国内领先的大模型公司

行业资讯
国内大模型公司
大模型时代的到来,给软件开发行业带来了巨大的变革,企业需要一个工具链来开发大模型。星环科技作为国内领先的大数据基础软件开发商,打造数据管理平台的多模态、智能化、敏捷化和平民化产品。为帮助企业构建自己科技还推出了无涯金融大模型Infinity、大数据分析大模型SoLar“求索”,促进金融分析和大数据分析的平民化。星环科技将自主研发的领先创新技术赋能各行各业,与生态伙伴共同打造国产化大数据技术生态的大模型,星环科技推出了机器学习模型全生命周期管理的工具平台SophonLLMOps,支持从数据接入开发、提示工程、大模型微调、上架部署到应用编排和业务效果对齐的全链路流程,结合自研向量数据库Hippo和分布式图数据库StellarDB,能够赋予大模型“长期记忆”,打破通用大模型的时空限制,用户可以快速便捷地构建深谙企业自有专业领域知识的垂直行业大模型,从而让每个人都拥有个性化AI助理。同时星环,推动数字经济的可持续发展。无涯是一款面向金融量化领域、超大规模参数量的生成式大语言模型,融合了舆情、资金、人物、空间、上下游等多模态信息,具备强大的理解和生成能力,支持股票、债券、基金、商品等市场事件的
国内领先的大模型公司 更多内容

行业资讯
大模型公司
大模型时代的到来,给软件开发行业带来了巨大的变革,企业需要一个工具链来开发大模型。星环科技作为国内领先的大数据基础软件开发商,打造数据管理平台的多模态、智能化、敏捷化和平民化产品。为帮助企业构建自己科技还推出了无涯金融大模型Infinity、大数据分析大模型SoLar“求索”,促进金融分析和大数据分析的平民化。星环科技将自主研发的领先创新技术赋能各行各业,与生态伙伴共同打造国产化大数据技术生态的大模型,星环科技推出了机器学习模型全生命周期管理的工具平台SophonLLMOps,支持从数据接入开发、提示工程、大模型微调、上架部署到应用编排和业务效果对齐的全链路流程,结合自研向量数据库Hippo和分布式图数据库StellarDB,能够赋予大模型“长期记忆”,打破通用大模型的时空限制,用户可以快速便捷地构建深谙企业自有专业领域知识的垂直行业大模型,从而让每个人都拥有个性化AI助理。同时星环,推动数字经济的可持续发展。无涯是一款面向金融量化领域、超大规模参数量的生成式大语言模型,融合了舆情、资金、人物、空间、上下游等多模态信息,具备强大的理解和生成能力,支持股票、债券、基金、商品等市场事件的

行业资讯
国内的大数据平台和应用公司
国内的大数据平台和应用公司随着信息技术的迅猛发展,大数据已成为推动社会进步和经济发展的重要力量。在国内,大数据平台和应用公司如雨后春笋般涌现,为各行各业提供了强大的数据支持和智能化解决方案。这些企业提高。在金融领域,大数据应用可以帮助银行和保险公司进行风险评估和欺诈检测;在零售行业,大数据分析能够优化库存管理和精准营销;在医疗健康领域,大数据技术可以辅助疾病诊断和药物研发。值得一提的是,国内的大。国家层面的大数据战略旨在推动数据资源的开放共享,加强数据安全保障,培育大数据产业生态。许多地方政府也建立了大数据产业园,吸引相关企业入驻,形成产业集群效应。总的来说,国内的大数据平台和应用公司正处于。在国内,许多企业已经建立了自己的大数据平台,或者依托第三方平台进行数据管理和分析。这些平台不仅支持结构化数据的处理,还能够处理半结构化和非结构化数据,如图片、视频、音频等。在技术架构上,国内的大,一些平台能够自动识别数据中的异常模式,或者预测未来的趋势变化,为企业决策提供有力支持。大数据应用公司则是将大数据技术具体落地到各个行业的企业。这些公司通过开发各种应用软件和服务,帮助客户实现数据的价值

