大模型公司商业

行业资讯
模型商业
模型商业化通过提供API服务、集成到现有产品、订阅模式等多种途径,将AI技术转化为实际的经济效益,推动企业和市场的智能化转型。模型商业化主要涉及以下几个方面:市场规模增长:预计到2024年,中国大模型市场规模将达到120亿元,显示出模型商业化的快速增长趋势。收费模式:当前模型市场的收费方式主要分为三种:单独的模型模型加算力、模型加应用。其中,“模型+算力”是最主流的收费方式。行业应用:能源和金融行业在模型商业化进度上位居前列,尤其是中央企业和国有企业在推动模型的应用和预算投入方面表现积极。商业化趋势:随着模型生态的成熟,应用层将成为模型商业化的主力。同时,新的需求如LLMOps、模型一体机等将为商业化提供更多机会。服务价格下降:模型服务价格的逐渐下降将加速其在中小企业中的渗透,推动模型市场的蓬勃发展。开源模型:通过降低开发门槛和成本,加速模型应用的渗透,拓展商业化市场空间。出海机会:中国大模型厂商在跨境电商、游戏、社交媒体等泛娱乐领域有出海机会。商业化路径:模型商业化路径多样,包括API开放平台模式、ToB产品化、与现有产品集成等,这些路径使得

大模型公司商业 更多内容

星环科技致力于打造企业级数据基础软件,围绕数据全生命周期提供基础软件与服务。在模型领域,星环科技发布了一系列的工具产品供用户使用,助力企业抓住模型时代的新机遇。工具链方面,发布了模型外挂存储分布式向量数据库Hippo、模型预训练微调工具SophonLLMOps及自动化知识库构建工具TKS。预训练模型方面,发布了金融模型星环无涯(Infinity)和数据分析模型星环求索(SoLar)。用户可以通过星环科技自动化知识工程、多模态数据处理等技术,有效降低企业构建自有模型应用的门槛,并不断促进我国大模型生态的持续繁荣。星环科技模型产品目前已经在政府、金融、运营商、制造、能源等多个行业有诸多落地案例。同时星环科技积极参与行业共建,为中国大模型生态发展贡献智慧力量。星环科技参编了国内首个金融行业大模型标准——《面向行业的规模预训练模型技术和应用评估方法第1部分:金融模型》,为10家单位联合发起的中国大模型语料数据联盟,致力于做好数据资源“开发者”。此外星环科技在模型领域也收获了一系列荣誉奖项:入选“2023中国人工智能模型企业50强”、星环科技无涯金融模型
行业资讯
模型运营
模型运营是一个复杂的过程,涉及到多个方面,包括市场定位、技术应用、安全治理、商业模式等。模型部署与上线环境搭建:需要准备适配模型运行的硬件环境,如高性能服务器等来确保模型的计算资源。同时搭建软件,关注法律环境的变化,及时调整运营策略。成本控制与商业拓展成本核算与优化:核算模型运营的成本,包括硬件成本、软件许可成本、人力成本和数据成本等。通过优化资源配置、采用云计算等方式来降低运营成本。商业价值挖掘:根据市场需求和用户反馈,挖掘模型商业价值。进行审查,防止生成包含有害信息的内容。建立内容过滤机制,对可能出现的风险内容进行预警和拦截。合规运营:确保模型的运营符合相关的法律法规,如知识产权法、消费者权益保护法等。在模型开发、部署和使用过程中环境,包括操作系统、深度学习框架和相关依赖库。模型加载与启动:将训练好的模型加载到服务器环境中,并完成启动配置,确保模型能够正常接收和处理输入数据。这个过程可能需要考虑模型的大小、格式和输入输出接口的兼容性等问题。性能监控与优化性能指标监测:持续关注模型的性能指标,如响应时间、吞吐量、准确率等。通过收集和分析这些指标,了解模型在实际运行中的表现,及时发现可能出现的性能瓶颈或异常情况。资源优化:根据
