大模型技术架构

行业资讯
大模型技术架构
大模型技术架构是一个复杂的系统,它涉及到多个层面,包括数据处理、模型设计、训练、优化、部署等。数据层:数据采集:收集用于训练模型的原始数据。数据存储:使用数据库或数据湖来存储大规模数据集。数据预处理:包括数据清洗、标准化、归一化、编码等步骤。模型层:模型设计:定义模型架构。参数初始化:为模型的参数选择合适的初始值。训练层:分布式训练:使用多GPU或多节点并行训练模型。优化算法:选择合适的优化器。损失函数:定义损失函数以指导模型训练。优化层:超参数调优:使用网格搜索、随机搜索或贝叶斯优化等方法调整超参数。评估层:性能评估:使用验证集评估模型性能,指标可能包括准确率、召回率、F1分数等。误差分析:分析模型预测错误的案例,以指导进一步的模型改进。服务层:模型部署:将训练好的模型部署到生产环境。推理引擎:优化模型推理过程,提高响应速度和效率。应用层:API接口:提供API接口供外部应用调用模型。用户界面:为用户提供交互界面。监控与维护:模型监控:监控模型在生产环境中的表现,包括性能和资源使用情况。持续学习:定期使用新数据更新模型,以适应数据分布的变化。
大模型技术架构 更多内容

行业资讯
大模型应用架构
大模型应用架构包括分层架构、路由分发架构、大模型代理架构、多任务微调架构、面向微调的分层缓存策略架构、混合规则架构、知识图谱架构、智能体蜂巢架构、智能体组合架构、记忆认知架构等多种类型,各有其原理与优势以满足不同应用场景需求。以下是一些常见的大模型应用架构:分层架构基础设施层:作为整个架构的基础,涵盖了数据服务、云平台及开源社区等多个方面。数据服务为模型训练提供海量数据,云平台提供强大的算力支持服务。例如在智能问答应用中,需要综合运用生成模型、内容检索和安全性识别等多种能力。大模型应用层:处于整个架构的最高层,直接面向用户,提供各种具体的应用服务,如智能问答系统、写作助手、观点提取、智能助教特点灵活选择合适的模型进行处理,提高系统的整体效率和响应质量。大模型代理架构原理:在该架构中,多个专门针对特定任务的生成式AI模型作为领域内的专家并行工作。更大的模型负责理解上下文,并将其分解为特定的等,极大地简化了训练和测试工作流程,提高了模型的应用范围和效率。向微调的分层缓存策略架构原理:将缓存策略引入到大模型应用架构中,首先储存模型的初始结果,以便在后续查询中能够迅速提供答案,提高系统效率

行业资讯
大模型架构
大模型通常指规模巨大、参数数量众多的机器学习模型,尤其在深度学习领域,这种模型有着复杂且多层次的架构。技术架构层次大模型的技术架构可以划分为多个层次,每个层次都承担着不同的功能和任务,共同构成了大模型的完整体系:基础设施层:这是大模型技术架构的基石,包括GPU、CPU、RAM、HDD和网络等关键硬件设施。其中,GPU针对并行计算进行了优化,非常适合深度学习以及执行复杂计算任务;CPU则承担了理解能力、记忆能力、逻辑能力和生成能力等。这些能力是大模型在各种应用场景中发挥价值的基础。应用层:是大模型技术架构的最上层,主要分为RAG类应用、Agent类应用等。这些应用基于大模型的能力构建,能够为用户提供分布式的通信基础设施。云原生层:基于Docker容器和K8S的弹性云原生架构,为AI大模型的预训练、微调、推理以及应用的部署提供了高扩展、高可用的云环境。这种架构能够根据访问量的情况动态伸缩,满足内容。这些模型通过海量训练数据学习语言规律和视觉特征,能够执行多种自然语言处理和视觉任务。应用技术层:在应用技术层,主要利用大模型的推理能力对任务进行规划拆解,并使用外部工具完成复杂任务。这一层还包括了

