基础大模型能力

星环无涯·问知
星环科技无涯·问知Infinity Intelligence,是一款基于星环模型底座,结合个人知识库、企业知识库、法律法规、财经等多种知识源的企业级垂直领域问答产品。

基础大模型能力 更多内容

模型,尤其是深度学习和机器学习领域的大型神经网络模型,具备以下几项核心能力:复杂模式识别:模型能够识别和学习数据中的复杂模式和细微特征,这在图像识别、语音识别和自然语言处理等领域尤为重要。快速适应新任务。生成能力模型,尤其是生成模型,能够生成新的数据样本,如文本、图像等,这些生成的内容在一定程度上接近真实数据。强化学习:在某些应用中,模型结合强化学习技术,能够通过与环境的交互规模数据处理:它们能够处理和分析规模数据集,这对于从数据中提取有用信息和知识很重要。多任务学习:模型能够同时学习多个相关任务,通过共享底层表示提高学习效率,并在不同任务之间迁移知识。自监督学习:许多大模型采用自监督学习的方法进行预训练,这使得它们能够在没有大量标注数据的情况下学习数据的内在结构。上下文理解:在自然语言处理中,模型能够理解长距离的依赖关系和上下文信息,这对于理解语言的复杂性和多样性至关重要。跨领域应用:模型可以在多个领域和任务中应用,从语言翻译到图像识别,再到推荐系统等。迁移学习:模型通常先在规模的通用数据集上进行预训练,然后在特定任务的数据集上进行微调,这使得它们能够
行业资讯
模型能力
模型具备语言理解与生成、逻辑推理与分析、知识表示与应用、多模态、学习与适应以及创意与想象等多方面强大能力,可在众多领域发挥重要作用。模型具有多种强大的能力,以下是一些常见的方面:语言理解与生成能力,并给出相应的解释和评价。因果推断:根据已知的信息和事件,推断出事件之间的因果关系,分析事物发展的原因和结果,为决策和问题解决提供依据。知识表示与应用能力知识整合:模型经过大量数据的训练,能够整合和相结合,模型可以理解图像的内容、场景、物体等信息,并能够根据文字描述生成相应的图像,或者对给定的图像进行文字描述和解释,实现图像与文字之间的相互转换。语音交互:具备语音识别和语音合成的能力,能够将用户的语音输入转换为文字,理解其语义,然后生成相应的语音回答,实现更加自然、便捷的人机语音交互。学习与适应能力持续学习:模型可以在不断输入新的数据和信息的过程中,自动地学习和发现新的模式、规律和知识,不断存储各种领域的知识,形成一个庞大的知识体系,并在需要时灵活地调用和应用这些知识来回答问题、解决问题。知识更新:随着新的数据和信息的不断出现,模型可以通过不断学习和更新,将新的知识融入到已有的知识
模型是人工智能领域的一种机器学习模型,它们通过学习大量的数据,获得了类似于人类理解语言、图像和声音的能力。随着技术的发展,模型正在不断推动技术进步和应用创新。概念理解模型是一种深度学习模型。算法基础深度学习基础是学习模型之前必要的知识。这包括对深度学习的基本概念的理解,如神经网络的原理、激活函数和损失函数。数据处理与分析数据处理和分析是构建有效的模型的关键组成部分。这涉及收集和准备用,具有数十亿甚至数千亿个参数。这些参数是通过在大量数据上进行训练来学习的。模型可以同时学习多种不同的任务,比如翻译语言、写文章、回答问题等。此外,它们需要大量的数据来训练,并且需要强大的计算资源来运行于训练的数据集,并使用工具和技术进行特征工程和预处理。此外,在构建大型语言建模时进行有效的微调也很重要。模型构建与训练构建大型语言建模涉及使用大型语言建模架构创建自定义解决方案,并对其进行微调以适应