搭建公司数据平台在当今数据驱动的商业环境中,企业如何高效地收集、存储、处理和分析海量数据已成为决定竞争力的关键因素。公司数据平台的搭建不仅是一项技术工程,更是企业数字化转型的核心基础设施。本文将介绍构建这样一个平台的基本思路和关键环节。数据平台的基本架构一个完整的数据平台通常由四个核心层次组成。底层是基础设施层,包括计算资源、存储资源和网络资源,可以采用物理服务器或云服务的方式部署数据处理任务。上层是数据应用层,涵盖数据分析、机器学习、可视化等具体业务场景的应用工具。平台搭建的关键步骤搭建数据平台的开始是需求分析。企业需要明确平台要解决哪些业务问题,预期的数据规模有多大,对实时流程,设计合理的模块划分和接口规范。部署实施阶段需要注意资源分配、参数调优和安全配置。还有持续运维环节,包括监控系统健康状态、定期性能优化和容量规划。企业级数据平台的建设是一项复杂的系统工程,需要平衡
行业资讯
商业数据归集
的交互信息。数据技术的兴起使得企业能够处理前所未有的数据量和复杂度。分布式存储系统解决了海量数据的保存问题,流处理技术实现了实时数据分析,机器学习算法则能从数据中挖掘出深层次的模式和洞见。商业数据商业数据归集在数字化浪潮席卷全球的今天,商业数据已成为企业宝贵的资产之一。从顾客购买记录到市场趋势分析,从供应链管理到竞争对手监测,数据无处不在,无时不刻不在影响着商业决策的每一个环节。而商业数据归集,正是这一庞大信息生态系统中的基础工程。什么是商业数据归集商业数据归集指的是企业通过各种渠道和方式,系统性地收集、整理与商业活动相关的各类数据的过程。这些数据可能来自企业内部运营系统,如销售记录、库存管理、财务报告;也可能来自外部渠道,如社交媒体舆情、市场调研、公开统计数据等。与传统的数据收集不同,现代商业数据归集强调系统性、连续性和智能化。它不再是零散的、一次性的数据采集,而是构建一个持续运转的数据收集机制,为企业决策提供实时、全面的信息支持。商业数据归集的类型根据数据来源的不同,商业数据归集可以分为几大类型。第一方数据是企业通过自身经营活动直接获得的数据,如客户交易记录、网站浏览行为等
日前,科技创新和产业研究综合服务平台亿欧TE发布《2023企业AIGC商业落地应用研究报告》。星环科技凭借在模型领域的深耕布局和技术实力,成功入选其AIGC商业落地产业图谱2.0“行业大模型90%的企业开始了数字化转型的设计规划,这意味着数字资产、数据驱动、业务数字原生程度大幅加深,AIGC可成活的土壤越牢固。作为一家企业级数据基础软件开发商,星环科技致力于为行业提供模型应用构建的一系列工具,以及在擅长的领域研发领域基础模型,助力企业抓住模型时代的新机遇。为了帮助企业用户基于模型构建应用,星环科技推出了模型持续提升和持续开发工具SophonLLMOps,为用户打通从数据接入和开发、提示工程、模型微调、模型上架部署到模型应用编排和业务效果对齐的全链路流程,从而实现针对模型的数据和分析的持续提升。同时星环科技还推出了星环无涯金融模型Infinity、数据分析模型SoLar“求索”两领域模型。其中,无涯是一款面向金融量化领域、超大规模参数量的生成式语言模型,融合了舆情、资金、人物、空间、上下游等多模态信息,具备强大的理解和生成能力,支持股票、债券、基金
行业资讯
免费模型
国内的AI模型正在快速发展,许多公司推出了免费的大型语言模型,以满足学生、职场人和其他用户的需求。星环科技无涯·问知InfinityInteligence星环科技无涯·问知条款、监管规则、试行办法等提出问题,无涯·问知将提供法律风险预警以及应对建议。财经:无涯·问知内置了丰富的上市公司财报和产业链图谱数据,能够为金融机构提供全面深入的投资研究分析工具。此外,星环自研模型InfinityInteligence,是一款基于星环模型底座,结合个人知识库、企业知识库、法律法规、财经等多种知识源的企业级垂直领域问答产品。个人知识库:支持用户一键上传文档、表格、图片、音视频等多模数据,基于星环自研的模型底座可自动对知识进行处理与入库,快速实现海量多模知识的检索与智能问答。企业知识库:通过管理端构建企业知识库后,员工可以基于企业知识库进行问答,知识库作为企业内部的知识共享平台,促进不同团队和部门底座的自动化知识工程特性,使其在处理和分析数据方面具有显著的优势,允许用户上传文档、表格、图片等多源数据,并支持与外部数据源的对接,使用户能够构建属于自己的专属领域模型。这一创新功能极大地扩展了模型的应用范围和深度,用户可基于自身私域知识库进行更为个性化和深入的数据分析。
