大模型构建和应用
、召回的服务能力,涵盖了知识模型定义、多源异构数据接入、概念与物理数据映射、多元化知识的抽取融合、全自动知识构建、知识综合查询等功能,能够帮助政务、工业、能源等多领域客户高效构建领域知识体系,并提供智能应用的场景定制化和一站式解决方案。星环知识构建工具Transwarp Knowledge Studio for LLM是一套全流程、端到端、多模态的知识构建工具集,提供了对图谱知识、文档知识、规则知识等多模态知识的管理、构建、融合
大模型构建和应用 更多内容

行业资讯
大模型应用开发平台
大模型应用开发平台是基于人工智能和大数据技术的应用程序开发平台,可以帮助开发人员快速构建和部署高质量的大模型应用。大模型应用开发平台通常提供一系列工具和框架,使用户能够轻松处理大规模的数据,并构建和训练复杂的深度学习模型。为开发人员提供了一个集成环境,可以大大简化大模型的构建和训练过程。大模型应用开发平台提供各种应用工具和接口,使开发人员可以方便地构建、训练和部署大模型应用,从而大大加快了开发流程。提供可视化界面,帮助用户轻松构建模型,提供了预训练模型库,用户可以根据需要轻松引用,节省大量时间和精力。大模型持续开发和训练工具为了满足企业应用大语言模型的需求,星环科技率先在行业中提出了行业大模型应用创新场景,并推出了相应的大模型持续开发和训练工具——SophonLLMOps。这款工具旨在帮助企业构建自有的行业大模型,通过大模型基础设施打造面向未来的、具备“新型人机交互”且“敏捷可持续迭代”的人工智能应用。针对大语言模型及其衍生数据、模型和应用方面的问题,SophonLLMOps工具链需要完成从通用大语言模型的训练和微调、模型上架到模型持续运营及提升迭代的全流程任务,从而成功构建满足企业

行业资讯
大模型语料训练
大模型语料训练是大语言模型构建和优化过程中的关键环节,以下是其具体介绍:训练前的准备数据收集:从多种来源广泛收集数据,如互联网的新闻、博客、论坛,学术文献库,书籍,以及特定行业的专业数据库等。收集。根据评估结果,对模型进行优化和调整,如调整超参数、增加或减少训练数据、改进模型架构等,以提高模型的性能和泛化能力。训练后的处理模型压缩和优化:训练好的大模型通常具有庞大的参数和较高的计算复杂度,为了处理,防止模型被恶意攻击和泄露用户隐私。采用对抗训练、差分隐私等技术,提高模型的安全性和隐私保护能力。模型部署和应用:将训练好并经过优化和保护处理的模型部署到实际的应用场景中,如智能客服、智能写作助手、机器翻译等。在部署过程中,需要根据具体的应用需求和硬件环境,对模型进行适配和优化,以确保模型能够稳定、高效地运行。编码等。数据标注:对于一些需要特定任务训练的模型,如情感分类、命名实体识别等,需要对数据进行标注。标注可以由人工完成,也可以采用半自动化的方式,利用一些预训练模型和工具进行辅助标注。标注的质量和准确性

行业资讯
大模型应用框架
大模型应用框架是一套用于构建和部署大模型应用的体系结构和工具集,它为开发者提供了一种标准化、高效的方式来利用大模型的能力解决实际问题。以下是一些常见的组成部分和功能特点:模型层大模型集成:该框架能够。同时,具备数据索引和查询功能,方便快速检索和获取所需数据。应用服务层应用开发接口(API):对外提供一组简洁、易用的API,开发者可以通过这些API向大模型发送请求并获取结果,从而构建各种应用。任务用户体验设计,例如支持语音输入、自动补全、多语言切换等功能,提高用户使用的便捷性和舒适度。可视化工具:提供可视化的开发工具和监控工具。开发工具可以帮助开发者通过拖拽、配置等方式快速构建大模型应用,降低方便地接入各种主流的大模型。这需要提供模型加载、初始化和配置的功能,确保模型能够在应用环境中稳定运行。模型管理:包括模型版本控制、模型的存储与加载优化、模型的分布式部署与协同等。例如,在模型更新时数据流等。在数据接入后,进行数据清洗、转换、标注等预处理工作,以满足大模型训练和推理的要求。数据存储与管理:提供数据的持久化存储功能,如使用关系型数据库或分布式存储系统存储训练数据、中间结果和应用数据等

