大模型目排名

图数据库的排名和领域、应用场景、性能要求等不同而不同,且随着技术的不断发展和市场的变化,排名和评价也可能随之变化。因此,在选择图数据库时,需要结合具体需求、实际情况和可行性进行综合考虑和评估。星环、万亿边、PB级规模图数据存储;具备10+层的深度链路分析能力,提供丰富的图分析算法和深度图算法;支持标准图查询语言并兼容openCypher,并具备海量数据3D图展示能力。可以帮助用户快速开发欺诈检测数据均匀分布于集群各节点。优越的性能:存储引擎和计算引擎结合,使计算引擎可以利用数据locality提升计算性能,拥有卓越的数据读写能力,支持规模并行处理,毫秒级的查询响应。高扩展性:完全的分布式

大模型目排名 更多内容

股榜和龙虎榜一了然。无涯·问数基于底层的无涯NL2SQL模型,支持用户使用自然语言对无人驾驶概念股总市值top10、ROE排名前10的股票、去年上市的公司在一级行业的分布数量情况等问题进行快速的想知道无人驾驶概念股总市值top10?ROE排名前10的股票?去年上市的公司在一级行业的分布数量情况?星环科技的无涯·问数给你答案!无涯·问数提供投资者证券市场看板,核心指数、热门板块、热门概念、热
图数据库的排名和领域、应用场景、性能要求等不同而不同,且随着技术的不断发展和市场的变化,排名和评价也可能随之变化。因此,在选择图数据库时,需要结合具体需求、实际情况和可行性进行综合考虑和评估。星环、万亿边、PB级规模图数据存储;具备10+层的深度链路分析能力,提供丰富的图分析算法和深度图算法;支持标准图查询语言并兼容openCypher,并具备海量数据3D图展示能力。可以帮助用户快速开发欺诈检测数据均匀分布于集群各节点。优越的性能:存储引擎和计算引擎结合,使计算引擎可以利用数据locality提升计算性能,拥有卓越的数据读写能力,支持规模并行处理,毫秒级的查询响应。高扩展性:完全的分布式
人工智能模型前人工智能领域的一个重要研究领域。模型是指由数百亿甚至数万亿个参数组成的神经网络模型,这些模型能够通过海量数据进行训练,从而拥有强大的数据处理能力和精确的预测能力。在许多领域,如强大的支持。特别是在近年来,由于深度学习技术的不断发展和计算硬件的进一步升级,模型的规模和性能有了进一步的提升。人工智能模型前人工智能领域的一个重要研究方向,其已经在各个领域展现出强大的应用自然语言处理、计算机视觉和自动驾驶等,模型已经成为解决各种问题的“法宝”。人工智能模型的研究与发展伴随着计算硬件的快速进步。在过去的几十年中,计算硬件的性能不断提高,从而为模型的训练和应用提供了潜力。未来,随着计算硬件的进一步升级和技术的不断创新,模型的应用前景将更加广阔。模型时代的到来,给软件开发行业带来了巨大的变革,企业需要一个工具链来开发模型。星环科技作为国内领先的数据基础软件开发商,积极应对以ChatGPT为代表的人工智能带来的新挑战,打造数据管理平台的多模态、智能化、敏捷化和平民化产品。为帮助企业构建自己的模型,星环科技推出了机器学习模型全生命周期管理的工具平台
人工智能模型前人工智能领域的一个重要研究领域。模型是指由数百亿甚至数万亿个参数组成的神经网络模型,这些模型能够通过海量数据进行训练,从而拥有强大的数据处理能力和精确的预测能力。在许多领域,如强大的支持。特别是在近年来,由于深度学习技术的不断发展和计算硬件的进一步升级,模型的规模和性能有了进一步的提升。人工智能模型前人工智能领域的一个重要研究方向,其已经在各个领域展现出强大的应用自然语言处理、计算机视觉和自动驾驶等,模型已经成为解决各种问题的“法宝”。人工智能模型的研究与发展伴随着计算硬件的快速进步。在过去的几十年中,计算硬件的性能不断提高,从而为模型的训练和应用提供了潜力。未来,随着计算硬件的进一步升级和技术的不断创新,模型的应用前景将更加广阔。模型时代的到来,给软件开发行业带来了巨大的变革,企业需要一个工具链来开发模型。星环科技作为国内领先的数据基础软件开发商,积极应对以ChatGPT为代表的人工智能带来的新挑战,打造数据管理平台的多模态、智能化、敏捷化和平民化产品。为帮助企业构建自己的模型,星环科技推出了机器学习模型全生命周期管理的工具平台
人工智能模型前人工智能领域的一个重要研究领域。模型是指由数百亿甚至数万亿个参数组成的神经网络模型,这些模型能够通过海量数据进行训练,从而拥有强大的数据处理能力和精确的预测能力。在许多领域,如强大的支持。特别是在近年来,由于深度学习技术的不断发展和计算硬件的进一步升级,模型的规模和性能有了进一步的提升。人工智能模型前人工智能领域的一个重要研究方向,其已经在各个领域展现出强大的应用自然语言处理、计算机视觉和自动驾驶等,模型已经成为解决各种问题的“法宝”。人工智能模型的研究与发展伴随着计算硬件的快速进步。在过去的几十年中,计算硬件的性能不断提高,从而为模型的训练和应用提供了潜力。未来,随着计算硬件的进一步升级和技术的不断创新,模型的应用前景将更加广阔。模型时代的到来,给软件开发行业带来了巨大的变革,企业需要一个工具链来开发模型。星环科技作为国内领先的数据基础软件开发商,积极应对以ChatGPT为代表的人工智能带来的新挑战,打造数据管理平台的多模态、智能化、敏捷化和平民化产品。为帮助企业构建自己的模型,星环科技推出了机器学习模型全生命周期管理的工具平台