行业资讯
数仓建设公司
数仓建设公司:数据时代的幕后英雄在数字经济时代,数据已经成为企业最宝贵的资产。数仓建设公司作为专业的数据管理服务商,正在帮助企业将海量数据转化为商业价值。这些公司通过专业的技术团队和成熟的解决方案精通Hadoop、Spark等数据技术,能够根据企业需求设计最优的数据架构方案。这些专业团队不仅掌握最新的数据技术,更具备丰富的行业经验,能够准确理解企业的业务需求。成熟的解决方案是数仓建设公司的另一优势。从数据采集、清洗、存储到分析应用,数仓建设公司提供完整的解决方案。这些方案经过多个项目的实践检验,能够有效解决企业在数据管理过程中遇到的各种问题。在项目实施方面,数仓建设公司采用标准化的项目,为企业构建高效、安全、智能的数据仓库系统,成为推动企业数字化转型的重要力量。一、数仓建设公司的核心价值数仓建设公司拥有专业的技术团队,这些团队由数据架构师、ETL工程师、数据分析师等专业人员组成,他们管理流程,确保项目按时保质完成。从需求分析、方案设计到系统部署、测试验收,每个环节都有严格的质量控制标准。二、数仓建设的关键技术数据采集与清洗是数仓建设的关键。数仓建设公司使用专业的ETL工具,将分散
行业资讯
国产模型
国产模型指的是由中国公司或研究机构开发的人工智能模型,这些模型通常在规模数据集上进行训练,以实现对自然语言、图像、音频等多种模态数据的深度理解和处理。星环科技的多模态模型就是一个典型的例子(InfinityIntelligence),是一款基于星环模型底座,结合个人知识库企业知识库、法律法规、财经等多种知识源的企业级垂直领域问答产品。
模型时代的到来,给软件开发行业带来了巨大的变革,企业需要一个工具链来开发模型。星环科技作为国内领先的数据基础软件开发商,打造数据管理平台的多模态、智能化、敏捷化和平民化产品。为帮助企业构建自己的模型,星环科技推出了机器学习模型全生命周期管理的工具平台SophonLLMOps,支持从数据接入开发、提示工程、模型微调、上架部署到应用编排和业务效果对齐的全链路流程,结合自研向量数据库Hippo和分布式图数据库StellarDB,能够赋予模型“长期记忆”,打破通用模型的时空限制,用户可以快速便捷地构建深谙企业自有专业领域知识的垂直行业大模型,从而让每个人都拥有个性化AI助理。同时星环科技还推出了无涯金融模型Infinity、数据分析模型SoLar“求索”,促进金融分析和数据分析的平民化。星环科技将自主研发的领先创新技术赋能各行各业,与生态伙伴共同打造国产化数据技术生态,推动数字经济的可持续发展。无涯是一款面向金融量化领域、超大规模参数量的生成式语言模型,融合了舆情、资金、人物、空间、上下游等多模态信息,具备强大的理解和生成能力,支持股票、债券、基金、商品等市场事件的
银行图数据库的应用场景:反洗钱:图数据库可以将可疑交易数据存储于其中,帮助银行更快速地提取、分析与关系,识别出潜在的洗钱行为。客户关系管理:银行图数据库可以将客户的不同信息(如交易记录、信用评级、客户所在地和行业等)进行整合,并将这些信息在一个数据仓库中呈现出来。这使得银行能够更加精准地分析客户需求,提供更加符合客户需求、更加优质的服务。风险管理:银行是一个与风险息息相关的行业。图数据库可以帮助银行对相关风险进行整合和分析。通过解析大量的金融数据,图数据库可以找出潜在的风险点,提前控制风险。数字化转型:图数据库能够将社交网络、收集的数据等信息关联起来,并创造性地开拓新业务模式。除了与客户密切相关的业务领域,图数据库还能够在支持业务流程优化方面发挥重要作用。营销:银行可以使用图数据库来收集客户数据、行为数据等,这样可以更加精确地预测客户习惯,对客户进行更加细致的营销和服务。银行图数据库有着广泛的应用场景,可以在多个角度上支持银行的业务发展,提高服务的质量和效率。星环分布式图数据库StellarDB星环科技致力于打造企业级大数据基础软件,围绕数据的集成、存储、治理、建模、分析、挖掘和流通等...