行业资讯
大模型平台
大模型平台是集成了大模型技术、数据处理、模型训练、评估与部署等全栈能力的服务平台。可以为企业提供高效、便捷的大模型应用解决方案,帮助企业快速构建和部署基于大模型的智能应用。大模型平台优势与特点高效便捷:提供一站式大模型开发工具链和基础设施,降低企业使用大模型的门槛和成本。灵活定制:支持根据企业需求进行模型定制和微调,满足不同行业和场景的应用需求。安全可靠:采取高标准的数据安全管理措施,确保企业数据的安全性和隐私保护。持续更新:平台支持大模型的持续更新和优化,确保企业能够享受到新的大模型技术成果。大模型平台应用场景大模型平台广泛应用于金融、传媒、文旅、政务、教育等多个行业场景,为这些行业提供定制化的智能解决方案。例如:金融行业:利用大模型平台进行风险评估、欺诈检测、智能投顾等应用。传媒行业:通过大模型平台实现内容生成、舆情分析、个性化推荐等功能。文旅行业:利用大模型平台提升旅游体验,实现智能导览、个性化旅游规划等应用。政务行业:借助大模型平台优化政务服务流程,提高政府决策的科学性和精准性。

行业资讯
大模型数据
大模型数据是构建和训练人工智能(AI)大模型的基础,这些模型能够处理和理解各种类型的数据,如文本、图像、视频等。随着技术的发展,对高质量、多样化的大模型数据的需求不断增长,以提升AI系统的性能和应用范围。数据规模大模型需要海量的数据来进行训练,通常数据量达到数TB、数百TB甚至PB级以上。例多模态数据:包括文本、图像、音频、视频等多种类型的数据。多模态数据的融合可以让大模型更好地理解和感知世界,例如在图像描述生成、视频内容理解等任务中,需要同时处理图像和文本等不同模态的数据.语义多样性:涵盖各种主题、领域和语境的数据,以确保模型能够适应不同的输入和应用场景。数据质量准确性:数据中的信息应。数据管理与存储高效存储:需要采用高效的数据存储架构和技术,以满足大模型对数据存储容量和读写速度的要求。数据索引与检索:建立有效的数据索引和检索机制,以便快速地查找和访问所需的数据。数据版本控制:对数据进行准确无误,避免错误或误导性的内容,否则会影响模型的学习和输出质量。完整性:数据应尽可能完整,涵盖各种相关的信息和细节,以帮助模型全面地理解和学习。一致性:数据内部以及不同来源的数据之间应保持一致性,避免


行业资讯
什么是大模型开发?
大模型开发是指在人工智能领域构建和训练大规模深度学习模型的过程。这些模型通常拥有数百万到数十亿的参数,能够在自然语言处理、计算机视觉、语音识别等任务上展现出卓越的性能。开发大模型涉及数据收集与预处理大模型部署到实际应用中,并持续监控其性能。随着新数据的出现或业务需求的变化,可能还需要定期更新和重新训练模型。星环科技在这一领域具有丰富的经验,能够提供从数据准备到模型部署的全流程支持,确保大模型在实际应用中发挥效能。、模型设计、训练、评估与优化以及部署与维护等多个关键步骤。数据收集与预处理:首先,需要收集大规模的数据集,这些数据集可以是文本、图像或语音等。数据的质量和多样性对于训练出高性能的大模型至关重要。预处理阶段可能包括清洗、标注和格式化数据。模型设计:根据任务需求选择合适的模型架构。设计时需要考虑模型的深度、宽度以及如何平衡计算效率和性能。训练:使用大规模计算资源(如GPU集群)对模型进行训练。训练过程涉及调整模型参数以最小化损失函数,这通常是一个迭代过程,需要大量的时间和计算力。评估与优化:在验证集上评估模型性能,根据结果进行调优。这可能包括调整超参数、增加或减少层的数量等。部署与维护:将训练好的

