国产大模型推荐

行业资讯
国产大模型
国产大模型是指由中国企业研发的、具有大规模计算和数据处理能力的大型人工智能模型。这些模型旨在解决特定的问题或领域,例如自然语言处理、图像识别、智能推荐等。在国产大模型领域,一些知名的企业不仅在研发大模型方面具有丰富的经验和技术实力,同时也为其他企业提供大模型服务。随着技术的进步和应用场景的不断扩大,国产大模型有望在更多领域得到应用和发展。星环科技大模型训练工具,帮助企业打造自己的专属大模型星环科技在行业内首先提出行业大模型应用创新场景,推出相应的工具,帮助企业构建自有的行业大模型,通过大模型基础设施,形成具备“新型人机交互”且“敏捷可持续迭代“的人工智能应用。为了帮助企业用户基于大模型构建未来应用,星环科技推出了SophonLLMOps,帮助企业构建自己的行业大模型。具体来看,它解决了客户三个核心痛点:第一,提供一站式工具链,帮助客户从“通用大语言模型”训练/微调,得到“满足自身业务特点的领域大语言模型”;第二,帮助客户将原型的大语言模型应用,成功在实际生产中投入应用;第三,帮助客户运营在生产中应用的大语言模型和大模型的持续提升。除此之外,星环科技在行业首先推出了两大行业大模型:服务于金融行业的星环金融大模型无涯,以及大数据分析大模型SoLar“求索”。
国产大模型推荐 更多内容


行业资讯
国产大模型推理
国产大模型推理:人工智能的新篇章近年来,人工智能领域迎来了一场前所未有的变革,其中大语言模型的出现尤为引人注目。在这场全球性的技术竞赛中,中国的科研团队和企业也交出了令人瞩目的答卷。国产大模型的崛起不仅代表着技术上的突破,更彰显了中国在人工智能领域的自主创新能力。本文将带您了解国产大模型推理的基本原理、发展现状以及应用前景。大模型推理的本质,是让计算机模拟人类的思维过程,根据输入的提示生成连贯循环往复,形成完整的回答。在推理能力方面,国产大模型已经能够胜任多种复杂任务。从基础的问答对话,到需要多步推理的数学题解答;从文学创作到代码生成,这些模型的表现日益接近人类水平。应用场景的拓展是国产大模型发展的另一个亮点。在教育领域,大模型可以充当个性化辅导老师;在医疗行业,它能辅助医生进行诊断;在创意产业,模型可以帮助撰写文案、生成设计。更令人期待的是,随着多模态技术的发展,国产大模型开始具备处理图像、音频等多种信息的能力,这为更丰富的应用场景打开了大门。展望未来,国产大模型推理技术还将继续进化。一方面,模型规模可能会进一步扩大,以获取更强的推理能力;另一方面,小型化、专业化也将成为重要方向,使大

行业资讯
大模型 应用
规模的语音数据训练出的深度学习模型,能够实现高效的语音识别和转写。除了在上述领域的应用外,大模型还在推荐系统、金融风控、智能客服等领域有着广泛的应用。例如,在推荐系统中,大模型可以通过分析用户历史行为和喜好,预测用户可能感兴趣的内容,从而提供更加精准的个性化推荐。为帮助企业构建自己的大模型,星环科技推出了机器学习模型全生命周期管理的工具平台SophonLLMOps,支持从数据接入开发、提示工程、大模型将自主研发的领先创新技术赋能各行各业,与生态伙伴共同打造国产化大数据技术生态,推动数字经济的可持续发展。无涯是一款面向金融量化领域、超大规模参数量的生成式大语言模型,融合了舆情、资金、人物、空间、上下游大模型具有强大的特征学习和模式识别能力,能够从大量数据中学习并提取出有用的特征和模式,从而在各种任务中表现出色。大模型应用在各个领域都有广泛的应用,例如自然语言处理、计算机视觉、语音识别等。自然语言处理:大模型被广泛应用于文本分类、情感分析、语言翻译等领域。例如,谷歌的翻译系统就是基于大规模的双语语料库训练出的神经网络模型,能够实现高质量的翻译效果。计算机视觉:大模型被广泛应用于图像分类、目标