不如定制型。而定制型模型可根据具体需求进行优化,但需要大量的时间和资源进行开发。因此,企业在选择时要综合考虑使用场景、资源投入等因素。考虑模型基础和领域能力模型基础能力包括语言理解、图像识别支持、开发者文档、模型更新周期等方面。企业在选择模型时需要考虑这些因素,以便在使用时能够得到充分的支持和帮助。对于企业来说,选择适合的模型要综合考虑模型的类型、基础和领域能力、提示工程、微调以及等方面,领域能力则是指在某个特定领域内的表现。企业在选择模型时需要根据自身需求考虑这两方面的能力,以确保模型能够符合自身的业务需求。提示工程和微调:提示工程是指为模型提供足够的数据量进行训练,确保其大模型基础设施,形成具备“新型人机交互”且“敏捷可持续迭代“的人工智能应用。为了帮助企业用户基于模型构建未来应用,星环科技推出了SophonLLMOps,帮助企业构建自己的行业大模型。除此之外,星环科技随着人工智能的不断发展,模型的应用逐渐渗透到各个行业。那么,如何选择适合企业的模型?考虑模的类型:目前,模型主要分为两类:通用型和定制型。通用型模型适用于各种应用场景,但在性能上可能
行业资讯
模型底座
调度和管理,提高资源的利用率和任务的并行处理能力,确保模型训练能够在高效、稳定的算力环境下进行。算法层:基础模型架构:设计和选择适合模型基础架构,为模型的学习和表示能力提供保障。训练与优化算法:采用模型底座是支撑模型训练和应用的基础设施和技术框架,是构建模型基础支撑部分。AI底座作为模型时代的基础设施,不仅提供从数据管理到模型部署的全方位服务,还在各个行业中展现出广泛的应用潜力。作用与意义提供基础架构支持:模型底座为整个大模型的构建提供了底层的技术框架和基础设施,包括硬件架构、软件架构、通信机制等,确保模型能够高效地运行和处理规模的数据。承载和预处理数据:负责数据的收集和共享。算力层:硬件设备:包括高性能的、计算芯片,以及规模的存储设备和高速网络设备,为模型训练和推理提供强大的计算能力和数据传输能力。算力调度与管理:通过分布式计算、云计算等技术,实现对计算资源的灵活模型的训练过程,提高训练效率,同时通过各种优化手段,如调整参数、改进架构等,不断提升模型的性能和表现。实现模型的通用性和扩展性:一个好的模型底座能够使模型具备较强的通用性,适用于多种不同的应用场景和
行业资讯
语料库 模型
以下是对语料库与模型关系的详细介绍:语料库对模型的重要性提供知识基础:语料库中的大量文本数据包含了丰富的词汇、语法、语义等语言知识,以及各个领域的专业知识和常识。模型通过对语料库的学习,能够获取这些知识,从而更好地理解和处理输入的文本,生成准确、有意义的输出。提升泛化能力:丰富多样的语料可以让模型接触到不同的语言表达方式、主题和情境,从而提高其在各种任务和领域中的泛化能力,使其能够更好地应对未见过的输入和任务1。塑造模型风格和能力:不同来源和特点的语料库会使模型具备不同的风格和能力倾向。例如,包含大量文学作品的语料库可能使模型在文学创作和情感理解方面表现更好;而包含大量科技文献的可能导致模型学习到错误的信息或产生误导性的输出,影响模型的性能和可靠性。多样性要求:涵盖不同领域、主题、风格、语言表达方式和文化背景的语料,有助于模型全面理解人类语言的多样性和复杂性,从而更好地适应各种不同的输入和任务需求,提高模型的泛化能力和鲁棒性。语料库则可能使模型在科学知识理解和技术问题解决方面更具优势。模型对语料库的要求规模要求:通常需要大量的数据来训练模型,以使其能够学习到足够丰富的语言模式和知识。一般来说,语料库的规模越大,模型能够
的时代,数据的价值不言而喻,但如何从海量、繁杂的数据中提取有价值的信息,成为企业面临的一挑战。模型凭借其强大的数据处理能力,能够高效地对数据进行清洗、整合和深度挖掘分析。它可以快速梳理出数据中的实时数据调整营销策略,提高营销效率和效果。提升模型运营管理能力的策略面对模型运营管理中的重重挑战,我们不能望而却步,而是要积极探索创新,采取有效的策略加以应对,为模型的稳健发展保驾护航。(一)技术创新模型技术能力,能够将模型技术与实际业务紧密结合,实现技术的价值最大化。企业可以与高校、科研机构合作,开展定制化的人才培养项目,为学生提供实践机会和项目经验,使他们在学习理论知识的同时,能够接触到模型如何赋能运营管理模型在运营管理中的应用广泛且深入,宛如一位全能的“超级助手”,为企业在各个关键环节提供强大支持,助力企业在激烈的市场竞争中脱颖而出。(一)精准数据分析,洞察市场先机在数据爆炸关键指标和趋势,帮助企业精准把握市场动态和用户需求。(二)预测用户行为,实现精准运营用户行为复杂多变,难以捉摸,但对企业运营至关重要。模型通过对用户的历史行为数据、偏好数据等进行分析,构建出精准的用户