行业资讯
国内大模型有哪些?
国内各大互联网公司纷纷投入AI大模型的研发,涉及多种类型的大模型。以下是星环科技大模型相关产品:星环无涯金融大模型-TranswarpInfinity星环无涯金融智能投研大模型TranswarpInfinity是一款面向金融量化领域、超大规模参数量的生成式大语言模型,融合了舆情、资金、人物、空间、上下游等多模态信息,具备强大的理解和生成能力,支持股票、债券、基金、商品等市场事件的全面复盘、总结及新范式。星环科技无涯金融大模型的核心优势:一是利用海量金融专业语料和舆情工商产业链大宗卫星等多源数据进行训练,使其具备领域通用性。二是构建了可溯因的标准化因子和归因解释体系,为投资决策提供支持。三是具备高精准、强逻辑的事理分析与推断力,并能够对股票、债券、基金、商品等各类市场事件进行全面的复盘和推演。四是专门设计针对金融行业的大语言模型架构,具备准确理解和合理分析金融领域的专业能力。五是背靠大提供有力辅助,帮助企业更好地应对复杂的市场环境和业务需求,促进整体行业的降本增效与科技创新。星环求索大数据分析大模型-SoLar大数据分析大模型SoLar“求索”是一款针对大数据行业全生命周期各种场景

行业资讯
国内隐私计算公司
星环科技是国内一家专业的隐私计算公司,致力于为企业提供安全可靠的数据隐私保护解决方案。星环科技分布式隐私计算平台SophonP²C星环科技分布式隐私计算平台SophonP²C集多方安全计算、联邦学习民生场景,SophonP²C通过纵向联邦学习联合居民用电数据与用水数据,生成群租房预测名单。在联合建模过程中,全程明文数据不出,有效保护了居民用水用电的数据隐私信息。联合训练模型比本地单独用电数据训练的模型AUC提升20%以上,赋能政务决策高效的处理分析能力,为政府有效排查群租房,消除群租房造成的消防、安全隐患,打造和谐、安全、美丽的生活环境作出了突出贡献,为政务决策、民生建设发挥信息化支撑保障作用曾获信通院多方安全计算性能专项测评证书、联邦学习基础能力专项测评证书、卓信大数据联邦学习安全评估专项证书,以及信通院星河案例隐私计算优秀案例等多项认证和荣誉。随着数据隐私保护意识的不断增强和隐私法规的等多种功能,为隐私计算提供完整的解决方案,以隐私保护为前提,解决了跨组织协作时无法安全利用各方数据的困境。平台支持联邦学习、多方安全计算、匿踪查询等功能;性能方面,联邦学习与多方安全计算可达亿级数

行业资讯
国内大模型试用
,企业需要一个工具链来开发大模型。星环科技作为国内领先的大数据基础软件开发商,积极应对以ChatGPT为代表的人工智能带来的新挑战,打造数据管理平台的多模态、智能化、敏捷化和平民化产品。为帮助企业构建资源和时间来训练和推理,因此需要强大的硬件设备和计算能力大模型在各种领域取得了显著的突破,如自然语言处理、计算机视觉、图像生成和语音识别等。国内大模型试用大模型时代的到来,给软件开发行业带来了巨大的变革SoLar“求索”,促进金融分析和大数据分析的平民化。星环科技将自主研发的领先创新技术赋能各行各业,与生态伙伴共同打造国产化大数据技术生态,推动数字经济的可持续发展。无涯金融大模型Infinity申请试用大模型是指具有庞大参数数量和更高复杂度的深度学习模。大模型通常拥有数百万、甚至数十亿的参数。与小模型相比,大模型能够更充分地学习数据的细节和特征,从而提高模型的性能和准确。大模型通常需要更多的计算自己的大模型,星环科技推出了机器学习模型全生命周期管理的工具平台SophonLLMOps,支持从数据接入开发、提示工程、大模型微调、上架部署到应用编排和业务效果对齐的全链路流程,结合自研向量数据库

行业资讯
国内大模型公司有哪些?
行业有诸多落地案例。同时星环科技积极参与行业共建,为中国大模型生态发展贡献智慧力量。星环科技参编了国内首个金融行业大模型标准——《面向行业的大规模预训练模型技术和应用评估方法第1部分:金融大模型》,为星环科技致力于打造企业级大数据基础软件,围绕数据全生命周期提供基础软件与服务。在大模型领域,星环科技发布了一系列的工具产品供用户使用,助力企业抓住大模型时代的新机遇。工具链方面,发布了大模型外挂存储)。用户可以通过星环科技自动化知识工程、多模态数据处理等技术,有效降低企业构建自有大模型应用的门槛,并不断促进我国大模型生态的持续繁荣。星环科技大模型产品目前已经在政府、金融、运营商、制造、能源等多个10家单位联合发起的中国大模型语料数据联盟,致力于做好数据资源“开发者”。此外星环科技在大模型领域也收获了一系列荣誉奖项:入选“2023中国人工智能大模型企业50强”、星环科技无涯金融大模型分布式向量数据库Hippo、大模型预训练微调工具SophonLLMOps及自动化知识库构建工具TKS。预训练大模型方面,发布了金融大模型星环无涯(Infinity)和数据分析大模型星环求索(SoLar