行业资讯
LLM大模型
LLM大模型是指基于大量数据集和复法构建的机器学习模型。这种模型通常需要使用多个参数和变量,以便追踪和分析各个数据点或输入。LLM大模型可以用于各种任务,如自然语言处理、图像识别、语音识别和推荐系统模型SoLar“求索”,促进金融分析和大数据分析的平民化。星环科技将自主研发的领先创新技术赋能各行各业,与生态伙伴共同打造国产化大数据技术生态,推动数字经济的可持续发展。无涯是一款面向金融量化领域等。在实际应用中,LLM大模型需要高度优化的软件架构和处理能力,以处理大量数据和实现快速训练和推理。在构建LLM大模型时,需要从数据的特征工程和预处理开始,并使用度学习算法进行模型的训练和优化。对于非常大的数据集,还需要使用分布式计算进行训练,并采用高效的数据并行算法实现模型的分布式推理。由于LLM大模型的规模和复杂性,需要更多的注意和测试,以确保模型的准确性和效率。对于任何一项任务,构建并调整模型都需要经验丰富的机器学习专家和领域专家的合作。LLM大模型作为机器学习技术的前沿应用,已经在各种行业和领域中拥有广泛的应用。为帮助企业构建自己的大模型,星环科技推出了机器学习模型全生命周期管理的工具

行业资讯
大语言模型应用场景
视觉任务,如图像和视频分类、目标检测、图像生成等。语音识别:大语言模型可以用于语音识别,将语音转化为文字,以及语音合成,将文字转化为语音。推荐系统:大语言模型可以用于推荐系统,根据用户的历史行为和偏好,预测其可能感兴趣的内容,并为其提供个性化的推荐。金融领域:大语言模型在金融领域也有着广泛的应用,如投资策略、风险评估、财务报告分析等。除了上述提到的应用场景,大语言模型还可以应用于其他领域,如医疗大语言模型的应用场景非常广泛,以下是一些主要的领域:自然语言处理(NLP):大语言模型在自然语言处理领域有广泛的应用,如文本分类、情感分析、机器翻译等。计算机视觉(CV):大语言模型可以应用于计算机、法律等。星环科技大模型训练工具,帮助企业打造自己的专属大模型星环科技在行业内首先提出行业大模型应用创新场景,推出相应的工具,帮助企业构建自有的行业大模型,通过大模型基础设施,形成具备“新型人机交互”且“敏捷可持续迭代“的人工智能应用。为了帮助企业用户基于大模型构建未来应用,星环科技推出了SophonLLMOps,帮助企业构建自己的行业大模型。除此之外,星环科技在行业首先推出了两大行业大模型:服务于金融行业的星环金融大模型无涯,以及大数据分析大模型SoLar“求索”。

行业资讯
国产化替代
。通过国产化替代,可以降低经对进口商品的依赖程度,减少出口的不稳定性和贸易摩擦,提升国家整体竞争力,推动社会经济的可持续发展。星环科技经过多年的自主研发,打造了全栈的大数据基础软件,并打磨了一系列国产化替代平滑迁移方案,能够更好帮助企业用户更高效、更平滑、更安全地实现国外进口产品的国产化替代,实现大数据基础软件的全面自主可控,并在产品架构、功能、性能、安全、运维、易用性等方面得到大幅提升。国产化替代案例大数据平台:TDH国产化替代ClouderaDataHub春秋航空利用星环科技大数据基础平台替代了CDH大数据平台,一体化构建服务于整个企业的统一数据资源库,实现海量数据统一存储,打破不同部门间的数据隔阂。基于TDH强大的数据处理能力,平台能够快速完成批处理任务,并且通过CI成本指数监控、直飞模型优化、高度模型优化等措施不断优化飞行路径,成功利用大数据能力实现了降本增效,据估算80架飞机每年入的支持。基于产品营销模型的推荐效果提升了4到10倍,同时Sophon支持可视化机器学习,简单易用,极大降低了业务人员的使用门槛。