行业资讯
知识构建工具
服务能力,涵盖了知识模型定义、多源异构数据接入、概念与物理数据映射、多元化知识的抽取融合、全自动知识构建、知识综合查询等功能,能够帮助政务、工业、能源等多领域客户高效构建领域知识体系,并提供智能应用的星环知识构建工具TranswarpKnowledgeStudioforLLM是一套全流程、端到端、多模态的知识构建工具集,提供了对图谱知识、文档知识、规则知识等多模态知识的管理、构建、融合、召回的场景定制化和一站式解决方案。核心能力一键图谱构建:面向行业知识图谱一键构建,自动化构建的能力,无需人工干预。多源异构:提供结构化、半结构化、非结构化的知识接入方案,支持主流数据源、提供快速适配其它数据源的能力。可视化知识融合:以知识建模为依据,提供精准的知识融合配置,提供基于本体、关系、属性级别的数据融合策略,界面可视化配置。精准知识抽取模式:人工标注、规则抽取、模型抽取、人工审核都是基于知识建模为依据,提高知识抽取的精准性。增量图谱构建能力:提供基于时间维度、业务主键维度、文件更新时间维度的增量抽取能力、增量图谱构建能力。基于组件的能力扩展:面对多样的业务需求提供定制化、半定制化的基础组件扩展

行业资讯
向量数据库与图数据库联合构建大模型应用
图谱作为大语言模型提示即可发起模型微调,以较低代价就可获得行业的专属大语言模型问答应用。而向量数据库、图数据库与大语言模型结合,可以构建业务域知识图谱和业务系统的应用服务,进一步提高人机交互的效率利用向量数据库和图数据库,可以构建特定领域的大模型应用。在大模型应用开发软件栈中,知识图谱、向量数据库、模型仓库和图数据库构成的知识语义层,与模型运行层、大语言模型、提示工程层、应用前端集成层协同场景;实现个性化推荐,做到千人千面的个性化推荐效果。而图数据库和知识图谱联合,与大模型可视化端到端构建工具一起,提供了知识抽取融合、知识建模、知识图谱生成存储、基于大模型的知识问答等闭环功能。客户以知识,帮助用户创建大模型应用,让每个人都拥有自己的个性化AI助理。其中,向量数据库可用于应用的文本检索,让查询更满足人性化的需求;可以实现语音、图像、视频检索,覆盖如人脸识别、语音识别、视频指纹等各类AI,提供更灵活的组合业务服务,激发出更多更深入的业务场景AI应用。相较于通用大模型,结合向量数据库、图数据库与知识图谱所存储的具体行业知识,领域大模型更精通特定行业的知识,具备高效的语料匹配能力和知识推理能力,能够有效回答用户的提问。
猜你喜欢

行业资讯
企业级AI能力运营平台
为解决AI落地难的问题,星环科技从用户需求端出发,研发了一款基于云原生架构的企业级AI能力运营平台SophonMLOps,助推AI模型落地。SophonMLOps是基于云原生架构构建的企业级AI能力运营平台,聚焦于机器学习模型全生命周期中的模型管理、模型部署、模型监控预警、模型评估和模型迭代等关键环节。通过统一纳管、统一运维、统一应用、统一监控、统一评估、统一解释,赋予企业客户易用、高效且安全可靠的AI能力运营服务,协助客户规模化管理日益增长的机器学习模型,提升模型使用效率,降低模型集成管理成本,控制模型生产环境风险。SophonMLOps针对企业AI运营的痛点,围绕企业AI模型接入、运营管理、持续训练的全生命周期,分别提供规模化集成管理、高效模型推理、模型监控预警、模型性能评估、隐私安全保障等功能,为企业的AI日常运营插上翅膀。SophonMLOps打通了AI的全生命周期,为企业的各类用户角色搭建了统一的AI协作平台。对于企业而言,MLOps规模化集成管理了多源异构的机器学习模型,并提供高效且保障隐私安全的模型推理、监控预警及性能评估服务;对用户而言,能感受到操作上的快捷,AI应用与...