近日,中国信通院2023年下半年“可信数据库”评估评测结果正式发布,星环科技自主研发的分布式时序数据库TimeLyre成功通过信通院时序数据库基础能力测试,包括数据库基础功能、兼容能力、管理能力、高可用特性、扩展性、安全性6项共计33项测评,充分反映了其对海量时序数据优秀的存储分析、管理支持能力。目前,TimeLyre分布式时序数据库已在能源、制造、金融等多个行业中应用落地,助力企业打造实时高性能时序数据平台,提升海量时序数据管理能力、复杂场景应对能力和重点业务处理效率。星环分布式时序数据库-TranswarpTimeLyreTranswarpTimeLyre是星环科技自主研发的企业级分布式时序数据库,产品基于星环科技数据产品生态设计与实施,具备高吞吐实时写入、时序精确查询、超高数据压缩率等特点,可以有效支撑物联网、能源制造、金融智能投研领域等多种时序数据业务场景进行数据分析,降低用户使用门槛;基于星环科技多模型统一技术架构,实现与不同模型数据的统一存储管理和联合分析;此外新版本还提供一站式国产化替代解决方案,可以实现InfluxDB的平滑替换,助力企业打造自主可控数据平台。
行业资讯
模型平台
模型平台是集成了模型技术、数据处理、模型训练、评估与部署等全栈能力的服务平台。可以为企业提供高效、便捷的模型应用解决方案,帮助企业快速构建和部署基于模型的智能应用。模型平台优势与特点高效便捷:提供一站式模型开发工具链和基础设施,降低企业使用模型的门槛和成本。灵活定制:支持根据企业需求进行模型定制和微调,满足不同行业和场景的应用需求。安全可靠:采取高标准的数据安全管理措施,确保企业数据的安全性和隐私保护。持续更新:平台支持模型的持续更新和优化,确保企业能够享受到新的模型技术成果。模型平台应用场景模型平台广泛应用于金融、传媒、文旅、政务、教育等多个行业场景,为这些行业提供定制化的智能解决方案。例如:金融行业:利用模型平台进行风险评估、欺诈检测、智能投顾等应用。传媒行业:通过大模型平台实现内容生成、舆情分析、个性化推荐等功能。文旅行业:利用模型平台提升旅游体验,实现智能导览、个性化旅游规划等应用。政务行业:借助模型平台优化政务服务流程,提高政府决策的科学性和精准性。
行业资讯
数据中台建设
随着行业和技术领域的变化日新月异,从数据仓库、动态数仓,到数据湖,从新一代湖仓一体技术到可插拔数据库,概念的引入虽然简单,但如何做到更有效,更复杂的数据资产管理就考验着对生产能力和工艺过程的管理能力。星环科技认为数据中台是一种能力、是一种组织上的策略而不仅仅是一种技术架构,它是在信息化基础上建立的可编织和可复用的数据可分析能力,从而支撑企业数字化转型。星环科技的数据中台三中心、六能力、两个体系星环科技很早就在数据中台领域布局,结合星环科技全系产品的相关组件实现数据中台能力建设。星环科技把数据中台建设归纳为三中心、六能力、两个体系,这当中都会有星环科技产品作为支撑,从而保证企业能够快速实现,并搭建起数据中台,满足企业未来发展变化。数据存储、分析探索、业务赋能三中心第一,帮助企业构建存储中心,提升数据的汇聚和整合能力;第二,构建数据分析探索中心,专注于智能分析能力和实时计算能力的提升,推动智能推荐能力和全链路实时监测和保障能力;第三,构建业务赋能中心,提供统一的访问能力实现跨平台联邦,统一的访问层控制,确保数据安全可用,同时搭建统一的服务能力,面向多场景的服务应用支撑。安全和运维、数据和分...
