国产医学大模型
国产医学大模型 更多内容

行业资讯
医疗大模型
医疗大模型是指通过对医学数据进行深度学习训练得到的具有度复杂性和高准确性的数学模型。这些模型可以用于疾病预测、医学图像识别、仿真和治疗方案制定等医学领域的任务。医疗大模型的建立需要大量高质量的医学数据,包括病人的基本信息、体征数据、生理指标、影像图像、实验室检验结果等。通过人工智能算法对这些数据进行训练,可以学习到庞大的医学知识和经验,从而实现对疾病的准确预测和治疗方案的优化。医疗大模型的用涵盖了很多医疗场景和疾病类型,随着人工智能技术不断发展和医疗数据的不断积累,医疗大模型将逐渐成为医学领域的重要工具。星环科技大模型训练工具,帮助企业打造自己的专属大模型星环科技在行业内首先提出行业大模型应用创新场景,推出相应的工具,帮助企业构建自有的行业大模型,通过大模型基础设施,形成具备“新型人机交互”且“敏捷可持续迭代“的人工智能应用。为了帮助企业用户基于大模型构建未来应用,星环科技推出了SophonLLMOps,帮助企业构建自己的行业大模型。具体来看,它解决了客户三个核心痛点:第一,提供一站式工具链,帮助客户从“通用大语言模型”训练/微调,得到“满足自身业务特点的领域大语言模型”;第二,帮助

行业资讯
国产大模型
国产大模型是指由中国企业研发的、具有大规模计算和数据处理能力的大型人工智能模型。这些模型旨在解决特定的问题或领域,例如自然语言处理、图像识别、智能推荐等。在国产大模型领域,一些知名的企业不仅在研发大模型方面具有丰富的经验和技术实力,同时也为其他企业提供大模型服务。随着技术的进步和应用场景的不断扩大,国产大模型有望在更多领域得到应用和发展。星环科技大模型训练工具,帮助企业打造自己的专属大模型星环科技在行业内首先提出行业大模型应用创新场景,推出相应的工具,帮助企业构建自有的行业大模型,通过大模型基础设施,形成具备“新型人机交互”且“敏捷可持续迭代“的人工智能应用。为了帮助企业用户基于大模型构建未来应用,星环科技推出了SophonLLMOps,帮助企业构建自己的行业大模型。具体来看,它解决了客户三个核心痛点:第一,提供一站式工具链,帮助客户从“通用大语言模型”训练/微调,得到“满足自身业务特点的领域大语言模型”;第二,帮助客户将原型的大语言模型应用,成功在实际生产中投入应用;第三,帮助客户运营在生产中应用的大语言模型和大模型的持续提升。除此之外,星环科技在行业首先推出了两大行业大模型:服务于金融行业的星环金融大模型无涯,以及大数据分析大模型SoLar“求索”。


行业资讯
医学知识图谱
医学知识图谱是通过机器学习和自然语言处理等技术,将医学知识组织成图谱结构,形成一个可视化和可查询的知识系统。医学知识图谱旨在将医学知识的碎片化信息整合起来,形成一种结构化的、语义化的知识表达形式,使得人们能够更方便地获取、理解和应用医学知识。医学知识图谱的构建过程通常包括以下个步骤:知识抽取:从医学文献、临床南、医学数据库等信息源中提取出医学知识的实体、关系和属性。知识表示:将抽取到的医学知识表示成图谱的形式,例如使用图结构表示实体之间的关系。知识融合:将来自不同数据源的医学识进行融合,消除重复和冲突。知识推理通过图谱的关系和规则进行推理、推断,生成新的医学知识。知识应用:将构建好的医学知识图谱应用到实际的临床决策、疾病预防和健康管理等领域,提供智能化的支持和辅助。医学知识图谱的应用可以涵盖多个方面,例如:临床决策支持:根据患者的临床信息和医学知识图谱,提供个性化的诊断和治疗建议。疾病预测和流行病学研究:通过医学知识图谱分析疾病发生和传播的模式,预测患病风险和制定预防策略。健康管理和个人化医疗:根据个人的基因组、临床记录和生活习惯等信息,为个体提供健康管理建议和个性化的治疗方案