人工智能模型前人工智能领域的一个重要研究领域。模型是指由数百亿甚至数万亿个参数组成的神经网络模型,这些模型能够通过海量数据进行训练,从而拥有强大的数据处理能力和精确的预测能力。在许多领域,如强大的支持。特别是在近年来,由于深度学习技术的不断发展和计算硬件的进一步升级,模型的规模和性能有了进一步的提升。人工智能模型前人工智能领域的一个重要研究方向,其已经在各个领域展现出强大的应用自然语言处理、计算机视觉和自动驾驶等,模型已经成为解决各种问题的“法宝”。人工智能模型的研究与发展伴随着计算硬件的快速进步。在过去的几十年中,计算硬件的性能不断提高,从而为模型的训练和应用提供了潜力。未来,随着计算硬件的进一步升级和技术的不断创新,模型的应用前景将更加广阔。模型时代的到来,给软件开发行业带来了巨大的变革,企业需要一个工具链来开发模型。星环科技作为国内领先的数据基础软件开发商,积极应对以ChatGPT为代表的人工智能带来的新挑战,打造数据管理平台的多模态、智能化、敏捷化和平民化产品。为帮助企业构建自己的模型,星环科技推出了机器学习模型全生命周期管理的工具平台
近日,TPCBenchmarkExpress-BigBench(简称TPCx-BB)更新了新的世界排名,星环科技数据基础平台TDH在性能和性价比两个维度上均获得了TPCx-BBSF3000全球排名第一。TDH此次成功打榜并登顶数据测试基准TPCx-BB,代表着国产数据平台在全球数据领域的又一次突破,也意味着星环科技TDH对Hadoop体系数据平台(CDH为代表)具有高兼容性,能够实现国产化平滑替代,帮助用户打造高性能、低成本、自主可控的数字底座。TPCx-BB,数据分析系统基准测试规范TPCx-BB(https://www.tpc.org/tpcx-bb/default5.asp)是事务处理性能委员会TPC制定的衡量基于Hadoop的数据系统的性能基准测试,通过模拟零售商线上和线下业务中的30个常见分析查询来评估硬件和软件的性能。这些查询使用SQL语言表达结构化数据,并使用机器学习算法表达半结构化和非结构化数据。其中,SQL查询可以使用Hive或Spark,而机器学习算法则使用机器学习库、用户定义的函数和过程程序。TDH,高性能、低成本、高兼容星环科技数据基础平台
行业资讯
模型语料
模型语料是指用于训练模型的文本数据,以下是关于模型语料的详细介绍:语料的重要性决定模型性能:高质量、全面、多样的语料库能够训练出性能更好、泛化能力更强的模型。而低质量的语料可能导致模型学习到场景需要特定的语料来训练模型,以确保模型能够准确理解和处理相关问题,提供符合行业标准和法规要求的有效服务。语料的来源互联网公开数据:包括新闻文章、博客、论坛、社交媒体等平台上的大量文本内容,是模型语料的重要来源之一。如百度、新浪等网站的新闻资讯,微博、知乎等社交平台的用户生成内容。学术文献和研究报告:来自各个领域的学术期刊、会议论文、研究报告等,具有较高的专业性和权威性,能为模型提供深入的知识和前沿的研究成果。如中国知网、IEEEXplore等数据库中的文献。书籍和电子书:涵盖了各个领域和主题的知识,是丰富模型语料库的优质资源,如文学作品、历史书籍、专业教材等。政府公开数据:政府部门发布的各类统计数据、政策文件、公告等,具有权威性和准确性,对于特定领域的模型训练具有重要价值,如国家统计局发布的经济数据、政府官网的政策法规文件等。企业内部数据:企业在日常运营过程中积累的大量数据,如客户
行业资讯
模型语料
模型语料是指用于训练模型的文本数据,以下是关于模型语料的详细介绍:语料的重要性决定模型性能:高质量、全面、多样的语料库能够训练出性能更好、泛化能力更强的模型。而低质量的语料可能导致模型学习到场景需要特定的语料来训练模型,以确保模型能够准确理解和处理相关问题,提供符合行业标准和法规要求的有效服务。语料的来源互联网公开数据:包括新闻文章、博客、论坛、社交媒体等平台上的大量文本内容,是模型语料的重要来源之一。如百度、新浪等网站的新闻资讯,微博、知乎等社交平台的用户生成内容。学术文献和研究报告:来自各个领域的学术期刊、会议论文、研究报告等,具有较高的专业性和权威性,能为模型提供深入的知识和前沿的研究成果。如中国知网、IEEEXplore等数据库中的文献。书籍和电子书:涵盖了各个领域和主题的知识,是丰富模型语料库的优质资源,如文学作品、历史书籍、专业教材等。政府公开数据:政府部门发布的各类统计数据、政策文件、公告等,具有权威性和准确性,对于特定领域的模型训练具有重要价值,如国家统计局发布的经济数据、政府官网的政策法规文件等。企业内部数据:企业在日常运营过程中积累的大量数据,如客户