行业资讯
大模型相关技术
大模型相关技术涵盖基础架构与算法、模型训练与优化、数据处理与管理、算力支撑、多模态融合以及安全与伦理等多方面技术内容,各方面技术相互配合共同助力大模型的构建、训练、应用及发展。以下是一些常见的大模型相关技术:基础架构与算法技术预训练与微调技术:先在大规模无监督数据上进行预训练,让模型学习到通用的语言知识和模式,然后在特定任务的有监督数据上进行微调,使模型能够快速适应各种不同的下游任务,如情感分析、机器翻译等,提高了模型的泛化能力和在特定任务上的性能。模型训练与优化技术分布式训练技术:由于大模型的参数规模巨大,单机训练难以满足计算和存储需求,因此需要采用分布式训练技术,将模型的训练任务方法,如多人标注、标注验证等,提高标注的准确性和一致性。算力支撑技术高性能计算芯片:专用芯片的并行计算能力,能够加速模型的训练和推理过程,在处理大规模矩阵运算等深度学习任务时具有明显的优势,是大模型,二者结合可以更好地满足大模型在不同场景下的应用需求,如云边协同的智能安防系统等。异构计算技术:将不同类型的计算资源进行协同工作,根据任务的特点和计算需求,合理分配计算任务到不同的计算单元上,充分发挥

行业资讯
大模型技术有哪些?
大模型技术通过先进的架构、数据处理、训练优化和模型压缩等方法,使得具有海量参数的深度学习模型在多个领域展现出强大的应用能力。大模型技术主要包括以下几个方面:模型架构:大模型通常采用复杂的架构,它能够实现更好的全局信息捕获。数据处理与预训练:大模型需要使用海量数据进行去噪和清洗,并采用多模态融合技术将图像与文本联合编码。预训练目标包括自回归和自编码。模型训练与优化:大模型训练涉及分布式训练,包括数据并行和模型并行,以及优化技术如混合精度训练和大批量训练。模型压缩:为了减少模型大小,大模型采用模型蒸馏、参数量化和稀疏化等技术。预训练技术:通过海量无标注数据学习语言的统计模式和语义信息,使模型具备广泛的语言知识和理解能力。微调技术:提供特定领域的标注数据集,对预训练的模型参数进行微小的调整,使模型更好地完成特定任务。参数高效微调技术:为了降低微调过程中的计算复杂度和资源消耗,研究者们提出了参数高效微调技术。这些技术共同支撑大模型在自然语言处理、计算机视觉、语音识别和推荐系统等多个领域的应用。

行业资讯
大模型推理架构
精心设计的推理架构。本文将介绍大模型推理架构的基本原理和关键技术。大模型推理是指训练好的模型接收输入并产生输出的过程。与训练阶段不同,推理阶段不需要调整模型参数,而是专注于快速、准确地执行前向计算计算,根据输入复杂度动态调整计算资源。内存管理是大模型推理中的关键挑战。由于模型参数可能达到数百GB,如何高效地将所需数据加载到计算设备成为重要课题。现代架构采用内存映射、参数分片等技术,确保在有限的负载情况动态调整计算频率,在保证响应速度的同时降低能耗。一些先进的架构还支持稀疏计算,跳过对输出影响较小的计算步骤,进一步让效率提高。随着技术的不断发展,大模型推理架构仍在持续进化。未来可能会出现效率大模型推理架构近年来,人工智能领域取得了显著进展,尤其是大语言模型的出现,改变了人机交互的方式。这些模型能够理解和生成自然语言,完成各种复杂任务。然而,要让这些庞大的模型在实际应用中有效运行,离不开。一个效率高的推理架构需要考虑计算资源、响应速度、能源消耗等多个因素。在硬件层面,现代大模型推理主要依赖于图形处理器和张量处理单元。这些专用芯片能够并行处理大量矩阵运算,显著提高推理速度。为了进一步让效率

行业资讯
大模型技术
大模型技术是基于大规模参数的深度学习模型技术。大模型技术的出现,使得AI能够在各种复杂的任务中表现出更高的性能和更强的泛化能力。大模型技术的核心是采用大规模的参数数量,这些参数是在海量的数据上进行预训练的。在预训练过程中,模型会学习到大量数据的特征和规律,从而具备对未知数据的强大推断能力和理解能力。大模型技术的优点在于其能够处理更加复杂的问题,同时表现出更高的性能和更强的泛化能力。能够让AI系统更好地理解和处理自然语言、图像、声音等多媒体信息,从而在各个领域得到广泛的应用。在大模型技术的研究和应用中,需要解决很多技术上的挑战。大模型需要大规模的计算资源进行训练和推断,这需要高昂的硬件成本和了无涯金融大模型Infinity、大数据分析大模型SoLar“求索”,促进金融分析和大数据分析的平民化。星环科技将自主研发的领先创新技术赋能各行各业,与生态伙伴共同打造国产化大数据技术生态,推动数字经济复杂的算法优化。另外,大模型的训练和优化需要丰富的经验和专业的技能,需要大量的时间和人力投入。此外,大模型的训练和推断需要高质量的数据,因此数据采集和处理也是一项重要的工作。为帮助企业构建自己的大模型