行业资讯
国产化替代案例
星环科技经过多年的自主研发,打造了全栈的大数据基础软件,并打磨了一系列国产化替代平滑迁移方案,能够更好帮助企业用户更高效、更平滑、更安全地实现国外进口产品的国产化替代,实现大数据基础软件的全面自主可控,并在产品架构、功能、性能、安全、运维、易用性等方面得到大幅提升。国产化替代案例大数据平台:TDH国产化替代ClouderaDataHub春秋航空利用星环科技大数据基础平台替代了CDH大数据平台措施不断优化飞行路径,成功利用大数据能力实现了降本增效,据估算80架飞机每年仅燃油成本就可节省约2400万元。分析型数据库:ArgoDB国产化替代Teradata和Oracle某农商行使用星环科技、数据模态、数据智能分析方式场景下的智能化收集、挖掘和处理上有更全面、更深入的支持。基于产品营销模型的推荐效果提升了4到10倍,同时Sophon支持可视化机器学习,简单易用,极大降低了业务人员的使用门槛。,一体化构建服务于整个企业的统一数据资源库,实现海量数据统一存储,打破不同部门间的数据隔阂。基于TDH强大的数据处理能力,平台能够快速完成批处理任务,并且通过CI成本指数监控、直飞模型优化、高度模型优化等

行业资讯
大数据平台国产化
大数据平台国产化随着我国数字化转型的加速,大数据平台的国产化已成为保障信息安全、提升自主创新能力的重要战略方向。近年来,国内企业和科研机构在大数据平台的国产化技术研发和应用实践方面取得了显著进展,推动了国产大数据平台从概念走向成熟。一、大数据平台国产化的定义与背景大数据平台国产化是指在大数据处理、存储、分析等关键技术领域,采用国内自主研发的软硬件产品和服务,替代国外同类产品,实现数据处理的自主可控。这一过程不仅涉及技术的自主创新,还包括与国产操作系统、芯片、数据库等生态系统的深度融合。我国在大数据平台国产化方面的努力,源于对信息安全和自主可控的迫切需求。长期以来,我国在大数据平台建设中依赖国外技术和产品,存在数据泄露、技术“卡脖子”等风险。因此,推动大数据平台国产化,不仅是技术发展的必然选择,更是国家战略安全的重要保障。二、大数据平台国产化的重要性1.信息安全保障:国产化大数据平台能够:大数据平台国产化能够带动国内相关产业的发展,促进数字经济的繁荣。三、大数据平台国产化的技术实现近年来,我国在大数据平台国产化方面取得了显著进展,涌现出一批具有自主知识产权的技术和产品。1.国产数据库

行业资讯
国产化替代方案
国产化替代方案是指在特定领域或行业中,使用国内的技术、产品或服务来替代国外进口的方案。星环大数据基础软件国产化替代方案星环科技经过多年的自主研发,打造了全栈的大数据基础软件,并打磨了一系列国产化替代平滑迁移方案,能够更好帮助企业用户更高效、更平滑、更安全地实现国外进口产品的国产化替代,实现大数据基础软件的全面自主可控,并在产品架构、功能、性能、安全、运维、易用性等方面得到大幅提升。国产化替代的10大关键评价指标功能方面:星环科技基础软件产品多模架构,支持关系表、文本、时空地理、图数据、文档、时序等在内的10种数据模型;离线数据批处理、高并发的在线数据服务、数据集市、数据仓库、数据湖、图存有超过1100人的研发与支持团队,超过3万名星环科技认证的大数据工程师,专业性更强。国产化方面:星环科技的软件产品自主研发,通过了工信部代码自主研发率扫描测试,满足信创验收要求。国产生态方面:星环基础行业1000+用户应用落地。大数据平台:TDH国产化替代ClouderaDataHub春秋航空利用星环科技大数据基础平台替代了CDH大数据平台,一体化构建服务于整个企业的统一数据资源库,实现海量数据
猜你喜欢