产品文档
10 Hippo 运维
运维管理界面WebserverWebserver是Hippo提供运维监控的界面。默认访问地址为:4567"class="bare">http://<webserver_ip>:4567。或者在Manager管理界面我们可以通过下图所示的查看链接这里进行跳转。图15.登录HippoWebserverWebserver主要由下面几个部分构成。概况图16.概况该页面展示了Hippo集群的基本信息,包括:Masterstatus:当前的ActiveMaster,MasterGroup,MasterAddress,Master的健康状态TabletServerStatus:TabletServerAddress,健康状态,逻辑机架和数据中心信息,容量使用以及Tablet个数TabletNum:当前集群表的个数Version:Hippo版本信息库表图17.库表页面以库和表的概念集群存储的各类数据信息。库信息:库名库创建时间库内各类表的信息:点击某个库,可以看到库下所有表的信息,主要包括:••表的ID••表的名字••表的状态••表的Tablet数量••表的Engine类型••表的副本数•...
产品文档
5.7 查询类操作
过滤条件表达式Hippo当前支持如下表达式,可用于标量或向量查询。表46.过滤条件表达式表达式描述and当前版本支持and,不支持or/not==等值<小于⇐小于等于>大于>=大于等于inin[1,2,3]notinnot_in[1,2,3]like'_'表示匹配任一字符,'%'表示匹配任意字符,'\'为转义符向量相似性检索本节描述如何进行向量相似度搜索。Hippo中的向量相似性搜索计算查询向量与表中向量的距离,返回最相似的结果集。通过指定标量过滤条件,用户可以进行向量与标量的混合搜索。curl-ushiva:shiva-XGET'localhost:8902/hippo/v1/{table}/_search?pretty'-H'Content-Type:application/json'-d'{"output_fields":["book_id"],"search_params":{"anns_field":"book_intro","topk":2,"params":{"nprobe":10},"embedding_index":"ivf_flat_index"}...
查看Master节点通过以下命令,查看集群Master节点信息:curl-ushiva:shiva-XGET'localhost:8902/hippo/v1/_cat/master?v'返回结果:epochtimestampactive.master.hostactive.master.portmaster.group169079683909:47:19172.29.203.18926841172.29.203.189:26841,172.29.203.189:26851,172.29.203.189:26861查看数据节点curl-ushiva:shiva-XGET'localhost:8902/hippo/v1/_cat/nodes?v'//查看所有节点curl-ushiva:shiva-XGET'localhost:8902/hippo/v1/_cat/nodes/{node}?v'//{node}表示待匹配的节点地址,支持以*通配,支持指定多个pattern,多个pattern以逗号分割返回结果:
产品文档
8 性能分析
本节测试主要描述了Hippo1.0在关键测试上的一些性能表现,该份测试同样也是Hippo的基准测试,后续版本发布也会在不同版本上进行该测试进行对比分析。术语表142.Hippo性能测试术语TermDescriptionnq一次搜索请求中搜索的向量个数topk一次请求中对于要检索的每个向量(依赖nq),所能检索到最近距离的向量个数RT一次请求从发起到接受响应的时间]QPS请求在每秒内成功执行的次数dataset测试所用数据集,不同数据集表示不同的业务场景测试集群配置硬件配置表143.性能测试硬件配置硬件规范Nodes3CPUIntel®Xeon®Gold5218RCPU@2.10GHzMemory16*\16GBRDIMM,3200MT/sDISKNVMeSSD2T*4GPUNONE软件配置表144.性能测试软件配置软件版本Hippov1.2TranswarpManagerTDH9.3.0测试集表145.性能测试数据集数据集名称数据集介绍向量维度向量总数查询数量数据总量距离类型Sift-128-euclidean该数据集是基于Texmex的数据集整理,使用SIFT算法得到的图片特征向量。...