行业资讯
图数据库的应用场景
图数据库的应用场景非常广泛,可以应用于各个行业。以下是一些常见的应用场景:金融:在金融领域,图数据库可以帮助银行、保险公司等企业处理复杂的数据结构,支持欺诈检测、交易路由、投资组合分析等操作。社交网络:图数据库可以存储和处理社交网络中的复杂关系图谱和大量用户数据,支持好友推荐、社区发现、个性化内容推荐等操作。物流:在物流领域,图数据库可以帮助企业优化路径规划、物流运输等操作,加速发货、配送时间并提高效率。制造业:图数据库可以支持企业处理复杂的设备关系结构图,进行维修保养、设备性能分析、生产计划优化等操作。能源行业:在能源领域,图数据库可以处理复杂的电网、管道等结构图谱,并支持多种能源趋势分析和紧急事件监测等操作。电商:图数据库可以应用于电商业务中,存储和处理复杂的商品与用户之间的关系,支持个性化推荐、购物车分析、用户行为预测等操作。图数据库可以在各个领域中应用,并且在处理复杂的数据结构和大量的数据时比传统数据库具有更高的性能和效率。星环分布式图数据库StellarDB星环科技致力于打造企业级大数据基础软件,围绕数据的集成、存储、治理、建模、分析、挖掘和流通等数据全生命周期提供基础软件与...

行业资讯
图计算平台代表厂商
星环科技作为一家企业级大数据基础软件开发商,在图计算领域深耕多年,有着深厚的技术积淀和丰富的实践经验。星环科技自主研发的分布式图数据库StellarDB,兼容openCypher查询语言,提供海量图数据的存储和分析能力,支持原生图存储结构,支持万亿边PB级数据存储。同时,StellarDB具备毫秒级点边查询能力,10+层的深度链路分析能力,提供近40种的图分析算法,具备数据2D和3D展示能力。StellarDB克服了海量关联图数据存储的难题,通过集群化存储和丰富算法,实现了传统数据库无法提供的低延时多层关系查询,目前已经用于金融、政府、交通等众多行业,用于反洗钱、风险控制、营销等多种场景。同时StellarDB还获得了多项行业权威认可:入选信通院2022大数据十大关键词“图计算平台”代表厂商;通过了中国信通院图数据库和图计算平台基础能力两项专项测评;入选著名咨询机构Gartner《中国数据库市场指南》、《工具:中国数据库管理系统供应商甄选》报告等,彰显了其产品技术领先性。如今,5G、物联网、AI等技术的发展应用让数据呈指数倍增长,为图数据库发展提供了更广阔的应用空间。顺势而为,乘势而上...

行业资讯
数据安全实践案例
近年来,企业数据安全问题的重要性被提上了前所未有的高度。星环科技提供了从云基础设施、数据平台、数据资源、数据应用的数据安全能力。覆盖数据生命周期的各个阶段,涉及数据的收集、存储、使用、加工以及开放流通。全方位保障企业的数据安全,支撑业务合法合规的开展。星环科技凭借全面的数据安全能力助力某支付机构构建安全防线的落地实践。该支付机构拥有大量数据资产,目前机构面临着较大的挑战,需要加强数据安全管理,为此,机构决定与星环科技合作,利用星环科技的技术来提升数据安全管理能力,共同打造一个基于隐私计算的数据服务平台DaaS。根据客户需求,星环科技在基础设施层提供了基于容器的云原生操作系统TCOS,可以为用户提供独立的数据与计算环境,减少数据对外暴露的风险。在数据平台层,星环科技大数据基础平台TDH新版本增强了安全技术,支持行列级权限控制、动态脱敏等。在数据资产层,星环科技借助两款新产品:数据安全管理平台Defensor帮助企业构建整个数据安全管理域及数据流通平台Navier:包含隐私计算平台SophonP²C和数据交易门户datamall,提供包括联邦学习和差分隐私等技术能力。该支付机构的数据管理平...