行业资讯
图计算平台代表厂商
星环科技作为一家企业级大数据基础软件开发商,在图计算领域深耕多年,有着深厚的技术积淀和丰富的实践经验。星环科技自主研发的分布式图数据库StellarDB,兼容openCypher查询语言,提供海量图数据的存储和分析能力,支持原生图存储结构,支持万亿边PB级数据存储。同时,StellarDB具备毫秒级点边查询能力,10+层的深度链路分析能力,提供近40种的图分析算法,具备数据2D和3D展示能力。StellarDB克服了海量关联图数据存储的难题,通过集群化存储和丰富算法,实现了传统数据库无法提供的低延时多层关系查询,目前已经用于金融、政府、交通等众多行业,用于反洗钱、风险控制、营销等多种场景。同时StellarDB还获得了多项行业权威认可:入选信通院2022大数据十大关键词“图计算平台”代表厂商;通过了中国信通院图数据库和图计算平台基础能力两项专项测评;入选著名咨询机构Gartner《中国数据库市场指南》、《工具:中国数据库管理系统供应商甄选》报告等,彰显了其产品技术领先性。如今,5G、物联网、AI等技术的发展应用让数据呈指数倍增长,为图数据库发展提供了更广阔的应用空间。顺势而为,乘势而上...

行业资讯
国产数据库有哪些?
在国产数据库产品方面,星环科技坚持自主研发与技术创新,打造了自主可控的高性能分布式数据库ArgoDB和分布式交易型数据库KunDB,以及分布式图数据库StellarDB等产品。KunDB具备较强的SQL兼容性,同时具备高可用、高并发、在线扩缩容、数据强一致性等能力,适用于操作型业务、高并发业务等场景。ArgoDB具备完整的SQL兼容性,同时具备高扩展、高可靠、多模型、存算解耦等能力,一站式满足数据仓库、实时数据仓库、数据集市、OLAP、联邦计算等场景。通过不断的打磨和对业务场景不断的落地实践,ArgoDB和KunDB已成为具有完全自主知识产权的成熟的国产数据库,能够为更多的客户提供高性能、高可靠、成熟的数据库产品服务,帮助用户应对智能数据时代海量数据的分析与探索。分布式图数据库StellarDB兼容openCypher查询语言,提供海量图数据的存储和分析能力,支持原生图存储结构,支持万亿边PB级数据存储。同时,StellarDB具备毫秒级点边查询能力,10+层的深度链路分析能力,提供近40种的图分析算法,具备数据2D和3D展示能力。星环科技StellarDB在金融、政府和社交网络等领域...

行业资讯
数据安全实践案例
近年来,企业数据安全问题的重要性被提上了前所未有的高度。星环科技提供了从云基础设施、数据平台、数据资源、数据应用的数据安全能力。覆盖数据生命周期的各个阶段,涉及数据的收集、存储、使用、加工以及开放流通。全方位保障企业的数据安全,支撑业务合法合规的开展。星环科技凭借全面的数据安全能力助力某支付机构构建安全防线的落地实践。该支付机构拥有大量数据资产,目前机构面临着较大的挑战,需要加强数据安全管理,为此,机构决定与星环科技合作,利用星环科技的技术来提升数据安全管理能力,共同打造一个基于隐私计算的数据服务平台DaaS。根据客户需求,星环科技在基础设施层提供了基于容器的云原生操作系统TCOS,可以为用户提供独立的数据与计算环境,减少数据对外暴露的风险。在数据平台层,星环科技大数据基础平台TDH新版本增强了安全技术,支持行列级权限控制、动态脱敏等。在数据资产层,星环科技借助两款新产品:数据安全管理平台Defensor帮助企业构建整个数据安全管理域及数据流通平台Navier:包含隐私计算平台SophonP²C和数据交易门户datamall,提供包括联邦学习和差分隐私等技术能力。该支付机构的数据管理平...

行业资讯
省市级碳排放监测服务平台建设方案
双碳目标下,全国碳排放监测服务平台启动建设力争2030年前实现碳达峰、2060年前实现碳中和,我国明确提出“双碳”目标,充分彰显了在构建人类命运共同体进程中的大国担当。国家电网公司主动担当重要使命,提出“实现双碳目标,能源是主战场,电力是主力军,电网是排头兵”的战略部署,率先行动,发布《全国碳排放监测服务平台建设工作方案》。“双碳”目标的实现离不开科技支撑。《全国碳排放监测服务平台建设工作方案》指出,全国碳排放监测服务平台建设的总体目标是以电网数字化赋能和助力国家碳达峰碳中和,实现“电力看双碳”,“双碳看经济”,为国家碳排放统计核算体系建设、宏观调控政策制定、经济社会全面绿色转型发展等工作提供决策支持。平台建设需要解决以下问题:以数字化平台技术解决各省的地市、区县、重点行业碳排放数据维度不全面、核算方法不完善、碳核算体系不统一等方面的问题;强化数据应用,发挥好决策支撑作用,深挖电力大数据价值,开展“电力看环保”“电力看经济”等大数据应用。积极响应号召,星环科技打造碳排放监测服务平台解决方案星环科技作为大数据基础软件领域的代表性企业,有着高度的责任感和使命感,为响应“全国碳排放监测服务平...