【1月20日,上海】记者近日获悉,2015年新年伊始,国内领先的Hadoop大数据平台软件厂商星环科技完成了新一轮数千万的融资。本次融资由著名风投启明创投(QimingVenturePartners这轮全部继续跟投,反映了投资人对于这家国内高科技创业公司的一致看好。星环科技是目前国内极少数掌握企业级大数据Hadoop和Spark核心技术的纯内资高科技公司,从事大数据时代核心平台数据库软件的SQLonHadoop商业版的厂商,拥有众多成功案例。在全球去IOE的大背景下,Hadoop技术已成为公认的替代传统数据库的大数据产品。公司产品TranswarpDataHub(TDH)的整体架构及功能特性大数据解决方案,从而从数据中获得无限价值。现在星环产品TDH已陆续在中国的电信、金融、交通、能源,政府等行业陆续落地,是国内落地案例多的大数据平台厂商,技术界和资本界也一直对星环给予高度关注。星环科技将一直致力于研究大数据和hadoop企业级产品,带动大数据时代核心平台数据库软件的发展。启明创投叶冠泰表示,在IT领域的投资方向上,启明创投非常看好未来几年国内企业级软件的市场发展前景,尤其是针对大

行业资讯
大模型产品
大模型时代的到来,给软件开发行业带来了巨大的变革,企业需要一个工具链来开发大模型。星环科技作为国内领先的大数据基础软件开发商,积极应对以ChatGPT为代表的人工智能带来的新挑战,打造数据管理平台的多模态、智能化、敏捷化和平民化产品。星环大语言模型运营平台-SophonLLMOps为帮助企业构建自己的大模型,星环科技推出了机器学习模型全生命周期管理的工具平台SophonLLMOps,支持从数据接入开发、提示工程、大模型微调、上架部署到应用编排和业务效果对齐的全链路流程,结合自研向量数据库Hippo和分布式图数据库StellarDB,能够赋予大模型“长期记忆”,打破通用大模型的时空限制,用户可以快速便捷地构建深谙企业自有专业领域知识的垂直行业大模型,从而让每个人都拥有个性化AI助理。星环无涯金融大模型-INFINITY星环无涯金融大模型是一款面向金融量化领域、超大规模参数量的生成式大语言领域大显身手,有力辅助分析师、研究员和投资经理的日常工作,帮助企业更好地应对复杂的市场环境和业务需求,持续促进整体行业的降本增效与科技创新。星环求索大数据分析大模型-TranswarpSoLar星环

行业资讯
AI大模型时代的软件开发变革
大模型时代的到来,给软件开发行业带来了巨大的变革,企业需要一个工具链来开发大模型。星环科技作为国内领先的大数据基础软件开发商,积极应对以ChatGPT为代表的人工智能带来的新挑战,打造数据管理平台的行业大模型,从而让每个人都拥有个性化AI助理。同时星环科技还推出了无涯金融大模型Infinity、大数据分析大模型SoLar“求索”,促进金融分析和大数据分析的平民化。星环科技将自主研发的领先创新技术赋多模态、智能化、敏捷化和平民化产品。为帮助企业构建自己的大模型,星环科技推出了机器学习模型全生命周期管理的工具平台SophonLLMOps,支持从数据接入开发、提示工程、大模型微调、上架部署到应用编排和业务效果对齐的全链路流程,结合自研向量数据库Hippo和分布式图数据库StellarDB,能够赋予大模型“长期记忆”,打破通用大模型的时空限制,用户可以快速便捷地构建深谙企业自有专业领域知识的垂直能各行各业,与生态伙伴共同打造国产化大数据技术生态,推动数字经济的可持续发展。无涯是一款面向金融量化领域、超大规模参数量的生成式大语言模型,融合了舆情、资金、人物、空间、上下游等多模态信息,具备强大的
猜你喜欢