星环科技作为一家企业级大数据基础软件开发商,在图计算领域深耕多年,有着深厚的技术积淀和丰富的实践经验。星环科技自主研发的分布式图数据库StellarDB,兼容openCypher查询语言,提供海量图数据的存储和分析能力,支持原生图存储结构,支持万亿边PB级数据存储。同时,StellarDB具备毫秒级点边查询能力,10+层的深度链路分析能力,提供近40种的图分析算法,具备数据2D和3D展示能力。StellarDB克服了海量关联图数据存储的难题,通过集群化存储和丰富算法,实现了传统数据库无法提供的低延时多层关系查询,目前已经用于金融、政府、交通等众多行业,用于反洗钱、风险控制、营销等多种场景。同时StellarDB还获得了多项行业权威认可:入选信通院2022大数据十大关键词“图计算平台”代表厂商;通过了中国信通院图数据库和图计算平台基础能力两项专项测评;入选著名咨询机构Gartner《中国数据库市场指南》、《工具:中国数据库管理系统供应商甄选》报告等,彰显了其产品技术领先性。如今,5G、物联网、AI等技术的发展应用让数据呈指数倍增长,为图数据库发展提供了更广阔的应用空间。顺势而为,乘势而上...
作为一家企业级大数据基础软件开发商,星环科技很早就在数据中台领域布局,结合星环科技全系产品的相关组件实现数据中台能力建设。星环科技把数据中台建设归纳为三中心、六能力、两个体系,这当中都会有星环科技产品作为支撑,从而保证企业能够快速实现,并搭建起数据中台,满足企业未来发展变化。其中,三中心分别是存储中心、分析探索中心、业务赋能中心;六能力包括数据汇聚能力、数据整合能力、智能分析能力、实时计算能力、统一访问能力、统一服务能力;两个体系则是安全和运维保障体系与数据和分析支撑体系。三中心、六能力、两个保障体系都构建在一个云底座之上,满足企业私有化或者混合云多云的部署形态,同时灵活组件式的可插拔式部署形态,能够帮助企业更迅速的起步,按规划分步完善数据中台建设。除了提供基础组件和相应的工具帮助客户快速构建数据中台之外,星环科技还提供咨询实施服务,可以为企业提供量身定制的“数据云基础设施+咨询服务的端到端产品+服务”的综合解决方案。在星环科技的咨询服务产品体系中,包括为企业构建中台的架构规划、应用规划,以及帮助企业实施建设数据底座、数据中台、数据仓库,以及数据治理服务,也包括了数据的分析、业务分析、...
星环科技致力于打造企业级大数据基础软件,具备大数据与云基础平台、分布式关系型数据库、数据开发与智能分析工具的软件产品矩阵,多年来深耕电力领域,覆盖电力产业“发-输-变-配-用”五大环节,为推动电力行业数字化转型做出了重要贡献。在国网上海电力智能配用电大数据应用系统建设项目中,基于星环科技大数据基础平台TDH构建的智能配用电大数据应用系统汇集了浦东1210平方千米的236万户的用电数据,高负荷738万千瓦,年用电量329亿度,占上海全网四分之一。集成的内外部数据源有10个,整个数据量到现在已经接近8个T了,台账的数据总量有29.14万条。在多元数据集成及大数据平台基础之上,应用系统实现了用电查询,电力地图等基础功能及用户用电行为分析,节电用电预测网架优化和错峰调度等业务应用。基于多源异构数据的关联解析,和海量用电负荷实际数据存储、索引,实现了用电查询的基础应用,包括230万用户,26000个台区,4000余中压馈线的基本台账及用电数据的快速查询,并可以进行用户用电画像、地图定位、供电范围等数据的查询,服务响应时间在三秒以内。此前,星环科技还曾凭借《星环科技电力智慧供应链智能决策平台建设方...