垂直领域知识图谱产品主要用于面向特定领域知识应用需求,通过构建和应用知识图谱解决对应领域的专业问题。目前,知识图谱在智慧医疗与智慧金融领域已取得了一系列成功实践,被应用于辅助医生、药物发现、临床科研、风险防控、内部监管、投资研究、保险理赔等众多实际业务场景,并涌现出了一批知识图谱产品或服务平台。星环科技自主研发的知识图谱平台Sophon正是一款覆盖知识全生命周期,集知识的采集、建模、融合、存储、计算及应用为一体的知识图谱产品。平台支持低代码图谱构建、智能化知识抽取、多模态知识存储与融合、多形式知识计算和推理以及多维度的图谱分析。除了具备链路完备性,平台还从业务场景出发,沉淀了金融、保险等场景的图数据模型、规则模型和算法模型,可以帮助用户快速解决不同场景下的业务问题。目前,星环科技Sophon已经在金融等多个行业成功落地,在反洗钱、反欺诈、疫情防控、公共安全、企业级营销、保险知识智能问答等场景有着广泛的应用。同时星环科技在推动知识图谱技术创新和成功落地的过程中,也获得了多项荣誉和权威认可:入选Gartner《MarketGuideforArtificialIntelligenceStar...
星环科技分布式隐私计算平台SophonP²C集多方安全计算、联邦学习等多种功能,为隐私计算提供完整的解决方案,以隐私保护为前提,解决了跨组织协作时无法安全利用各方数据的困境。平台支持联邦学习、多方安全计算、匿踪查询等功能;性能方面,联邦学习与多方安全计算可达亿级数据量,助力数据要素安全流通和价值迸发,实现数字经济时代下的跨企业和行业的AI协作。星环科技的隐私计算技术已落地如数据流通、政务民生、金融营销等垂直业务场景,为跨企业数据协作提供安全可信的平台支持。在政务民生场景,SophonP²C通过纵向联邦学习联合居民用电数据与用水数据,生成群租房预测名单。在联合建模过程中,全程明文数据不出,有效保护了居民用水用电的数据隐私信息。联合训练模型比本地单独用电数据训练的模型AUC提升20%以上,赋能政务决策高效的处理分析能力,为政府有效排查群租房,消除群租房造成的消防、安全隐患,打造和谐、安全、美丽的生活环境作出了突出贡献,为政务决策、民生建设发挥信息化支撑保障作用。在精准营销场景,通过纵向联邦学习,车企安全引入了多方数据,丰富用户特征维度,对用户行为进行统计分析。在联合建模过程中,全程明文数据...
图数据库是现代数据库系统中的一种,它主要的特点就是使用了图论的概念来进行数据管理。传统的关系型数据库通常是基于表和列的结构进行数据管理,而图数据库则是构建了节点和边的图形结构,可以更好的表示现实世界中的复杂关系。下面是图数据库的几个主要特点:1.基于图形结构:图数据库是基于图形结构来进行数据管理的。它通过节点和边来构建数据的表示形式,使得数据之间的关系和结构更加直观和清晰。这对于处理关联复杂、数据关系复杂的场景具有重要意义。2.高效地关系查询和分析:图数据库具有高效的关系查询和分析能力。对于一个大规模的图,传统的SQL查询方式显然不能满足查询时间的要求。而图数据库则可以通过图数据库内部的算法来进行实时的查询和分析。尤其是针对一些复杂的图分析算法,图数据库更能够快速地获得结果,提高查询速度。3.可扩展性:由于采用了分布式的技术设计,使图数据库的可扩展性极佳。当需要管理的数据量增加时,图数据库可以通过简单的集群扩展方式来实现性能的提升。而且,图数据库的分布式能力也可以让其在多个节点上进行操作,提高了系统的容错能力和加载能力。4.元素和关系度量:图数据库具有丰富的元素数据和关系数据量度方式。...