行业资讯
多方安全计算
多方安全计算(SecureMulti-PartyComputation,简称MPC)是隐私计算的一个重要分支。多方安全计算允许多个参与方在不泄露各自隐私数据的情况下,共同完成对数据的计算和分析任务。其目标是在保护数据隐私的前提下,实现数据的共享和协同处理,以挖掘数据的价值。主要基于密码学技术,如同态加密、不经意传输、秘密共享等。通过这些技术,将数据进行加密或转换,使得在计算过程中,参与方只能看到加密后的结果或与自己相关的部分信息,而无法获取其他方的隐私数据。技术特点隐私保护性:多方安全计算能够确保参与方的隐私数据在整个计算过程中不被泄露,即使在存在恶意参与者的情况下,也能保证数据的安全性。去中心化:不需要依赖可信的第三方来处理数据,各参与方之间通过密码学协议进行交互和协作,实现数据的分布式计算。可验证性:计算结果可以被参与方进行验证,确保计算的正确性和完整性。灵活性:可以支持各种类型的计算任务,如算术运算、比较运算、逻辑运算等,适用于不同的应用场景。应用场景金融领域联合风控:多家金融机构可以在不共享客户敏感信息的情况下,联合进行风险评估和信用评分,提高风控的准确性和效率。隐私保护的投资...

行业资讯
什么叫隐私计算?
隐私计算是一种在保护数据隐私的前提下实现数据价值挖掘和流通的技术体系,涵盖多方安全计算、联邦学习、同态加密、零知识证明等多种技术手段。定义与背景定义:隐私计算是指在不泄露数据隐私的情况下,对数据进行分析、计算和共享的一系列技术和方法的统称。它允许不同的参与方在数据不出本地的情况下,通过加密、分布式等技术手段进行协同计算,实现数据的互联互通和价值最大化,同时确保数据的隐私和安全得到有效保护。背景:随着数字化进程的加速,数据已成为企业和社会发展的重要资产,但数据的隐私泄露风险也日益增加。在数据共享和协同处理过程中,如何既充分发挥数据的价值,又保护数据所有者的隐私,成为亟待解决的问题,隐私计算应运而生。关键技术多方安全计算:多个参与方在不泄露各自数据隐私的情况下,通过特定的加密协议和算法进行协同计算。例如,在多方数据求和、数据比较等场景中,各方数据在加密状态下进行交互和计算,最终得到正确的结果,而任何一方都无法获取其他方的原始数据。联邦学习:一种机器学习技术,多个参与方在本地训练机器学习模型,然后将模型参数进行加密聚合,得到全局模型。在这个过程中,数据始终留在本地,不会被传输到其他方,从而保...

行业资讯
数据湖
数据湖是一种以原始格式存储大量数据的存储库,它具有灵活、可扩展等特点,可支持多种类型数据的存储和分析。数据湖是一个集中存储大量原始数据的系统,这些数据可以是结构化数据(如关系型数据库中的表)、半结构化数据和非结构化数据(如文本文件、图像、视频等),数据湖允许企业以原始格式存储数据,直到需要使用时再进行处理和分析。特点存储容量大:能够存储海量数据,满足企业不断增长的数据存储需求。可以轻松扩展存储容量,支持PB级甚至EB级数据的存储。数据多样性:支持各种类型的数据,包括传统的关系型数据、日志文件、传感器数据、社交媒体数据等,打破了传统数据仓库只能处理结构化数据的限制。灵活性高:数据以原始格式存储,不需要在存储时进行预定义的模式或结构设计,企业可以根据不同的业务需求随时对数据进行各种分析和处理,具有很强的灵活性。支持多用户并发访问:可以同时支持多个用户和应用程序对数据的并发访问,不同的用户和团队可以根据自己的需求对数据进行探索和分析,提高了数据的共享和协作效率。架构数据采集层:负责从各种数据源收集数据,并将其传输到数据湖中。数据源可以包括数据库、文件系统、云存储、物联网设备等。存储层:是数据...

