联邦学习产品

星环隐私计算平台
。平台提供多种开箱即用的工具,方便用户在联邦框架下进行数据处理、分析、特征工程等工作,并快速建立机器学习和深度学习模型。加密网络通信模块负责节点间大量多批次加密信息的传输,多种加密安全手段和优异的通信架构,确保平台在大数据量下也能获得卓越的性能。Sophon P²C的多种联邦学习算法适用于各类垂直业务场景,为跨企业AI协作提供安全可靠的平台支持。

联邦学习产品 更多内容

联邦学习是一种保护隐私安全的分布式的机器学习框架,能够让各参与方在不共享数据的前提下,联合进行机器学习。在保护用户隐私、企业数据安全、符合政府法规的基础上,联邦学习可从技术角度打破数据孤岛,实现AI协作。联邦学习可以应用于多个领域,如医疗健康、金融、能源等。在医疗健康领域,医疗机构、研究机构和患者可以共同参与联邦学习,从而提高疾病预测诊断和治疗的精度和效果。在金融领域,银行、信用卡公司、保险公司可以联合进行反欺诈、信用评估等方面的机器学习,并保护客户的隐私数据。在能源领域,不同的能源公司可以共同进行机器学习,提高能源利用效率、降低能源浪费,从而实现可持续发展。联邦学习的应用前景非常广阔,可以实现更加高效、安全、隐私保护的机器学习联邦学习的核心思想是在不将真实数据集公开的情况下,利用加密、去中心化、分布式等技术,在多个参与方之间共享模型参数,从而达到共同学习的目的。具体来说,联邦学习的更新参数,生成一个全局的模型参数,再将全局模型参数发送给参与方。隐私保护:为保护参与方数据隐私,一般采用加密、差分隐私等手段对数据进行处理。通过联邦学习,参与方能够共同训练一个更加准确的模型,而无
联邦学习是一种保护隐私安全的分布式的机器学习框架,能够让各参与方在不共享数据的前提下,联合进行机器学习。在保护用户隐私、企业数据安全、符合政府法规的基础上,联邦学习可从技术角度打破数据孤岛,实现AI协作。联邦学习可以应用于多个领域,如医疗健康、金融、能源等。在医疗健康领域,医疗机构、研究机构和患者可以共同参与联邦学习,从而提高疾病预测诊断和治疗的精度和效果。在金融领域,银行、信用卡公司、保险公司可以联合进行反欺诈、信用评估等方面的机器学习,并保护客户的隐私数据。在能源领域,不同的能源公司可以共同进行机器学习,提高能源利用效率、降低能源浪费,从而实现可持续发展。联邦学习的应用前景非常广阔,可以实现更加高效、安全、隐私保护的机器学习联邦学习的核心思想是在不将真实数据集公开的情况下,利用加密、去中心化、分布式等技术,在多个参与方之间共享模型参数,从而达到共同学习的目的。具体来说,联邦学习的更新参数,生成一个全局的模型参数,再将全局模型参数发送给参与方。隐私保护:为保护参与方数据隐私,一般采用加密、差分隐私等手段对数据进行处理。通过联邦学习,参与方能够共同训练一个更加准确的模型,而无
联邦学习是一种保护隐私安全的分布式的机器学习框架,能够让各参与方在不共享数据的前提下,联合进行机器学习。在保护用户隐私、企业数据安全、符合政府法规的基础上,联邦学习可从技术角度打破数据孤岛,实现AI协作。联邦学习可以应用于多个领域,如医疗健康、金融、能源等。在医疗健康领域,医疗机构、研究机构和患者可以共同参与联邦学习,从而提高疾病预测诊断和治疗的精度和效果。在金融领域,银行、信用卡公司、保险公司可以联合进行反欺诈、信用评估等方面的机器学习,并保护客户的隐私数据。在能源领域,不同的能源公司可以共同进行机器学习,提高能源利用效率、降低能源浪费,从而实现可持续发展。联邦学习的应用前景非常广阔,可以实现更加高效、安全、隐私保护的机器学习联邦学习的核心思想是在不将真实数据集公开的情况下,利用加密、去中心化、分布式等技术,在多个参与方之间共享模型参数,从而达到共同学习的目的。具体来说,联邦学习的更新参数,生成一个全局的模型参数,再将全局模型参数发送给参与方。隐私保护:为保护参与方数据隐私,一般采用加密、差分隐私等手段对数据进行处理。通过联邦学习,参与方能够共同训练一个更加准确的模型,而无
