络,交通规划,生物医学等,因此有着极其广泛的应用前景。相比于其他数据库系统,图数据库拥有以下优点:应对复杂性:图数据库可以轻松处理各种形式的复杂数据,可以通过在图形结构中表示数据之间的联系,从而实现更好的查询和可视化。相比于传统的关系型数据库,图形数据的可视化更加清晰有条理,能够更加方便的进行复杂数据的关系分析。高效性:图数据库能够高效地处理大量的数据连接操作,而且查询时不需要太多的连接,所以具有更高的查询效率。例如,在社交网络中,图数据库能够高效的搜索出用户之间的关系...
星环科技凭借自身在大数据、人工智能等领域多年来积累的技术优势和实践经验,能够为水电行业打造基于国产基础软件的新一代数据底座,实现海量数据实时接入及应用。在方案中,所有时序数据通过实时接口统一接入星环科技分布式时序数据库TranswarpTimelyre,关系型数据接入关系型分析引擎TranswarpInceptor关系库,非结构化数据接入对象存储平台。然后对时序数据、关系数据进行主题建模和维度建模,将建模结果直接写星环科技分布式数据库入ArgoDB中,形成DWD和DWS层。并在ArogDB中,面向应用分析,构建数据指标宽表、应用主题数据等数据集市层。这里有几个很关键的联合分析技术,一个是“序关分析”,举个例子,我们在做故障预警算法开发的过程中,需要提取故障特征,通过历史设备台账数据(一般存在关系型数据库),把所有设备的故障开始时间、故障结束时间,故障类型等拿出来,关联时序数据库找到设备故障时刻的测点值,这些值要提取出来,作为样本进行AI模型训练。另外一个是流上机器学习与流批一体,按照上面的例子,训练完模型后,需要部署在实时计算引擎上,与离线库中的档案数据表等,构建实时故障预警模型,对同...
AquilaInsight是星环科技推出的一款多模数据平台监控软件,为企业运维团队提供了一套统一、完整、便捷的智能化运维解决方案。通过丰富的仪表盘管理、告警与通知管理、实时和历史查询语句运行分析、计算和存储引擎的统一监控、完整的日志收集过滤与检索等功能,实现高效智能运维的目标,充分保证集群稳定高效的运作。业务痛点企业在应对业务部门的扩张以及数据融合创新时,通常会针对不同的项目场景引入不同的数据模型以及大数据产品。这些产品和模型为企业解决了海量多源异构数据的存储管理难题,但与此同时,产品服务的可靠性问题也为企业带来了挑战。服务需要持续高效、稳定、可靠的运作,对于企业运维团队来说需要做到有问题及时发现,资源不够及时扩容,出现故障迅速修复,以防止出现服务器长时间宕机、业务长时间中断、数据丢失等问题。企业如果采用了大量分布式架构的大数据组件,那么运维人员需要掌握每一款大数据产品的相关知识,极大的增加了企业的运维成本以及运维人员的学习成本。并且由于缺乏统一的运维入口,传统的查询运维难以完成指标数据的可视化,极易缺乏或遗漏关键监测指标。在数据碎片化、监控对象粒度庞大的情况下,自动化监控难以实现,无...
近年来,图数据库的价值逐渐得到了大家的关注。作为一家专注于图数据库研发的企业,星环科技成为了行业内备受关注的图数据库公司之一。星环科技致力于打造企业级大数据基础软件,旨在为用户提供数据的集成、存储、治理、建模、分析、挖掘和流通等全生命周期的基础软件和服务。同时,作为一家深入图计算领域多年的公司,星环科技自主研发了分布式图数据库StellarDB,StellarDB兼容openCypher查询语言,提供海量图数据的存储和分析能力,支持原生图存储结构,支持万亿边PB级数据存储。另外,StellarDB还具备毫秒级的点边查询能力、10+层深度链路分析能力和近40种的图分析算法,同时还可提供数据2D和3D展示能力。星环科技进一步推出的StellarDB4.0版本,在数据导入、多跳查询和图算法性能方面实现了数倍升级,同时在易用性、安全性、运维管理和开放性方面也全面升级。这些升级内容均有利于帮助企业用户更高效地挖掘海量数据互联价值。星环科技已经成功克服了海量关联图数据存储的难题,通过集群化存储和丰富算法,实现了传统数据库无法提供的低延时多层关系查询。广泛应用于金融、政府、交通等多个行业的反洗钱、风...