行业资讯
数据要素与隐私计算
数据要素与隐私计算存在紧密的联系,隐私计算为数据要素的安全流通和价值释放提供了关键技术支撑,二者相互促进、共同发展。隐私计算是面向隐私信息全生命周期保护的计算理论和方法,涉及信息搜集者、发布者和使用者在信息产生、感知、发布、传播、存储、处理、使用、销毁等全生命周期过程的所有计算操作。它包括支持海量用户、高并发、高效能隐私保护的系统设计理论与架构,旨在实现数据的“可用不可见”。数据要素市场化:数据作为一种新型生产要素参与分配,隐私计算在数据要素市场化进程中扮演核心基础技术的角色。它帮助建立有序可控的共享机制,促进数据要素市场的蓬勃发展。数据要素只有在安全、高效的流通中才能充分发挥价值,隐私计算可以在保障数据流通过程计算安全性、赋能不同行业场景释放数据价值、适配数据要素流通多种应用模式上发挥价值。技术应用:隐私计算技术可以应用于数据的收集、脱敏、存储、使用、交换、删除、存证与取证等环节,涵盖隐私信息全生命周期的操作过程。它通过融合密码学、人工智能、安全硬件等跨学科技术体系形成一套可以保障数据流通安全合规的基础设施。数据安全与隐私保护:隐私计算实现了在数据流通过程中对国家安全、商业机密、个人...

行业资讯
金融行业隐私计算
隐私计算在金融行业具有极其重要的地位和广泛的应用前景。应用场景信贷风控联合建模:金融机构之间可以通过联邦学习等隐私计算技术,在不共享敏感数据的情况下,联合建立信贷风险评估模型。数据查询与验证:在信贷审批过程中,金融机构需要查询外部数据源来获取客户的更多信息,如征信报告、税务记录等。隐私计算技术可确保在查询和验证这些数据时,客户的隐私信息不被泄露,同时保证数据的真实性和完整性。精准营销客户画像构建:金融机构通过多方安全计算等技术,与其他企业合作构建更全面的客户画像。营销效果评估:在营销活动中,隐私计算可用于评估不同营销渠道和策略的效果。通过对客户反馈数据的加密分析,金融机构可以了解客户对不同营销活动的响应情况,而不会泄露客户的隐私信息,从而优化营销方案。金融监管数据报送与共享:金融机构需要向监管部门报送大量的业务数据,隐私计算技术可确保数据在报送过程中的安全和隐私保护。同时,监管部门之间也可以通过隐私计算实现数据共享,提高监管效率和协同监管能力。风险监测与预警:利用隐私计算技术,监管部门可以在不直接获取金融机构敏感数据的情况下,对金融市场的风险进行实时监测和预警。例如,通过多方安全计算对...

行业资讯
数据安全与隐私计算
数据安全与隐私计算紧密相关、相互促进,共同为数据的安全利用与隐私保护提供保障。数据安全是隐私计算的基础和目标数据安全涵盖了数据的保密性、完整性和可用性等多方面要求,旨在防止数据被未经授权的访问、泄露、篡改或破坏。隐私计算的出现正是为了在数据处理和共享过程中更好地满足这些数据安全需求,尤其是在涉及多源数据融合、跨域数据协作等复杂场景下,确保数据的保密性和完整性不受损害。隐私计算是数据安全的技术支撑和创新手段隐私计算为数据安全提供了一系列先进的技术手段,包括多方安全计算、联邦学习、同态加密、零知识证明等。这些技术在不同程度上解决了数据在流通和使用过程中的隐私保护问题,使得数据能够在安全的环境中被充分挖掘和利用。二者协同发展推动数据价值释放与合规应用随着数字化进程的加速,数据已成为企业和社会发展的重要资产,但数据安全问题一直是制约数据流通和共享的关键因素。隐私计算技术的不断发展和应用,为数据安全提供了更有效的解决方案,使得数据能够在安全的前提下实现跨机构、跨领域的流通和共享,从而充分释放数据的价值。

行业资讯
大数据湖
大数据湖是在数据湖概念基础上,结合大数据技术特点和需求而发展起来的一种更加强大、灵活的数据存储和分析架构。海量数据存储:能够轻松应对海量数据的存储需求,可存储PB级甚至EB级的数据,涵盖各种类型的数据,包括结构化数据、半结构化数据和非结构化数据。高可扩展性:基于分布式架构,能够方便地进行水平扩展,随着数据量的增加,可以通过添加节点的方式快速扩展存储和计算能力。数据多样性支持:不仅支持传统的关系型数据,还能存储各种非传统数据类型,如文本、图像、视频、音频、日志文件、社交媒体数据等,为企业提供全面的数据视角。灵活性与敏捷性:数据以原始格式存储,不需要预先定义严格的数据模型,用户可以根据不同的业务需求随时对数据进行各种分析和处理,快速响应业务变化。架构与组件存储层:通常采用分布式文件系统或对象存储系统作为底层存储,具有高可靠性、高吞吐量和容错性,确保数据的安全存储和高效访问。数据管理层:包括元数据管理、数据目录、数据血缘等功能。元数据管理记录数据的来源、格式、含义等信息,方便用户查找和理解数据;数据目录提供数据的分类和索引,便于数据的搜索和发现;数据血缘则跟踪数据的流转和处理过程,确保数据的...