产品文档
5.3 写入类操作
本节介绍Hippo表写入相关操作。Hippo会返回写入成功数据的下标以及总共写入成功的数据条数,如果出现行级错误(比如主键冲突),Hippo会返回具体的行级错误。插入本节介绍如何向Hippo中插入数据。curl-ushiva:shiva-XPUT'localhost:8902/hippo/v1/{table}/_bulk?database_name={database_name}&pretty'-H'Content-Type:application/json'-d'{"fields_data":[{"field_name":"book_id","field":[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74...
产品文档
5.18 全文检索
Hippo在1.2版本提供了全文索引能力,兼容ElasticSearch6.7.2语法,在底层架构上复用了公司产品TranswarpScope的一部分特性,支持以Java/HTTPRestful的形式通过Hippo的HTTPServer接口进行全文索引的创建、查询、使用等各类需求,通过该能力的支持,可以更好的实现向量与全文的混合检索。通过将向量检索加全文检索的联合召回,可以降低漏检和误检的概率,能够实现比单独使用向量或全文更高的精度。同时,一套数据库系统可避免部署多套系统带来的架构复杂、开发运维成本高等问题。具体的使用方法除了访问端口需要将端口从8902调整为9200外,均可参考《TranswarpScope手册》4.TranswarpScopeAPI介绍。
产品文档
2 Quick Start
ThistutorialwillguideyouthroughthefollowingtaskswithinHippoCloud:EstablishingatablePerusingthetableIncorporatingdataExecutingsearchoperationsEliminatingrowsDissolvingthetableBeforeyoustartInthisguide,wewillbeutilizingthePythonAPI.Priortocommencement,ensurethatyouhave:RegisteredforaHippoCloudaccount.SubscribedtothecomplimentaryplanandestablishedatrialclusterwithinHippoCloud,orsubscribedtothestandard/enterpriseplansandconstructedadedicatedcluster.IfyouanticipateemployingPythonfordevelopment,ascert...
产品文档
1 Introduction
OverviewUnstructureddatamanagementismoreimportantthaneverduetotheriseofbigdata.Managingandgleaningbusinessvaluefromunstructureddataisofutmostimportancetoenterprisestoday.Advancementsinmachinelearning,aswellasdeeplearning,technologiesnowenableorganizationstoefficientlyaddressunstructureddataandimprovequalityassuranceefforts.Inthefieldofartificialintelligenceormachinelearning,embeddingsandvectordatabaseshavebecomeincreasinglyimportantfortacklingawiderangeofproblems.Thesetechniquesareusedtorepresen...
产品文档
3.3 Cluster
OverviewAclusterisaHippoCloudinstanceassociatedwithspecificcomputingresources.Youcancreaterelatedtables,insertcorrespondingdata,andcompleteproductexperiencewithinacluster.Beforeyouusethedemoenvironment,youneedtocreateacluster.CreateClusterYouneedtogotothespecificproject.Iftherearenoclustersunderthecurrentproject,youcanclickthe'Createcluster'buttonbelowtheclustercreationguidancepagetoentertheclustercreation.Ifthereareclustersunderthecurrentproject,youcanclickthe'+Cluster'buttonabovetheclusterlist...
产品文档
5.10 任务相关
在Hippo中,比较耗时的操作如激活、加载向量索引实际上是一个分布式任务,用户可以通过任务相关接口查看、删除任务。查看任务curl-ushiva:shiva-XGET"localhost:8902/hippo/v1/_jobs?pretty"-H'Content-Type:application/json'-d'{"job_ids":["fc6feff4f303455a9347f9aab323dfc8"],"action_patterns":["hippo*"]}';返回结果:{"jobs":[{"job_id":"810935a1d91a46b7af2ec35013454fed","job_status":"SHIVA_JOB_SUCCESS","embedding_number":100,"task_results":[{"id":"54ab52493dfb4bab9fb7742d850c64c4","status":"TASK_SUCCESS","server":"172.29.40.26:27841","embedding_number":100,"execute_time":...