时空数据库时空数据库是一种针对时空数据处理的数据库系统。它以时间和空间为基础,整合了空间信息和时间信息,能够对时空数据进行存储、查询和分析。时空数据库广泛应用于交通运输、城市规划、GIS等领域。分布式时空数据库分布式时空数据库是一种对时空数据进行存储和处理的数据库系统,通过分布式存储和分布式计算等技术,可以实现对大规模时空数据的高效处理和分析。与传统的集中式数据库系统不同,分布式时空数据库将数据存储在多个存储节点上,并将计算任务分配给多个计算节点来完成,从而极大地提高了时空数据的处理能力和可靠性。分布式时空数据库的出现,使得处理大规模时空数据成为了可能,也更好地满足了各个领域对时空数据深度分析的需求。星环分布式时空数据库-TranswarpSpactureSpacture是星环科技自主研发的一款面向空间、时空数据的存储与管理,集计算与存储为一体的分布式数据库产品,支持大规模矢量数据、时空轨迹数据的存储与计算,具有完备的数据查询、分析和挖掘能力,可用于时空查询分析、时空模式挖掘、时空轨迹聚类等时空轨迹数据分析场景,广泛应用于交通物流、城市管理、位置服务等场景。
图数据库的应用场景非常广泛,可以应用于各个行业。以下是一些常见的应用场景:金融:在金融领域,图数据库可以帮助银行、保险公司等企业处理复杂的数据结构,支持欺诈检测、交易路由、投资组合分析等操作。社交网络:图数据库可以存储和处理社交网络中的复杂关系图谱和大量用户数据,支持好友推荐、社区发现、个性化内容推荐等操作。物流:在物流领域,图数据库可以帮助企业优化路径规划、物流运输等操作,加速发货、配送时间并提高效率。制造业:图数据库可以支持企业处理复杂的设备关系结构图,进行维修保养、设备性能分析、生产计划优化等操作。能源行业:在能源领域,图数据库可以处理复杂的电网、管道等结构图谱,并支持多种能源趋势分析和紧急事件监测等操作。电商:图数据库可以应用于电商业务中,存储和处理复杂的商品与用户之间的关系,支持个性化推荐、购物车分析、用户行为预测等操作。图数据库可以在各个领域中应用,并且在处理复杂的数据结构和大量的数据时比传统数据库具有更高的性能和效率。星环分布式图数据库StellarDB星环科技致力于打造企业级大数据基础软件,围绕数据的集成、存储、治理、建模、分析、挖掘和流通等数据全生命周期提供基础软件与...
为解决AI落地难的问题,星环科技从用户需求端出发,研发了一款基于云原生架构的企业级AI能力运营平台SophonMLOps,助推AI模型落地。SophonMLOps是基于云原生架构构建的企业级AI能力运营平台,聚焦于机器学习模型全生命周期中的模型管理、模型部署、模型监控预警、模型评估和模型迭代等关键环节。通过统一纳管、统一运维、统一应用、统一监控、统一评估、统一解释,赋予企业客户易用、高效且安全可靠的AI能力运营服务,协助客户规模化管理日益增长的机器学习模型,提升模型使用效率,降低模型集成管理成本,控制模型生产环境风险。SophonMLOps针对企业AI运营的痛点,围绕企业AI模型接入、运营管理、持续训练的全生命周期,分别提供规模化集成管理、高效模型推理、模型监控预警、模型性能评估、隐私安全保障等功能,为企业的AI日常运营插上翅膀。SophonMLOps打通了AI的全生命周期,为企业的各类用户角色搭建了统一的AI协作平台。对于企业而言,MLOps规模化集成管理了多源异构的机器学习模型,并提供高效且保障隐私安全的模型推理、监控预警及性能评估服务;对用户而言,能感受到操作上的快捷,AI应用与...