行业资讯
数据中台建设
随着行业和技术领域的变化日新月异,从数据仓库、动态数仓,到数据湖,从新一代湖仓一体技术到可插拔数据库,概念的引入虽然简单,但如何做到更有效,更复杂的数据资产管理就考验着对生产能力和工艺过程的管理能力。星环科技认为数据中台是一种能力、是一种组织上的策略而不仅仅是一种技术架构,它是在信息化基础上建立的可编织和可复用的数据可分析能力,从而支撑企业数字化转型。星环科技的数据中台三中心、六能力、两个体系星环科技很早就在数据中台领域布局,结合星环科技全系产品的相关组件实现数据中台能力建设。星环科技把数据中台建设归纳为三中心、六能力、两个体系,这当中都会有星环科技产品作为支撑,从而保证企业能够快速实现,并搭建起数据中台,满足企业未来发展变化。数据存储、分析探索、业务赋能三中心第一,帮助企业构建存储中心,提升数据的汇聚和整合能力;第二,构建数据分析探索中心,专注于智能分析能力和实时计算能力的提升,推动智能推荐能力和全链路实时监测和保障能力;第三,构建业务赋能中心,提供统一的访问能力实现跨平台联邦,统一的访问层控制,确保数据安全可用,同时搭建统一的服务能力,面向多场景的服务应用支撑。安全和运维、数据和分...

行业资讯
什么是分布式时空数据库?
时空数据库时空数据库是一种针对时空数据处理的数据库系统。它以时间和空间为基础,整合了空间信息和时间信息,能够对时空数据进行存储、查询和分析。时空数据库广泛应用于交通运输、城市规划、GIS等领域。分布式时空数据库分布式时空数据库是一种对时空数据进行存储和处理的数据库系统,通过分布式存储和分布式计算等技术,可以实现对大规模时空数据的高效处理和分析。与传统的集中式数据库系统不同,分布式时空数据库将数据存储在多个存储节点上,并将计算任务分配给多个计算节点来完成,从而极大地提高了时空数据的处理能力和可靠性。分布式时空数据库的出现,使得处理大规模时空数据成为了可能,也更好地满足了各个领域对时空数据深度分析的需求。星环分布式时空数据库-TranswarpSpactureSpacture是星环科技自主研发的一款面向空间、时空数据的存储与管理,集计算与存储为一体的分布式数据库产品,支持大规模矢量数据、时空轨迹数据的存储与计算,具有完备的数据查询、分析和挖掘能力,可用于时空查询分析、时空模式挖掘、时空轨迹聚类等时空轨迹数据分析场景,广泛应用于交通物流、城市管理、位置服务等场景。

行业资讯
国产数据库有哪些?
在国产数据库产品方面,星环科技坚持自主研发与技术创新,打造了自主可控的高性能分布式数据库ArgoDB和分布式交易型数据库KunDB,以及分布式图数据库StellarDB等产品。KunDB具备较强的SQL兼容性,同时具备高可用、高并发、在线扩缩容、数据强一致性等能力,适用于操作型业务、高并发业务等场景。ArgoDB具备完整的SQL兼容性,同时具备高扩展、高可靠、多模型、存算解耦等能力,一站式满足数据仓库、实时数据仓库、数据集市、OLAP、联邦计算等场景。通过不断的打磨和对业务场景不断的落地实践,ArgoDB和KunDB已成为具有完全自主知识产权的成熟的国产数据库,能够为更多的客户提供高性能、高可靠、成熟的数据库产品服务,帮助用户应对智能数据时代海量数据的分析与探索。分布式图数据库StellarDB兼容openCypher查询语言,提供海量图数据的存储和分析能力,支持原生图存储结构,支持万亿边PB级数据存储。同时,StellarDB具备毫秒级点边查询能力,10+层的深度链路分析能力,提供近40种的图分析算法,具备数据2D和3D展示能力。星环科技StellarDB在金融、政府和社交网络等领域...