联邦学习是一种保护隐私安全的分布式的机器学习框架,能够让各参与方在不共享数据的前提下,联合进行机器学习。在保护用户隐私、企业数据安全、符合政府法规的基础上,联邦学习可从技术角度打破数据孤岛,实现AI协作。联邦学习可以应用于多个领域,如医疗健康、金融、能源等。在医疗健康领域,医疗机构、研究机构和患者可以共同参与联邦学习,从而提高疾病预测诊断和治疗的精度和效果。在金融领域,银行、信用卡公司、保险公司可以联合进行反欺诈、信用评估等方面的机器学习,并保护客户的隐私数据。在能源领域,不同的能源公司可以共同进行机器学习,提高能源利用效率、降低能源浪费,从而实现可持续发展。联邦学习的应用前景非常广阔,可以实现更加高效、安全、隐私保护的机器学习联邦学习的核心思想是在不将真实数据集公开的情况下,利用加密、去中心化、分布式等技术,在多个参与方之间共享模型参数,从而达到共同学习的目的。具体来说,联邦学习的更新参数,生成一个全局的模型参数,再将全局模型参数发送给参与方。隐私保护:为保护参与方数据隐私,一般采用加密、差分隐私等手段对数据进行处理。通过联邦学习,参与方能够共同训练一个更加准确的模型,而无
联邦学习是一种保护隐私安全的分布式的机器学习框架,能够让各参与方在不共享数据的前提下,联合进行机器学习。在保护用户隐私、企业数据安全、符合政府法规的基础上,联邦学习可从技术角度打破数据孤岛,实现AI协作。联邦学习可以应用于多个领域,如医疗健康、金融、能源等。在医疗健康领域,医疗机构、研究机构和患者可以共同参与联邦学习,从而提高疾病预测诊断和治疗的精度和效果。在金融领域,银行、信用卡公司、保险公司可以联合进行反欺诈、信用评估等方面的机器学习,并保护客户的隐私数据。在能源领域,不同的能源公司可以共同进行机器学习,提高能源利用效率、降低能源浪费,从而实现可持续发展。联邦学习的应用前景非常广阔,可以实现更加高效、安全、隐私保护的机器学习联邦学习的核心思想是在不将真实数据集公开的情况下,利用加密、去中心化、分布式等技术,在多个参与方之间共享模型参数,从而达到共同学习的目的。具体来说,联邦学习的更新参数,生成一个全局的模型参数,再将全局模型参数发送给参与方。隐私保护:为保护参与方数据隐私,一般采用加密、差分隐私等手段对数据进行处理。通过联邦学习,参与方能够共同训练一个更加准确的模型,而无
联邦学习是一种保护隐私安全的分布式的机器学习框架,能够让各参与方在不共享数据的前提下,联合进行机器学习。在保护用户隐私、企业数据安全、符合政府法规的基础上,联邦学习可从技术角度打破数据孤岛,实现AI协作。联邦学习可以应用于多个领域,如医疗健康、金融、能源等。在医疗健康领域,医疗机构、研究机构和患者可以共同参与联邦学习,从而提高疾病预测诊断和治疗的精度和效果。在金融领域,银行、信用卡公司、保险公司可以联合进行反欺诈、信用评估等方面的机器学习,并保护客户的隐私数据。在能源领域,不同的能源公司可以共同进行机器学习,提高能源利用效率、降低能源浪费,从而实现可持续发展。联邦学习的应用前景非常广阔,可以实现更加高效、安全、隐私保护的机器学习联邦学习的核心思想是在不将真实数据集公开的情况下,利用加密、去中心化、分布式等技术,在多个参与方之间共享模型参数,从而达到共同学习的目的。具体来说,联邦学习的更新参数,生成一个全局的模型参数,再将全局模型参数发送给参与方。隐私保护:为保护参与方数据隐私,一般采用加密、差分隐私等手段对数据进行处理。通过联邦学习,参与方能够共同训练一个更加准确的模型,而无