数字经济时代,边缘计算作为行业数字转型的核心能力底座,正在快速崛起。星环科技也在边缘计算领域进行了诸多探索,研发了边缘计算平台Sophon。Sophon是解决多模态数据集成和治理过程中的边缘化、智能化的云端-边缘端融合计算平台,支持标准的视频和物联网协议接入,低代码的业务流程构建,高性能的数据处理和分析,企业级的云-边数据、服务治理,以及针对边缘嵌入式和云端服务器等异构硬件的适配。星环科技Sophon平台包括设备数据管理、模型训练迭代、边缘模型部署、应用构建分发、数据治理能力、边缘自治能力、云边协同能力七大能力。Sophon可以从两个层面实现效益价值:降低长尾应用的实施人力,降低从数据到模型,模型到应用的构建成本;改变长尾应用的落地模式,从粗放的一次性模型交付到精细化的模型持续运营。其主要技术创新包括:边缘可视化流处理构建、边缘数据采样驱动模型迭代、边缘实时数据可视化、边缘深度推理引擎。设备数据管理:平台支持超过20种标准的设备协议,用户只需要进行简单配置便可快速将物联网设备或视频设备接入平台,并进行设备数据实时预览和统一管理。边缘模型部署:平台支持多种框架训练的深度学习模型的上架,通...
行业资讯
图数据库技术
图数据库技术是一种应对处理网络、社交网络、金融、物流、人力资源等领域大规模图数据的数据库技术。它的核心思想是将数据以节点和边(或关系)的形式表示为图结构,并且使用图论算法来处理和分析图数据。与传统关系型数据库相比,图数据库具有以下独有的优势:高效处理复杂关系:图数据库能够更加高效和便利地处理网络关系的复杂性,而关系型数据库则需要多表关联,从而开销比较大。更加贴合业务需求:图数据库建立的业务图模型更能够贴合实际业务需求,更好的反映业务中的关系复杂性,同时也更加容易维护和解决问题。易于拓展:作为新型数据库,图数据库基于跨平台开源软件,并且基于标准语言,可以并行处理,易于拓展。更好的查询性能:图数据库采用以图形方式存储的数据,查询性能快,即使在数据量较大时,图查询语言效果也良好。更好的原型应用程序:图数据库的特性,同时也增加了更多的应用程序,这些程序在传统关系型数据库中往往比较困难。图数据库技术在社交网络分析、推荐系统、物流、金融、人工智能等领域有广泛的应用前景。星环分布式图数据库StellarDB星环科技致力于打造企业级大数据基础软件,围绕数据的集成、存储、治理、建模、分析、挖掘和流通等数...
TranswarpDataStudio(简称TDS)是星环科技自研的一站式大数据开发工具,提供数据集成、存储、治理、服务和共享等数据处理全生命周期的企业级管理能力。结合星环科技大数据基础平台TranswarpDataHub简称TDH)业界创新的多模态的大数据处理能力,能够提升企业构建数据中台、数据仓库、数据湖等系统的效率,更高效地实现数据资产化和数据业务化数据开发套件,助力企业完成数据统一化数据开发套件包含了大数据整合工具Transporter、数据库在线开发与协同工具SQLBook和任务调度软件Workflow,该套件作为星环科技大数据基础平台TranswarpDataHub的生态开发应用工具,针对数据开发场景,提供数据集成、SQL开发和任务调度的能力,帮助企业将数据归集到数据湖仓,完成数据统一化的过程。数据开发套件的三大核心优势:分布式架构设计,可支持PB级别的数据平台建设,支持日均十万级任务调度,性能可扩展;支持SQL关键词和SQL片段推荐,数据开发知识积累,智能化持续优化开发体验和开发效率;基于大数据平台计算能力提供数据转换能力,避免传统ETL工具本身的计算瓶颈。数据治理套件,...