星环科技图数据库StellarDB是国产高性能图数据库,采用分布式架构和原生图计算引擎,支持超大规模数据管理和高效的图计算。TranswarpStellarDB具有以下特点:原生图存储:StellarDB为数据存储设计了专有的图存储结构,优化查询性能,通过高效的压缩算法减少磁盘和内存的使用量。根据分区策略,图数据均匀分布于集群各节点。优越的性能:存储引擎和计算引擎结合,使计算引擎可以利用数据locality提升计算性能,拥有卓越的数据读写能力,支持大规模并行处理,毫秒级的查询响应。高扩展性:完全的分布式架构,具有良好的可扩展性,支持在线扩容和升级。拥有万亿级图数据处理能力,支持数据多副本,提供集群高可用和高可靠。灵活的查询方式:计算引擎支持灵活易懂的图查询语言TranswarpExtended-OpenCypher,拥有丰富的图操作语法。同时提供SQL支持,多模场景灵活切换。深度分析能力:支持10层及以上的图深度遍历和复杂分析。丰富的算法库:内置丰富的算法库,几十种图算法开箱即用,优化的分布式并行图算法,千万级子图计算效率达到行业先进水平。企业级功能:支持用户权限认证、集群状态监控、日...
新时代需要新技术,企业应抓住机遇实现旧平台的改造升级数据库技术经过不断的发展,已经从以Oracle、IBM为代表的集中式数据库,演进到分布式、多模型、云原生的形态,并在很多场景应用落地,带来了真实的业务价值。当前得益于国家政策的大力扶持以及国内市场环境的快速发展,国产软件加速发展,国产化替代进程正在不断加速。自主可控是国产化替代的核心,同时也是一个阶段性的目标。我们不应该满足于此,应该抓住国产化改造的机遇,用新技术去替代老技术,实现自主可控的同时,完成旧系统的改造升级,这也是信创的主旨。星环科技致力于打造企业级大数据基础软件,围绕数据全生命周期提供基础软件与服务,在分布式技术、多模型技术、数据云技术等方面有很多技术突破。比如大数据基础平台TDH是全球首个通过TPC-DS基准测试的产品;提出了创新的多模型统一技术架构,支持业内主流的10种数据模型,Gartner®发布的中国数据库技术发展趋势报告引用星环科技多模型联合分析用例,论证了多模型融合分析的趋势和价值。基于多年积累的分布式技术、多模型统一技术、数据云技术等,星环科技打造了分布式数据库ArgoDB、分布式交易型数据库KunDB、分布...