行业资讯
国产大模型推理
国产大模型推理:人工智能的新篇章近年来,人工智能领域迎来了一场前所未有的变革,其中大语言模型的出现尤为引人注目。在这场全球性的技术竞赛中,中国的科研团队和企业也交出了令人瞩目的答卷。国产大模型的崛起不仅代表着技术上的突破,更彰显了中国在人工智能领域的自主创新能力。本文将带您了解国产大模型推理的基本原理、发展现状以及应用前景。大模型推理的本质,是让计算机模拟人类的思维过程,根据输入的提示生成连贯循环往复,形成完整的回答。在推理能力方面,国产大模型已经能够胜任多种复杂任务。从基础的问答对话,到需要多步推理的数学题解答;从文学创作到代码生成,这些模型的表现日益接近人类水平。应用场景的拓展是国产大模型发展的另一个亮点。在教育领域,大模型可以充当个性化辅导老师;在医疗行业,它能辅助医生进行诊断;在创意产业,模型可以帮助撰写文案、生成设计。更令人期待的是,随着多模态技术的发展,国产大模型开始具备处理图像、音频等多种信息的能力,这为更丰富的应用场景打开了大门。展望未来,国产大模型推理技术还将继续进化。一方面,模型规模可能会进一步扩大,以获取更强的推理能力;另一方面,小型化、专业化也将成为重要方向,使大

行业资讯
训练医疗大模型
训练医疗大模型,就像是为这个智能医疗时代打造一把万能钥匙,今天,让我们一同深入了解这一关键过程。一、训练医疗大模型的重大意义医疗大模型可以理解为一个拥有海量医学知识和强大分析能力的“超级大脑”。通过对效率和准确性,减少误诊和漏诊的发生。二、训练前的数据准备(一)数据收集这是训练医疗大模型的基础。数据来源广泛,包括医院的电子病历系统,记录了患者的基本信息、疾病诊断、治疗过程等;医学影像数据,如X光、CT、MRI等图像,蕴含着丰富的疾病信息;还有医学研究文献、临床试验数据等。例如,一家大型医院通过整合多年来积累的电子病历数据,为医疗大模型训练提供了坚实的数据基础。(二)数据清洗与标注收集到的出图像中的病变部位、类型等信息,这通常由专业的医生和标注人员完成。三、训练中的关键技术要点(一)深度学习算法深度学习是训练医疗大模型的核心技术之一,其中卷积神经网络(CNN)在处理医学影像数据方面揭秘医疗大模型训练:开启医疗智能化新纪元在科技飞速发展的当下,人工智能正以前所未有的速度渗透到各个领域,医疗行业也不例外。医疗大模型作为人工智能在医疗领域的关键应用,正逐渐改变着传统的医疗模式。而

行业资讯
医疗大模型的应用场景
医疗大模型的应用场景非常广泛,包括但不限于以下几个方面:生命科学领域:大模型可以用于进行蛋白质语言理解和生成任务,以及赋能DNA/RNA等生命组学计算,从而辅助生物医学研究开发工作。药械研发领域:大、智能化。医疗保险领域:大模型可以助力医疗保险数据处理自动化和信息咨询,落地场景向智能核保核赔延伸。医学教育领域:大模型可以模拟不同类型的病人与医生进行对话,带来提高学生知识、技能和能力的新机会。随着人工智能技术的不断发展,医疗大模型将会在更多领域得到应用,为医疗行业的发展带来更多可能性。模型可以服务于药品和器械从研发到上市的各个环节,包括药物发现、临床前研究、临床试验、注册申请、上市后再评价等。医疗问答和智能问诊领域:大模型可以通过对话方式回答用户的医疗健康问题,提高问诊准确性和智能化水平。辅助诊疗和临床决策领域:大模型可以预测疾病风险、生成诊断和治疗建议,为临床决策提供支持。个人健康管理领域:大模型可以帮助个人在非医院场景中解决健康问题,推动个人健康管理迈向主动化、个性化