隐私计算与联邦学习紧密相关,联邦学习是隐私计算的一个重要分支和应用场景。基本概念隐私计算:指在提供隐私保护的前提下实现数据价值挖掘的技术体系,包括安全多方计算、联邦学习、机密计算、差分隐私等多种技术。联邦学习:一种分布式机器学习框架,允许多个参与方在不共享原始数据的情况下,共同训练一个全局模型。关键技术同态加密:在联邦学习中,同态加密技术可用于对模型参数进行加密,使得在加密状态下进行计算和更新
联邦学习,又称为联邦机器学习、联合学习或联盟学习,其核心思想是在不直接共享原始数据的情况下,通过对中间加密数据的流通与处理,实现多方联合的机器学习训练。这一技术为数据隐私保护与机器学习的结合提供了一种切实可行的方案,有效平衡了数据利用与隐私保护之间的矛盾。在联邦学习的框架中,参与方通常包括数据方、算法方、协调方、计算方、结果方以及任务发起方等角色。各方在保持数据本地化的同时,通过协同工作完成模型的训练和优化。根据参与计算的数据在数据方之间的分布情况不同,联邦学习可以分为横向联邦学习、纵向联邦学习联邦迁移学习三种类型。横向联邦学习适用于数据集特征重叠多而样本重叠少的情况,即各数据方拥有相似的特征空间但样本空间不同。通过横向联邦学习,可以在保护各方数据隐私的前提下,将不同数据源的样本进行联合训练,提升模型的泛化能力。纵向联邦学习则适用于数据集样本重叠多而特征重叠少的情况,即各数据方拥有相似的样本空间但特征空间不同。纵向联邦学习能够整合不同数据源的特征信息,形成更为完整的特征空间,进而提升模型的预测准确性。联邦迁移学习则是将迁移学习联邦学习相结合,利用源域的数据和知识来辅助目标域的学习
联邦学习,又称为联邦机器学习、联合学习或联盟学习,其核心思想是在不直接共享原始数据的情况下,通过对中间加密数据的流通与处理,实现多方联合的机器学习训练。这一技术为数据隐私保护与机器学习的结合提供了一种切实可行的方案,有效平衡了数据利用与隐私保护之间的矛盾。在联邦学习的框架中,参与方通常包括数据方、算法方、协调方、计算方、结果方以及任务发起方等角色。各方在保持数据本地化的同时,通过协同工作完成模型的训练和优化。根据参与计算的数据在数据方之间的分布情况不同,联邦学习可以分为横向联邦学习、纵向联邦学习联邦迁移学习三种类型。横向联邦学习适用于数据集特征重叠多而样本重叠少的情况,即各数据方拥有相似的特征空间但样本空间不同。通过横向联邦学习,可以在保护各方数据隐私的前提下,将不同数据源的样本进行联合训练,提升模型的泛化能力。纵向联邦学习则适用于数据集样本重叠多而特征重叠少的情况,即各数据方拥有相似的样本空间但特征空间不同。纵向联邦学习能够整合不同数据源的特征信息,形成更为完整的特征空间,进而提升模型的预测准确性。联邦迁移学习则是将迁移学习联邦学习相结合,利用源域的数据和知识来辅助目标域的学习
产品文档
5.7 查询类操作
过滤条件表达式Hippo当前支持如下表达式,可用于标量或向量查询。表46.过滤条件表达式表达式描述and当前版本支持and,不支持or/not==等值<小于⇐小于等于>大于>=大于等于inin[1,2,3]notinnot_in[1,2,3]like'_'表示匹配任一字符,'%'表示匹配任意字符,'\'为转义符向量相似性检索本节描述如何进行向量相似度搜索。Hippo中的向量相似性搜索计算查询向量与表中向量的距离,返回最相似的结果集。通过指定标量过滤条件,用户可以进行向量与标量的混合搜索。curl-ushiva:shiva-XGET'localhost:8902/hippo/v1/{table}/_search?pretty'-H'Content-Type:application/json'-d'{"output_fields":["book_id"],"search_params":{"anns_field":"book_intro","topk":2,"params":{"nprobe":10},"embedding_index":"ivf_flat_index"}...