行业资讯
大模型推理技术
不同计算阶段采用不同精度的数值表示,在保证结果质量的同时提高速度。未来发展方向未来大模型推理技术将朝着效率更高、更普适的方向发展。自适应推理技术能够根据输入复杂度动态调整计算资源分配。神经架构搜索可大模型推理技术在人工智能领域,大模型推理技术正逐渐成为推动智能化应用落地的关键环节。随着深度学习模型规模的不断扩大,如何有效、准确地进行模型推理已成为学术界和工业界共同关注的焦点问题。什么是大模型。这类模型在推理时面临着计算资源消耗大、响应速度要求高等特殊挑战。推理技术的关键要素大模型推理技术的核心在于平衡三个关键要素:准确性、速度和资源消耗。准确性是模型性能的基础,但在实际应用中,往往需要蒸馏能够有效减少模型体积和计算量。推理优化方法动态批处理是一种常见优化技术,它将多个推理请求合并处理,充分利用硬件并行计算能力。缓存机制可以存储频繁使用的中间结果,避免重复计算。此外,模型分割技术将大自动设计适合特定硬件平台的模型结构。联邦推理则允许多方协作完成推理任务而不共享原始数据。随着算法创新和硬件进步的协同作用,大模型推理技术将持续突破现有局限,为人工智能应用落地提供坚实支撑,让大规模智能服务真正走入日常生活。

行业资讯
AI大模型技术
AI大模型技术是指利用大规模数据集和计算资源训练的深度学习模型,这类模型具有强大的泛化能力和复杂的结构,能够在多个领域实现超越传统方法的性能。AI大模型的关键特征包括:1.预训练技术无监督预训练:这是大模型训练的重要阶段。模型在大规模的无监督数据上进行学习,例如互联网上的文本、图像等。预训练与微调结合:先进行无监督预训练后,再使用少量有监督数据针对特定任务进行微调。2.多模态融合技术特征表示融合:在多模态大模型中,需要将不同模态(如文本、图像、音频)的数据转换为统一的特征表示进行融合。量化技术:将模型的参数从高精度转换为低精度,减少参数存储所需的空间,同时也能加快计算速度。剪枝技术:通过去指标。可解释性技术:由于大模型通常是黑盒模型,理解其决策过程很重要。一些技术如特征重要性分析、注意力可视化等可以帮助解释模型。除模型中不重要的连接或神经元,减少模型的复杂度。例如,根据参数的重要性评估,将一些对模型性能影响较小的参数剪掉,在保证模型性能基本不变的情况下,降低模型的计算量和存储量。3.模型评估与解释技术评估指标

行业资讯
什么叫大模型技术?
大模型技术是指使用大规模数据、强大的计算能力以及先进的算法,训练出具有大量参数的深度学习模型的技术,具有以下特点和优势:大规模数据训练大模型通常需要海量的数据来进行训练,这些数据涵盖了各种领域和主题和复杂架构设计的大模型,具有很强的通用性和泛化能力,能够处理多种类型的任务,如文本生成、问答系统、机器翻译、情感分析、图像分类、目标检测等,而无需针对每个具体任务重新设计和训练模型。只需对模型进行适当的微调或直接使用,就可以在不同的应用场景中发挥作用,大大提高了模型的应用范围和效率。,如文本、图像、语音等。通过对大规模数据的学习,模型能够捕捉到更丰富的语言知识、语义信息、图像特征等,从而更好地理解和生成各种内容。大量参数与复杂结构拥有庞大数量的参数是大模型的显著特征之一。这些参数可以看作是模型存储知识和信息的“容器”,参数越多,模型能够表示的函数空间就越大,也就越有可能拟合复杂的数据分布和模式,从而提高模型的准确性和泛化能力。强大的计算能力支持训练大模型需要强大的计算资源来支持大规模的数据处理和复杂的模型计算。通常需要使用高性能的GPU、TPU等专用硬件,以及大规模的集群计算环境,以加快模型的训练速度。预训练与微调大模型一般采用预训练和微调的训练策略。预训练阶段,模型在
猜你喜欢