行业资讯
医学领域多语言知识图谱构建
数据,通过推理和查询等处理得到有用信息的系统。在医学领域,知识图谱可以为医学决策提供智能化支持,加速临床诊断和治疗。医学领域知识图谱的构建医学领域知识图谱的构建需要用到大数据存储和处理、自然语言处理以及发展。医学领域知识图谱构建是医疗信息化的重要组成部分,其应用前景广阔。同时,医学领域知识图谱的构建需要借助大数据存储和处理、自然语言处理以及机器学习等多种技术手段,是一个复杂且需要时间和资源的过程知识图谱是指将各种实体及其之间的关系进行建模、储存、推理、查询等处理的模式。医学领域知识图谱就是将医学领域的实体,包括疾病、症状、检查项、治疗方案、药物等,以及它们之间的关系进行建模,并储存为图谱自多个数据源的图谱进行合并,消除重复数据。医学领域知识图谱的应用人工智能和医学领域知识图谱的结合可以为医学决策提供智能化支持,应用前景广阔。例如,可以根据病人的症状、病历和影像数据,自动分析出可能患有的疾病,并给出相应的诊疗建议。同时,医学领域知识图谱还可以在药物研发方面发挥作用,例如预测新药物的副作用和疗效,提高药物研发效率。此外,医学领域知识图谱还可以为研究基因、细胞和分子提供能化支持,加速医学科学的

需要深度挖掘的数据缺乏统一的算法平台进行技术支撑,往往需要通过自己撰写代码的方式进行科研活动,门槛较高,效率低下,也无法实现研究项目的团队协作。因此,研究所希望通过构建统一的医学大数据研究平台,满足建立医学大数据研究平台,从数据采集、接入、清洗、存储、数据质量提升、数据资产积累提供一站式平台工具,实现医疗数据的汇集和共享。为科研业务管理人员实现底层数据支撑及算法结果展示,为医生及管理者提供院长统患病率(含呼吸系统、循环系统、消化系统等八大系统)、患病率地理位置分布、患者多维统计信息、疾病共患情况(根据医学背景,定义出与单疾病相关联的多种其他疾病,直观展现不同疾病间的共患情况)等,为研究所的临床结合,即解决了医学行业统计分析和实时查询两种场景并存的难题,又保证了平台极佳的系统体验性。总地来说,基于星环TDH+TDS(分布式大数据平台+数据治理平台)一体化综合方案,为研究所构建了高性能、高可靠性、高安全性及可扩展性的医学大数据研究平台,实现了医疗数据的规范化、流程化、质量化,帮助研究所专业的医学数据分析团队高效挖掘病历样本等科研数据的价值,落地科研业务,保障科研进度的稳步推进。案例价值
猜你喜欢

行业资讯
什么是分布式时空数据库?
时空数据库时空数据库是一种针对时空数据处理的数据库系统。它以时间和空间为基础,整合了空间信息和时间信息,能够对时空数据进行存储、查询和分析。时空数据库广泛应用于交通运输、城市规划、GIS等领域。分布式时空数据库分布式时空数据库是一种对时空数据进行存储和处理的数据库系统,通过分布式存储和分布式计算等技术,可以实现对大规模时空数据的高效处理和分析。与传统的集中式数据库系统不同,分布式时空数据库将数据存储在多个存储节点上,并将计算任务分配给多个计算节点来完成,从而极大地提高了时空数据的处理能力和可靠性。分布式时空数据库的出现,使得处理大规模时空数据成为了可能,也更好地满足了各个领域对时空数据深度分析的需求。星环分布式时空数据库-TranswarpSpactureSpacture是星环科技自主研发的一款面向空间、时空数据的存储与管理,集计算与存储为一体的分布式数据库产品,支持大规模矢量数据、时空轨迹数据的存储与计算,具有完备的数据查询、分析和挖掘能力,可用于时空查询分析、时空模式挖掘、时空轨迹聚类等时空轨迹数据分析场景,广泛应用于交通物流、城市管理、位置服务等场景。