行业资讯
数据入湖什么意思?
数据入湖是指将企业内外部的各种数据汇聚到数据湖中进行统一存储和管理的过程。数据来源涵盖企业内部的业务系统数据,如客户关系管理系统(CRM)、企业资源计划系统(ERP)、办公自动化系统等产生的结构化数据;也包括来自网络的日志数据、社交媒体数据,以及物联网设备产生的传感器数据等半结构化和非结构化数据。入湖方式批量导入:对于一些已经存在的历史数据或定期产生的批量数据,通常采用批量导入的方式将数据加载到数据湖中。可以使用ETL工具、数据迁移工具等,按照一定的时间周期或数据量进行批量抽取、转换和加载。实时接入:对于实时性要求较高的数据,如物联网数据、实时日志数据等,需要通过实时数据接入技术将数据实时地传输到数据湖中。常见的实时接入方式包括使用消息队列(如Kafka)进行数据缓存和传输,然后由数据湖的实时处理组件进行消费和存储。数据同步:对于一些需要与源数据保持实时或准实时同步的数据,采用数据同步技术实现数据入湖。可以通过数据库的复制技术、数据同步中间件等,将源数据的变化及时同步到数据湖中。关键技术数据抽取与转换:在数据入湖过程中,需要对不同来源、不同格式的数据进行抽取和转换,使其符合数据湖的存储...

行业资讯
联邦学习与隐私计算
联邦学习与隐私计算是紧密相关且相互促进的两个概念,以下是它们之间的详细关系及相关情况:联系目标一致:都旨在解决在数据隐私保护前提下的数据处理与分析问题。在大数据时代,数据分散在不同的机构或个人手中,而这些数据往往包含敏感信息。联邦学习和隐私计算都致力于在不泄露隐私数据的情况下,实现数据的价值挖掘和共享,打破数据孤岛,促进数据的流通和协同使用。技术融合:联邦学习是隐私计算的重要技术分支和应用场景之一。在联邦学习的过程中,会运用到多种隐私计算技术来确保数据的安全性和隐私性,如加密技术、差分隐私技术等。相互促进:隐私计算技术的发展为联邦学习提供了更强大的隐私保护手段,使其能够在更广泛的场景中应用。而联邦学习的实践也推动了隐私计算技术的不断创新和完善,为隐私计算技术提供了更多实际应用需求和挑战,促使其在性能、安全性等方面不断优化。区别概念侧重:联邦学习侧重于机器学习模型的训练和优化,强调在多个数据拥有方之间进行协同学习,通过交换模型参数而不是原始数据来实现模型的训练和更新。隐私计算则是一个更广泛的概念,涵盖了多种技术和方法,旨在对隐私数据进行全生命周期的保护,包括数据的存储、传输、处理和共享等...

行业资讯
数据湖是什么意思
数据湖是一个集中存储海量原始数据的存储库,旨在存储企业所有类型和来源的数据,为企业提供全面的数据资产视图,并支持灵活的数据处理和分析。数据湖是一种存储企业各种原始数据的大型仓库,这些数据包括结构化数据、半结构化数据和非结构化数据。数据湖允许企业以原始格式存储数据,而无需在存储时进行预定义的模式或结构设计,用户可以根据不同的业务需求随时对数据进行各种分析和处理。核心特点海量存储:具备强大的存储能力,可轻松应对PB级甚至EB级数据的存储需求,能够存储企业从各个业务系统、设备以及外部数据源收集而来的大量数据。数据多样性:支持各种类型和格式的数据,打破了传统数据存储系统对数据格式的限制,使得企业能够将不同来源、不同结构的数据统一存储在一个地方。灵活性与敏捷性:数据以原始形态存储,不依赖于特定的模式或模型,用户可以根据具体的业务问题和分析需求,灵活选择不同的分析工具和技术对数据进行处理和探索,无需受限于预先设定的结构。支持多用户并发访问:可以同时支持多个用户和应用程序对数据的并发访问,不同的用户和团队可以根据自己的需求对数据进行探索和分析,提高了数据的共享和协作效率。关键技术分布式存储技术:通常...