行业资讯
数据库国产化替代
数据库作为提供数据存储与处理能力的基础软件,是信息系统的基础、信息安全的基石,因此,数据库自主可控和国产化替代已经刻不容缓。兼容性是国产化替代关键,自研数据库更具潜力Oracle数据库发展较早,在国内市场内占领了一定先机,企业经过信息化的长期积累和革新,基于Oracle开发了大量的系统业务。为了能够适配新的国产数据库产品,必须对应用代码进行大量修改,各数据表的数据类型、函数、语法规则需要进行系统、全面的改造,这就要求新的国产数据库对原有数据库能够有很好的兼容性支持,降低迁移的代码改造成本。Oracle经过多年的发展,在SQL语言、性能、实例形态、容灾方案等方面有很多积累扩展。若要实现Oracle数据库的国产化替代,除了要能够提供在性能、容灾能力、安全能力等方面全方位提供对等的能力,首先要解决的就是如何兼容Oracle的大量SQL方言,尤其是Oracle的PL/SQL这一独特的广受欢迎的语法体系。中国信通院《数据库发展研究报告》中表示,“国内关系型数据库产品中多数是基于MySQL和PostgreSQL二次开发的”。因此,这些产品对MySQL、PostgreSQL兼容性较好,但没有体系化的...

企业选择合适的图数据库需要考虑多方面的因素,包括以下几点:数据集规模:如果需要处理大规模的图形数据,应选择支持水平扩展和集群部署的图数据库。查询需求:不同的图数据库对数据类型和查询需求的支持程度有所不同,应根据实际需求选择。性能和可扩展性:不同的图数据库性能和可扩展性有所不同,应选择性能和可扩展性良好的图数据库。支持程度:选择使用支持程度好的图数据库,可以得到更好的技术支持。维护和成本:选择维护成本低、方便使用的图数据库,能够降低维护成本和使用难度。在选择图数据库时,应根据具体需求进行综合分析、评估和选择。星环科技分布式图数据库是国内比较知名的图数据库产品之一。星环分布式图数据库StellarDB星环科技在图计算领域深耕多年,自主研发了分布式图数据库StellarDB,兼容openCypher查询语言,提供海量图数据的存储和分析能力,支持原生图存储结构,支持万亿边PB级数据存储。同时,StellarDB具备毫秒级点边查询能力,10+层的深度链路分析能力,提供近40种的图分析算法,具备数据2D和3D展示能力。StellarDB在数据导入、多跳查询和图算法性能方面实现了数倍升级,同时在易用...

行业资讯
数字政府建设
近日,领先的IT市场研究和咨询公司IDC发布2022年数字政府百强榜,梳理出数字政府领域领先的技术供应商,评估了技术提供商的市场能力及市场份额。星环科技作为企业级大数据基础软件开发商,成功入选IDC数字政府百强榜“大数据及数据治理”模块。星环科技致力于打造企业级大数据基础软件,围绕数据的集成、存储、治理、建模、分析、挖掘和流通等数据全生命周期提供基础软件与服务,形成了大数据与云基础平台、分布式关系型数据库、数据开发与智能分析工具的软件产品矩阵。在政府领域,星环科技通过智慧政务数字底座为政府数字化转型建设提供计算、存储、算法等基础能力支撑,归集业务数据,优化业务流程,治理出有价值的数据资源,进行专题分析沉淀数据资产,服务部门之间数据共享与业务协同,服务领导决策与政策制定,服务公众、企业便捷办事。公司产品已被多个部委或省市机关部门使用,助力构建数字化政府,提升治理效率。比如星环科技基于数据云平台TDC为建设上海市数据资源平台提供了底层支撑,将70多个委办局以及16个区县业务库的结构化和非结构化数据进行归集,构建三级数据共享交换体系,保障数据安全,支撑“一网通办”等数据服务能力。此外,根据不...