行业资讯
数据中台推荐供应商
作为一家企业级大数据基础软件开发商,星环科技很早就在数据中台领域布局,结合星环科技全系产品的相关组件实现数据中台能力建设。星环科技把数据中台建设归纳为三中心、六能力、两个体系,这当中都会有星环科技产品作为支撑,从而保证企业能够快速实现,并搭建起数据中台,满足企业未来发展变化。其中,三中心分别是存储中心、分析探索中心、业务赋能中心;六能力包括数据汇聚能力、数据整合能力、智能分析能力、实时计算能力、统一访问能力、统一服务能力;两个体系则是安全和运维保障体系与数据和分析支撑体系。三中心、六能力、两个保障体系都构建在一个云底座之上,满足企业私有化或者混合云多云的部署形态,同时灵活组件式的可插拔式部署形态,能够帮助企业更迅速的起步,按规划分步完善数据中台建设。除了提供基础组件和相应的工具帮助客户快速构建数据中台之外,星环科技还提供咨询实施服务,可以为企业提供量身定制的“数据云基础设施+咨询服务的端到端产品+服务”的综合解决方案。在星环科技的咨询服务产品体系中,包括为企业构建中台的架构规划、应用规划,以及帮助企业实施建设数据底座、数据中台、数据仓库,以及数据治理服务,也包括了数据的分析、业务分析、...

行业资讯
电力行业数字化转型服务商
星环科技致力于打造企业级大数据基础软件,具备大数据与云基础平台、分布式关系型数据库、数据开发与智能分析工具的软件产品矩阵,多年来深耕电力领域,覆盖电力产业“发-输-变-配-用”五大环节,为推动电力行业数字化转型做出了重要贡献。在国网上海电力智能配用电大数据应用系统建设项目中,基于星环科技大数据基础平台TDH构建的智能配用电大数据应用系统汇集了浦东1210平方千米的236万户的用电数据,高负荷738万千瓦,年用电量329亿度,占上海全网四分之一。集成的内外部数据源有10个,整个数据量到现在已经接近8个T了,台账的数据总量有29.14万条。在多元数据集成及大数据平台基础之上,应用系统实现了用电查询,电力地图等基础功能及用户用电行为分析,节电用电预测网架优化和错峰调度等业务应用。基于多源异构数据的关联解析,和海量用电负荷实际数据存储、索引,实现了用电查询的基础应用,包括230万用户,26000个台区,4000余中压馈线的基本台账及用电数据的快速查询,并可以进行用户用电画像、地图定位、供电范围等数据的查询,服务响应时间在三秒以内。此前,星环科技还曾凭借《星环科技电力智慧供应链智能决策平台建设方...

行业资讯
省市级碳排放监测服务平台建设方案
双碳目标下,全国碳排放监测服务平台启动建设力争2030年前实现碳达峰、2060年前实现碳中和,我国明确提出“双碳”目标,充分彰显了在构建人类命运共同体进程中的大国担当。国家电网公司主动担当重要使命,提出“实现双碳目标,能源是主战场,电力是主力军,电网是排头兵”的战略部署,率先行动,发布《全国碳排放监测服务平台建设工作方案》。“双碳”目标的实现离不开科技支撑。《全国碳排放监测服务平台建设工作方案》指出,全国碳排放监测服务平台建设的总体目标是以电网数字化赋能和助力国家碳达峰碳中和,实现“电力看双碳”,“双碳看经济”,为国家碳排放统计核算体系建设、宏观调控政策制定、经济社会全面绿色转型发展等工作提供决策支持。平台建设需要解决以下问题:以数字化平台技术解决各省的地市、区县、重点行业碳排放数据维度不全面、核算方法不完善、碳核算体系不统一等方面的问题;强化数据应用,发挥好决策支撑作用,深挖电力大数据价值,开展“电力看环保”“电力看经济”等大数据应用。积极响应号召,星环科技打造碳排放监测服务平台解决方案星环科技作为大数据基础软件领域的代表性企业,有着高度的责任感和使命感,为响应“全国碳排放监测服务平...