行业资讯
图数据库的应用场景
图数据库的应用场景非常广泛,可以应用于各个行业。以下是一些常见的应用场景:金融:在金融领域,图数据库可以帮助银行、保险公司等企业处理复杂的数据结构,支持欺诈检测、交易路由、投资组合分析等操作。社交网络:图数据库可以存储和处理社交网络中的复杂关系图谱和大量用户数据,支持好友推荐、社区发现、个性化内容推荐等操作。物流:在物流领域,图数据库可以帮助企业优化路径规划、物流运输等操作,加速发货、配送时间并提高效率。制造业:图数据库可以支持企业处理复杂的设备关系结构图,进行维修保养、设备性能分析、生产计划优化等操作。能源行业:在能源领域,图数据库可以处理复杂的电网、管道等结构图谱,并支持多种能源趋势分析和紧急事件监测等操作。电商:图数据库可以应用于电商业务中,存储和处理复杂的商品与用户之间的关系,支持个性化推荐、购物车分析、用户行为预测等操作。图数据库可以在各个领域中应用,并且在处理复杂的数据结构和大量的数据时比传统数据库具有更高的性能和效率。星环分布式图数据库StellarDB星环科技致力于打造企业级大数据基础软件,围绕数据的集成、存储、治理、建模、分析、挖掘和流通等数据全生命周期提供基础软件与...

行业资讯
数据中台推荐供应商
作为一家企业级大数据基础软件开发商,星环科技很早就在数据中台领域布局,结合星环科技全系产品的相关组件实现数据中台能力建设。星环科技把数据中台建设归纳为三中心、六能力、两个体系,这当中都会有星环科技产品作为支撑,从而保证企业能够快速实现,并搭建起数据中台,满足企业未来发展变化。其中,三中心分别是存储中心、分析探索中心、业务赋能中心;六能力包括数据汇聚能力、数据整合能力、智能分析能力、实时计算能力、统一访问能力、统一服务能力;两个体系则是安全和运维保障体系与数据和分析支撑体系。三中心、六能力、两个保障体系都构建在一个云底座之上,满足企业私有化或者混合云多云的部署形态,同时灵活组件式的可插拔式部署形态,能够帮助企业更迅速的起步,按规划分步完善数据中台建设。除了提供基础组件和相应的工具帮助客户快速构建数据中台之外,星环科技还提供咨询实施服务,可以为企业提供量身定制的“数据云基础设施+咨询服务的端到端产品+服务”的综合解决方案。在星环科技的咨询服务产品体系中,包括为企业构建中台的架构规划、应用规划,以及帮助企业实施建设数据底座、数据中台、数据仓库,以及数据治理服务,也包括了数据的分析、业务分析、...

行业资讯
电力行业数字化转型服务商
星环科技致力于打造企业级大数据基础软件,具备大数据与云基础平台、分布式关系型数据库、数据开发与智能分析工具的软件产品矩阵,多年来深耕电力领域,覆盖电力产业“发-输-变-配-用”五大环节,为推动电力行业数字化转型做出了重要贡献。在国网上海电力智能配用电大数据应用系统建设项目中,基于星环科技大数据基础平台TDH构建的智能配用电大数据应用系统汇集了浦东1210平方千米的236万户的用电数据,高负荷738万千瓦,年用电量329亿度,占上海全网四分之一。集成的内外部数据源有10个,整个数据量到现在已经接近8个T了,台账的数据总量有29.14万条。在多元数据集成及大数据平台基础之上,应用系统实现了用电查询,电力地图等基础功能及用户用电行为分析,节电用电预测网架优化和错峰调度等业务应用。基于多源异构数据的关联解析,和海量用电负荷实际数据存储、索引,实现了用电查询的基础应用,包括230万用户,26000个台区,4000余中压馈线的基本台账及用电数据的快速查询,并可以进行用户用电画像、地图定位、供电范围等数据的查询,服务响应时间在三秒以内。此前,星环科技还曾凭借《星环科技电力智慧供应链智能决策平台建设方...