行业资讯
构建城轨交通数据底座
利用星环科技数据云平台TDC打造的基于PaaS平台的绿色轨道交通线网指挥中心,为轨交集团打造技术中台、数据中台、模型中台、业务中台。与传统模式相比,PaaS模式采取集约化部署,能大大提高资源利用率;可为开发人员提供隔离的租户环境,灵活选择所需大数据与AI能力,进行探索分析和数据挖掘。技术中台:统一资源管控,灵活资源分配,快速资源申请与部署。数据中台:全量数据接入;面向应用主题的指标计算与规范化数据存储。模型中台:基于人工智能、深度学习的算法模型,支撑业务分析、评估、与决策。业务中台:采用微服务架构,串联系统功能,打通整合业务应用。通过采集实时能耗、电能质量、设备状态等实时数据和客流信息、列车运营信息、基础信息等非实时数据,基于星环科技智能分析工具Sophon进行建模预测,支撑上层能耗统计与监测应用、能耗综合评估应用,实现行车调度精细化,促进轨道交通绿色低碳发展。星环科技致力于打造企业级大数据基础软件,围绕数据全生命周期提供基础软件与服务,形成了大数据与云基础平台、分布式关系型数据库、数据开发与智能分析工具的软件产品矩阵。通过为企业搭建数字化转型的数字底座,星环科技助力政府、金融、能源、...

行业资讯
国产时空数据库有哪些?
随着科技和信息技术的快速发展,时空数据已经成为重要的技术支撑和决策工具。与此同时,国内也出现了不少优秀的国产时空数据库产品,不仅在空间分析、时序分析等方面实现了卓越的表现,同时也在存储管理、可视化展示等方面有着出色的成果。不少时空数据库产品已实现了高可靠性、高性能和高稳定性的功能,在交通运输、城市规划、GIS和物流供应链等领域都有着广泛的应用。其中星环科技的分布式时空数据库-TranswarpSpacture就是其中一款优秀的时空数据库产品。星环分布式时空数据库-TranswarpSpactureSpacture是星环科技自主研发的一款面向空间、时空数据的存储与管理,集计算与存储为一体的分布式数据库产品,支持大规模矢量数据、时空轨迹数据的存储与计算,具有完备的数据查询、分析和挖掘能力,可用于时空查询分析、时空模式挖掘、时空轨迹聚类等时空轨迹数据分析场景,广泛应用于交通物流、城市管理、位置服务等场景。产品优势原生空间:时空数据类型,针对空间时空数据的特定优化。兼容OGC标准:提供丰富的分析函数,具备复杂分析挖掘能力。支持SQL:基于SQL完成空间分析和轨迹分析,降低产品使用门槛。兼容Po...

行业资讯
数据安全出境解决方案
近年来,随着数字经济的蓬勃发展,数据跨境活动日益频繁,数据处理者的数据出境需求快速增长。为规范数据出境活动,保护个人信息权益,维护国家安全和社会公共利益,促进数据跨境安全、自由流动,国家互联网信息办公室公布了《数据出境安全评估办法》,9月1日起施行。《数据安全出境评估办法》构建了我国数据出境安全评估的制度,然而企业在具体落地方面,还存在诸如数据分类分级;重要数据识别、存储、管理;数据安全监督;敏感数据防泄露等实际困难,国内迫切需要落实数据安全出境的企业。星环科技致力于打造企业级大数据基础软件,围绕数据的集成、存储、治理、建模、分析、挖掘和流通等数据全生命周期提供基础软件与服务,构建明日数据世界。在数据安全与流通方面,星环科技具备一系列产品和解决方案。针对有数据跨境需求的企业,星环科技可以提供一套可落地的企业数据安全出境合规解决方案,为企业提供数据跨境一站式服务,助力企业高效、合规的开展数据流通业务。以某智能车企云端车联网全球化数据安全合规案例为例,针对客户面对的系统内存在大量个人隐私数据,但是没有资产地图;缺乏数据分类分级策略;缺乏个人隐私数据使用、流转的监测与防护;需要敏感资产风险评...

行业资讯
图数据库有哪些?
图数据库是一种用于处理图形数据的特殊类型的数据库。它们旨在存储和管理关系和连接,具有比其他类型的数据库更强大的能力。目前国内有众多优秀图数据库产品,星环科技图数据库产品StellarDB其中之一。TranswarpStellarDB是星环科技自主研发的企业级分布式图数据库,提供高性能的图存储、计算、分析、查询和展示服务。StellarDB支持原生图存储,千亿点、万亿边、PB级大规模图数据存储;具备10+层的深度链路分析能力,提供丰富的图分析算法和深度图算法;支持标准图查询语言并兼容openCypher,并具备海量数据3D图展示能力。可以帮助用户快速开发欺诈检测、推荐引擎、社交网络分析、知识图谱等应用。TranswarpStellarDB优势:原生图存储:StellarDB为数据存储设计了专有的图存储结构,优化查询性能,通过高效的压缩算法减少磁盘和内存的使用量。根据分区策略,图数据均匀分布于集群各节点。优越的性能:存储引擎和计算引擎结合,使计算引擎可以利用数据locality提升计算性能,拥有卓越的数据读写能力,支持大规模并行处理,毫秒级的查询响应。高扩展性:完全的分布式架构,具有良好的...