时空数据库(Spacial-temporaldatabase)是一种专门用于存储和管理时空数据的数据库管理系统,它是传统关系型数据库的一个扩展,可以实现对时空数据进行有效管理和处理。时空数据是指带有时空坐标或时间戳的数据,例如地图、气象数据、交通、城市规划等。因此,时空数据库可以用于多种应用程序,如地理信息系统、航空航天、气象预报、GPS导航等。时空数据库与传统数据库不同的是,它提供了额外的功能和数据类型,例如点、线、面等空间对象和时间序列数据类型。此外,时空数据库还支持空间查询和时空查询,例如常见的缓冲区查询,使得用户可以在时空范围内进行查询和分析。这种数据库可以对时空数据进行高效的存储、查询、更新和分析,并通过插件技术集成其他地理信息数据源。星环分布式时空数据库-SpactureSpacture是星环科技自主研发的一款面向空间、时空数据的存储与管理,集计算与存储为一体的分布式数据库产品,支持大规模矢量数据、时空轨迹数据的存储与计算,具有完备的数据查询、分析和挖掘能力,可用于时空查询分析、时空模式挖掘、时空轨迹聚类等时空轨迹数据分析场景,广泛应用于交通物流、城市管理、位置服务等场景。
数据要素是数字经济发展的关键生产要素,是数字经济发展的基础。加快培育数据要素市场是全面建设社会主义现代化国家的一项基础性工作,对推动经济高质量发展、建设数字中国和数字强省、促进经济社会数字化转型具有重要意义。星环科技致力于打造企业级大数据基础软件,围绕数据全生命周期提供基础软件与服务。基于在大数据、分布式数据库、隐私计算、数据安全流通领域的多年积累,星环科技研发了数据要素流通全过程的一系列工具,在各方数据不出域的前提下,为数据资源方和数据消费方提供数据交付服务。2021年星环科技成为上海数据交易所首批签约数商。2022年9月星环科技曾受邀出席“深数交”数据合规活动,分享数据安全出境解决方案。2022年12月星环科技与中国东信旗下北部湾大数据交易中心达成了战略合作。星环科技在产品的各层级上都完善了安全技术,从而可以给用户提供体系化的数据安全防护能力,助力企业高效、合规的开展数据流通业务。在基础设施层,星环科技提供基于容器的云原生操作系统TCOS,它不仅能够提供容器隔离和镜像扫描,还新增了漏洞检测以及面向业务的微隔离安全技术,从而可以为用户开辟一个独立的数据与计算环境,外部的服务未经授权无...
星环科技致力于打造企业级大数据基础软件,基于在大数据、分布式数据库、隐私计算、数据安全流通领域有着多年积累,研发了数据要素流通全过程的一系列工具,在各方数据不出域的前提下,为数据资源方和数据消费方提供数据交付服务。2022年9月星环科技曾受邀出席“深数交”数据合规活动,分享数据安全出境解决方案。2021年星环科技成为上海数据交易所首批签约数商。2022年12月星环科技与中国东信旗下北部湾大数据交易中心达成了战略合作。伴随数字经济蓬勃发展,融入全球数据跨境流动的趋势不可避免。数据出境安全治理受到广泛重视,为进一步规范数据出境活动,保护个人信息权益,维护国家安全和社会公共利益,促进数据跨境安全,国家互联网信息办公室发布了《数据出境安全评估办法》。国内运营的外企(尤其是零售、化工等)、新能源汽车以及生态企业(含自动驾驶等)、国际化企业与出海企业、跨境电商和物流、有融资需求的基于数字化做业务创新的创业公司等是国内迫切需要落实数据安全出境的企业。然而企业在落地数据出境安全方面存在一些实际困难,主要体现在:错综复杂的数据如何分类分级,如何识别重要数据;重要数据如何存储和管理,才能达到相关法律法规的...
图数据库有许多适用场景,常见的应用场景有:社交媒体:社交媒体中的用户和关系可以建模为图结构。用图数据库来管理和查询这些社交数据,可以实现更精确的社交关系分析。金融:在金融领域中,图数据库可以用于合规风控、反欺诈、投资和信贷决策等众多场景。例如,通过在图中存储和分析不同实体(如银行账户、信用卡、电话、邮箱、运单等)之间的关系,可以准确识别欺诈降低风险。物流和运输:物流和运输领域也是图数据库的应用场景之一。例如,通过在图中存储城市、仓库、货物、运输路线等信息,可以进行物流管理、运输计划优化、货物追踪等任务。生命科学:在生命科学领域,图数据库可以用于存储和分析复杂的基因、蛋白质、代谢物等数据,帮助科学家发现新的治疗方法和疾病机制。游戏:游戏开发者可以使用图数据库来管理玩家角色、各种装备、地图、任务等复杂的游戏数据,实现更好的游戏体验。图数据库的灵活性和高效性使其在多个领域都有着广泛的应用。星环分布式图数据库StellarDB星环科技致力于打造企业级大数据基础软件,围绕数据的集成、存储、治理、建模、分析、挖掘和流通等数据全生命周期提供基础软件与服务,在图计算领域深耕多年,自主研发了分布式图数据...