行业资讯
数据中台建设
随着行业和技术领域的变化日新月异,从数据仓库、动态数仓,到数据湖,从新一代湖仓一体技术到可插拔数据库,概念的引入虽然简单,但如何做到更有效,更复杂的数据资产管理就考验着对生产能力和工艺过程的管理能力。星环科技认为数据中台是一种能力、是一种组织上的策略而不仅仅是一种技术架构,它是在信息化基础上建立的可编织和可复用的数据可分析能力,从而支撑企业数字化转型。星环科技的数据中台三中心、六能力、两个体系星环科技很早就在数据中台领域布局,结合星环科技全系产品的相关组件实现数据中台能力建设。星环科技把数据中台建设归纳为三中心、六能力、两个体系,这当中都会有星环科技产品作为支撑,从而保证企业能够快速实现,并搭建起数据中台,满足企业未来发展变化。数据存储、分析探索、业务赋能三中心第一,帮助企业构建存储中心,提升数据的汇聚和整合能力;第二,构建数据分析探索中心,专注于智能分析能力和实时计算能力的提升,推动智能推荐能力和全链路实时监测和保障能力;第三,构建业务赋能中心,提供统一的访问能力实现跨平台联邦,统一的访问层控制,确保数据安全可用,同时搭建统一的服务能力,面向多场景的服务应用支撑。安全和运维、数据和分...

行业资讯
企业级AI能力运营平台
为解决AI落地难的问题,星环科技从用户需求端出发,研发了一款基于云原生架构的企业级AI能力运营平台SophonMLOps,助推AI模型落地。SophonMLOps是基于云原生架构构建的企业级AI能力运营平台,聚焦于机器学习模型全生命周期中的模型管理、模型部署、模型监控预警、模型评估和模型迭代等关键环节。通过统一纳管、统一运维、统一应用、统一监控、统一评估、统一解释,赋予企业客户易用、高效且安全可靠的AI能力运营服务,协助客户规模化管理日益增长的机器学习模型,提升模型使用效率,降低模型集成管理成本,控制模型生产环境风险。SophonMLOps针对企业AI运营的痛点,围绕企业AI模型接入、运营管理、持续训练的全生命周期,分别提供规模化集成管理、高效模型推理、模型监控预警、模型性能评估、隐私安全保障等功能,为企业的AI日常运营插上翅膀。SophonMLOps打通了AI的全生命周期,为企业的各类用户角色搭建了统一的AI协作平台。对于企业而言,MLOps规模化集成管理了多源异构的机器学习模型,并提供高效且保障隐私安全的模型推理、监控预警及性能评估服务;对用户而言,能感受到操作上的快捷,AI应用与...

行业资讯
什么是分布式时空数据库?
时空数据库时空数据库是一种针对时空数据处理的数据库系统。它以时间和空间为基础,整合了空间信息和时间信息,能够对时空数据进行存储、查询和分析。时空数据库广泛应用于交通运输、城市规划、GIS等领域。分布式时空数据库分布式时空数据库是一种对时空数据进行存储和处理的数据库系统,通过分布式存储和分布式计算等技术,可以实现对大规模时空数据的高效处理和分析。与传统的集中式数据库系统不同,分布式时空数据库将数据存储在多个存储节点上,并将计算任务分配给多个计算节点来完成,从而极大地提高了时空数据的处理能力和可靠性。分布式时空数据库的出现,使得处理大规模时空数据成为了可能,也更好地满足了各个领域对时空数据深度分析的需求。星环分布式时空数据库-TranswarpSpactureSpacture是星环科技自主研发的一款面向空间、时空数据的存储与管理,集计算与存储为一体的分布式数据库产品,支持大规模矢量数据、时空轨迹数据的存储与计算,具有完备的数据查询、分析和挖掘能力,可用于时空查询分析、时空模式挖掘、时空轨迹聚类等时空轨迹数据分析场景,广泛应用于交通物流、城市管理、位置服务等场景。