产品文档
5.10 任务相关
在Hippo中,比较耗时的操作如激活、加载向量索引实际上是一个分布式任务,用户可以通过任务相关接口查看、删除任务。查看任务curl-ushiva:shiva-XGET"localhost:8902/hippo/v1/_jobs?pretty"-H'Content-Type:application/json'-d'{"job_ids":["fc6feff4f303455a9347f9aab323dfc8"],"action_patterns":["hippo*"]}';返回结果:{"jobs":[{"job_id":"810935a1d91a46b7af2ec35013454fed","job_status":"SHIVA_JOB_SUCCESS","embedding_number":100,"task_results":[{"id":"54ab52493dfb4bab9fb7742d850c64c4","status":"TASK_SUCCESS","server":"172.29.40.26:27841","embedding_number":100,"execute_time":...
产品文档
5.3 写入类操作
本节介绍Hippo表写入相关操作。Hippo会返回写入成功数据的下标以及总共写入成功的数据条数,如果出现行级错误(比如主键冲突),Hippo会返回具体的行级错误。插入本节介绍如何向Hippo中插入数据。curl-ushiva:shiva-XPUT'localhost:8902/hippo/v1/{table}/_bulk?database_name={database_name}&pretty'-H'Content-Type:application/json'-d'{"fields_data":[{"field_name":"book_id","field":[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74...
产品文档
10 Hippo 运维
运维管理界面WebserverWebserver是Hippo提供运维监控的界面。默认访问地址为:4567"class="bare">http://<webserver_ip>:4567。或者在Manager管理界面我们可以通过下图所示的查看链接这里进行跳转。图15.登录HippoWebserverWebserver主要由下面几个部分构成。概况图16.概况该页面展示了Hippo集群的基本信息,包括:Masterstatus:当前的ActiveMaster,MasterGroup,MasterAddress,Master的健康状态TabletServerStatus:TabletServerAddress,健康状态,逻辑机架和数据中心信息,容量使用以及Tablet个数TabletNum:当前集群表的个数Version:Hippo版本信息库表图17.库表页面以库和表的概念集群存储的各类数据信息。库信息:库名库创建时间库内各类表的信息:点击某个库,可以看到库下所有表的信息,主要包括:••表的ID••表的名字••表的状态••表的Tablet数量••表的Engine类型••表的副本数•...
产品文档
3.3 Cluster
OverviewAclusterisaHippoCloudinstanceassociatedwithspecificcomputingresources.Youcancreaterelatedtables,insertcorrespondingdata,andcompleteproductexperiencewithinacluster.Beforeyouusethedemoenvironment,youneedtocreateacluster.CreateClusterYouneedtogotothespecificproject.Iftherearenoclustersunderthecurrentproject,youcanclickthe'Createcluster'buttonbelowtheclustercreationguidancepagetoentertheclustercreation.Ifthereareclustersunderthecurrentproject,youcanclickthe'+Cluster'buttonabovetheclusterlist...