行业资讯
数据底座解决方案实践应用
星环科技数据底座方案已在多个场景落地应用:广西某水电企业工业大数据生态云平台按照“统一规划、统一设计、统一建设”原则开展适应电力能源需求的“云-雾-端”多级、多云协同云计算架构设计。形成电力能源企业计算云、存储云、网络云、安全云等多云架构体系。打造包含智慧运营中心、设备状态诊断中心、安全应急中心、气象资源中心、智慧营销中心与智慧电厂的核心智慧化平台,实现数字化业务管控、智慧化企业经营和生态化商业服务的完整生态,实现企业的数字化转型。工业大数据生态云平台实施分为平台构建、数据资产治理实施与基础门户建设三个部分。其中IaaS层提供计算资源、存储资源、网络资源等基础设施服务;PaaS层由容器云、微服务治理、DevOps、敏捷开发平台、大数据平台、数据资产管理、统一应用门户等组成,为上层智慧企业应用提供基础能力平台的支撑,未来可进一步扩展人工智能平台、元宇宙、区块链、数字孪生等新技术应用平台;SaaS层应用提供数字化业务管理、智慧化企业运营管控、生态化商业服务等应用,并基于统一应用门户为用户提供交互服务。新能源集控中心是实时数仓在新能源方面的应用,跟水电比较像,比如区域监控中心一体化大数据应用...

行业资讯
国内隐私计算平台
星环SophonP²C是企业级隐私计算平台,拥有多项性能及安全认证,平台支持不同场景的隐私计算需求,包括横纵向联邦学习、多方安全计算、基于差分隐私的数据发布、匿踪查询等,为多方数据安全协作提供完整的平台底座。SophonP²C可用于解决跨组织协作时无法安全利用各方数据的难题,助力数据流通应用的合法合规。在保障隐私的前提下,围绕数据的集成、存储、治理、建模、分析、挖掘和流通等数据全生命周期,提供多种开箱即用的工具,方便用户进行数据处理、分析、特征工程等工作,可快速进行多方数据统计、分析建模和应用工作。平台拥有的多种适应不同安全和通讯环境的加密安全手段和通信架构,为跨组织的数据协作提供安全、可靠、高效的平台支持。分布式隐私计算平台SophonP²C产品优势:支持多种隐私计算框架,平台易用易部署1.采用同态加密、差分隐私、秘密分享、不经意传输等隐私技术,覆盖联邦学习(FL)、多方安全计算(MPC)、匿踪查询(PIR)、隐私求交(PSI)等多种隐私计算功能。2.支持大数据规模的隐私计算场景,支持亿级数据进行联邦学习、多方安全计算和隐私求交。3.提供页面可视化安装部署,并支持实体部署、容器部署、...

行业资讯
边缘计算平台
在边缘计算领域,星环科技研发了边缘计算平台Sophon。Sophon是解决多模态数据集成和治理过程中的边缘化、智能化的云端-边缘端融合计算平台,支持标准的视频和物联网协议接入,低代码的业务流程构建,高性能的数据处理和分析,企业级的云-边数据、服务治理,以及针对边缘嵌入式和云端服务器等异构硬件的适配。星环科技Sophon平台包括设备数据管理、模型训练迭代、边缘模型部署、应用构建分发、数据治理能力、边缘自治能力、云边协同能力七大能力。Sophon可以从两个层面实现效益价值:降低长尾应用的实施人力,降低从数据到模型,模型到应用的构建成本;改变长尾应用的落地模式,从粗放的一次性模型交付到精细化的模型持续运营。其主要技术创新包括:边缘可视化流处理构建、边缘数据采样驱动模型迭代、边缘实时数据可视化、边缘深度推理引擎。Sophon在智能制造、智能安防、智能工地、智能交通、智能城市、智能校园、智能加油站等城市治理、设备可预测性维护等云边一体场景有着广泛的应用。当前边缘计算作为产业数字化转型核心技术已形成共识,我国也高度重视边缘计算的发展,积极推进边缘计算在工业互联网等多个领域的技术、标准与产业发展。星...