近年来,企业数据安全问题的重要性被提上了前所未有的高度。星环科技提供了从云基础设施、数据平台、数据资源、数据应用的数据安全能力。覆盖数据生命周期的各个阶段,涉及数据的收集、存储、使用、加工以及开放流通。全方位保障企业的数据安全,支撑业务合法合规的开展。星环科技凭借全面的数据安全能力助力某支付机构构建安全防线的落地实践。该支付机构拥有大量数据资产,目前机构面临着较大的挑战,需要加强数据安全管理,为此,机构决定与星环科技合作,利用星环科技的技术来提升数据安全管理能力,共同打造一个基于隐私计算的数据服务平台DaaS。根据客户需求,星环科技在基础设施层提供了基于容器的云原生操作系统TCOS,可以为用户提供独立的数据与计算环境,减少数据对外暴露的风险。在数据平台层,星环科技大数据基础平台TDH新版本增强了安全技术,支持行列级权限控制、动态脱敏等。在数据资产层,星环科技借助两款新产品:数据安全管理平台Defensor帮助企业构建整个数据安全管理域及数据流通平台Navier:包含隐私计算平台SophonP²C和数据交易门户datamall,提供包括联邦学习和差分隐私等技术能力。该支付机构的数据管理平...
双碳目标下,全国碳排放监测服务平台启动建设力争2030年前实现碳达峰、2060年前实现碳中和,我国明确提出“双碳”目标,充分彰显了在构建人类命运共同体进程中的大国担当。国家电网公司主动担当重要使命,提出“实现双碳目标,能源是主战场,电力是主力军,电网是排头兵”的战略部署,率先行动,发布《全国碳排放监测服务平台建设工作方案》。“双碳”目标的实现离不开科技支撑。《全国碳排放监测服务平台建设工作方案》指出,全国碳排放监测服务平台建设的总体目标是以电网数字化赋能和助力国家碳达峰碳中和,实现“电力看双碳”,“双碳看经济”,为国家碳排放统计核算体系建设、宏观调控政策制定、经济社会全面绿色转型发展等工作提供决策支持。平台建设需要解决以下问题:以数字化平台技术解决各省的地市、区县、重点行业碳排放数据维度不全面、核算方法不完善、碳核算体系不统一等方面的问题;强化数据应用,发挥好决策支撑作用,深挖电力大数据价值,开展“电力看环保”“电力看经济”等大数据应用。积极响应号召,星环科技打造碳排放监测服务平台解决方案星环科技作为大数据基础软件领域的代表性企业,有着高度的责任感和使命感,为响应“全国碳排放监测服务平...
在国产数据库产品方面,星环科技坚持自主研发与技术创新,打造了自主可控的高性能分布式数据库ArgoDB和分布式交易型数据库KunDB,以及分布式图数据库StellarDB等产品。KunDB具备较强的SQL兼容性,同时具备高可用、高并发、在线扩缩容、数据强一致性等能力,适用于操作型业务、高并发业务等场景。ArgoDB具备完整的SQL兼容性,同时具备高扩展、高可靠、多模型、存算解耦等能力,一站式满足数据仓库、实时数据仓库、数据集市、OLAP、联邦计算等场景。通过不断的打磨和对业务场景不断的落地实践,ArgoDB和KunDB已成为具有完全自主知识产权的成熟的国产数据库,能够为更多的客户提供高性能、高可靠、成熟的数据库产品服务,帮助用户应对智能数据时代海量数据的分析与探索。分布式图数据库StellarDB兼容openCypher查询语言,提供海量图数据的存储和分析能力,支持原生图存储结构,支持万亿边PB级数据存储。同时,StellarDB具备毫秒级点边查询能力,10+层的深度链路分析能力,提供近40种的图分析算法,具备数据2D和3D展示能力。星环科技StellarDB在金融、政府和社交网络等领域...