查看Master节点通过以下命令,查看集群Master节点信息:curl-ushiva:shiva-XGET'localhost:8902/hippo/v1/_cat/master?v'返回结果:epochtimestampactive.master.hostactive.master.portmaster.group169079683909:47:19172.29.203.18926841172.29.203.189:26841,172.29.203.189:26851,172.29.203.189:26861查看数据节点curl-ushiva:shiva-XGET'localhost:8902/hippo/v1/_cat/nodes?v'//查看所有节点curl-ushiva:shiva-XGET'localhost:8902/hippo/v1/_cat/nodes/{node}?v'//{node}表示待匹配的节点地址,支持以*通配,支持指定多个pattern,多个pattern以逗号分割返回结果:
产品文档
5.18 全文检索
Hippo在1.2版本提供了全文索引能力,兼容ElasticSearch6.7.2语法,在底层架构上复用了公司产品TranswarpScope的一部分特性,支持以Java/HTTPRestful的形式通过Hippo的HTTPServer接口进行全文索引的创建、查询、使用等各类需求,通过该能力的支持,可以更好的实现向量与全文的混合检索。通过将向量检索加全文检索的联合召回,可以降低漏检和误检的概率,能够实现比单独使用向量或全文更高的精度。同时,一套数据库系统可避免部署多套系统带来的架构复杂、开发运维成本高等问题。具体的使用方法除了访问端口需要将端口从8902调整为9200外,均可参考《TranswarpScope手册》4.TranswarpScopeAPI介绍。
产品文档
8 性能分析
本节测试主要描述了Hippo1.0在关键测试上的一些性能表现,该份测试同样也是Hippo的基准测试,后续版本发布也会在不同版本上进行该测试进行对比分析。术语表142.Hippo性能测试术语TermDescriptionnq一次搜索请求中搜索的向量个数topk一次请求中对于要检索的每个向量(依赖nq),所能检索到最近距离的向量个数RT一次请求从发起到接受响应的时间]QPS请求在每秒内成功执行的次数dataset测试所用数据集,不同数据集表示不同的业务场景测试集群配置硬件配置表143.性能测试硬件配置硬件规范Nodes3CPUIntel®Xeon®Gold5218RCPU@2.10GHzMemory16*\16GBRDIMM,3200MT/sDISKNVMeSSD2T*4GPUNONE软件配置表144.性能测试软件配置软件版本Hippov1.2TranswarpManagerTDH9.3.0测试集表145.性能测试数据集数据集名称数据集介绍向量维度向量总数查询数量数据总量距离类型Sift-128-euclidean该数据集是基于Texmex的数据集整理,使用SIFT算法得到的图片特征向量。...
产品文档
1 Introduction
OverviewUnstructureddatamanagementismoreimportantthaneverduetotheriseofbigdata.Managingandgleaningbusinessvaluefromunstructureddataisofutmostimportancetoenterprisestoday.Advancementsinmachinelearning,aswellasdeeplearning,technologiesnowenableorganizationstoefficientlyaddressunstructureddataandimprovequalityassuranceefforts.Inthefieldofartificialintelligenceormachinelearning,embeddingsandvectordatabaseshavebecomeincreasinglyimportantfortacklingawiderangeofproblems.Thesetechniquesareusedtorepresen...
产品文档
2 Quick Start
ThistutorialwillguideyouthroughthefollowingtaskswithinHippoCloud:EstablishingatablePerusingthetableIncorporatingdataExecutingsearchoperationsEliminatingrowsDissolvingthetableBeforeyoustartInthisguide,wewillbeutilizingthePythonAPI.Priortocommencement,ensurethatyouhave:RegisteredforaHippoCloudaccount.SubscribedtothecomplimentaryplanandestablishedatrialclusterwithinHippoCloud,orsubscribedtothestandard/enterpriseplansandconstructedadedicatedcluster.IfyouanticipateemployingPythonfordevelopment,ascert...