分布式图数据库是一种用于存储、管理和查询图数据的数据库,适用于处理海量复杂数据、实现多跳关系查询和图算法计算。通过分布式存储和计算,实现对大规模图数据的高效管理和查询。分布式图数据库使用图结构存储数据,节点和边可以拥有自定义的属性,支持多种查询语言和图算法。它通常由多个节点组成,每个节点负责存储和处理一部分数据,互相协作完成任务。分布式图数据库适用于金融、社交媒体、医疗等领域的数据分析和挖掘。TranswarpStellarDB是由星环科技自主研发的一款分布式图数据库,兼容开放Cypher查询语言。它支持原生图存储结构,提供PB级别的海量图数据的存储和分析能力。同时,在易用性、安全性、运维管理以及开放性方面也有着不错的表现。TranswarpStellarDB4.0性能在多跳查询和图算法方面实现了数倍升级,并且在易用性、安全性、运维管理和开放性等方面都进行了全面升级,可以帮助企业用户更快、更高效地挖掘海量数据互联的价值。通过采用分布式集群存储的方式,TranswarpStellarDB克服了海量关联图数据存储的难题,并通过集群化存储和丰富的算法来实现低延迟的多层关系查询。已经在金融、政...
图数据库相对于其他传统的数据库有很多优势,以下是几点常见的优势:灵活的数据模型:图数据库支持灵活的数据模型,可以存储复杂的实体类型和其之间的关系,如社交网络、地图路线等复杂模型。强大的关系查询能力:图数据库通过树状遍历方式遍历关系,使用广度优先搜索和深度优先搜索算法,提供更快速、更精确的关系查询和分析。高效的数据处理能力:图数据库处理大规模图数据的效率更高,能够对图数据进行快速存储、索引和查询,降低了大数据量和高并发访问时的数据处理成本和时间成本。聚焦场景:图数据库适用于需要对关系进行建模和分析的应用场景,更加专注于应用场景的需求,为用户提供更好的数据处理能力和建模分析能力。多语言支持:图数据库支持多种语言,为多类开发者和企业提供了更便利的操作性和接口。图数据库具有灵活性高、查询性能强、数据处理能力优异、聚焦场景和多语言支持等优势。这些优势使得图数据库在现代大数据场景下的应用越来越广泛化。星环分布式图数据库StellarDB星环科技致力于打造企业级大数据基础软件,围绕数据的集成、存储、治理、建模、分析、挖掘和流通等数据全生命周期提供基础软件与服务,在图计算领域深耕多年,自主研发了分布式...
星环科技自主研发的数据安全管理平台TranswarpDefensor,基于Defensor的五大核心能力和星环科技全局数据安全策略,可以帮助企业建设以数据为中心的数据安全防护。Defensor能够帮助企业了解内部数据敏感信息的资产地图,发现潜在风险,并监控企业重要数据的合规使用;同时,也能对企业敏感数据进行分类分级,通过数据脱敏、水印等方式对数据进行事前事后的保护,防止数据泄露或能够在数据泄露后做到可以溯源追踪。五大核心能力:分类分级、数据脱敏、操作监测、操作审计、个人信息去标识第一,敏感数据识别与分类分级,帮助企业全面梳理敏感资产,并绘制分类分级资产地图。Defensor内置的分类分级标准参照,涵盖了多个行业法律法规,并与律师深度合作探讨,共同落实了大量规则;基于正则表达式、关键字内容、算法匹配、字典匹配等方式,自动扫描全局敏感数据,提供定时敏感识别扫描任务。第二,提供数据脱敏和水印等能力,让敏感数据可以脱敏后服务业务,并在发生泄露后可以追踪溯源。平台预置多种脱敏算法,开箱即用,满足不同场景,不同安全等级的脱敏要求。当敏感数据需要对外流通时,支持在数据集中嵌入水印,当数据发生泄漏后,...