行业资讯
省市级碳排放监测服务平台建设方案
双碳目标下,全国碳排放监测服务平台启动建设力争2030年前实现碳达峰、2060年前实现碳中和,我国明确提出“双碳”目标,充分彰显了在构建人类命运共同体进程中的大国担当。国家电网公司主动担当重要使命,提出“实现双碳目标,能源是主战场,电力是主力军,电网是排头兵”的战略部署,率先行动,发布《全国碳排放监测服务平台建设工作方案》。“双碳”目标的实现离不开科技支撑。《全国碳排放监测服务平台建设工作方案》指出,全国碳排放监测服务平台建设的总体目标是以电网数字化赋能和助力国家碳达峰碳中和,实现“电力看双碳”,“双碳看经济”,为国家碳排放统计核算体系建设、宏观调控政策制定、经济社会全面绿色转型发展等工作提供决策支持。平台建设需要解决以下问题:以数字化平台技术解决各省的地市、区县、重点行业碳排放数据维度不全面、核算方法不完善、碳核算体系不统一等方面的问题;强化数据应用,发挥好决策支撑作用,深挖电力大数据价值,开展“电力看环保”“电力看经济”等大数据应用。积极响应号召,星环科技打造碳排放监测服务平台解决方案星环科技作为大数据基础软件领域的代表性企业,有着高度的责任感和使命感,为响应“全国碳排放监测服务平...

行业资讯
企业级AI能力运营平台
为解决AI落地难的问题,星环科技从用户需求端出发,研发了一款基于云原生架构的企业级AI能力运营平台SophonMLOps,助推AI模型落地。SophonMLOps是基于云原生架构构建的企业级AI能力运营平台,聚焦于机器学习模型全生命周期中的模型管理、模型部署、模型监控预警、模型评估和模型迭代等关键环节。通过统一纳管、统一运维、统一应用、统一监控、统一评估、统一解释,赋予企业客户易用、高效且安全可靠的AI能力运营服务,协助客户规模化管理日益增长的机器学习模型,提升模型使用效率,降低模型集成管理成本,控制模型生产环境风险。SophonMLOps针对企业AI运营的痛点,围绕企业AI模型接入、运营管理、持续训练的全生命周期,分别提供规模化集成管理、高效模型推理、模型监控预警、模型性能评估、隐私安全保障等功能,为企业的AI日常运营插上翅膀。SophonMLOps打通了AI的全生命周期,为企业的各类用户角色搭建了统一的AI协作平台。对于企业而言,MLOps规模化集成管理了多源异构的机器学习模型,并提供高效且保障隐私安全的模型推理、监控预警及性能评估服务;对用户而言,能感受到操作上的快捷,AI应用与...

行业资讯
图数据库的应用场景
图数据库的应用场景非常广泛,可以应用于各个行业。以下是一些常见的应用场景:金融:在金融领域,图数据库可以帮助银行、保险公司等企业处理复杂的数据结构,支持欺诈检测、交易路由、投资组合分析等操作。社交网络:图数据库可以存储和处理社交网络中的复杂关系图谱和大量用户数据,支持好友推荐、社区发现、个性化内容推荐等操作。物流:在物流领域,图数据库可以帮助企业优化路径规划、物流运输等操作,加速发货、配送时间并提高效率。制造业:图数据库可以支持企业处理复杂的设备关系结构图,进行维修保养、设备性能分析、生产计划优化等操作。能源行业:在能源领域,图数据库可以处理复杂的电网、管道等结构图谱,并支持多种能源趋势分析和紧急事件监测等操作。电商:图数据库可以应用于电商业务中,存储和处理复杂的商品与用户之间的关系,支持个性化推荐、购物车分析、用户行为预测等操作。图数据库可以在各个领域中应用,并且在处理复杂的数据结构和大量的数据时比传统数据库具有更高的性能和效率。星环分布式图数据库StellarDB星环科技致力于打造企业级大数据基础软件,围绕数据的集成、存储、治理、建模、分析、挖掘和流通等数据全生命周期提供基础软件与...

行业资讯
电力行业数字化转型服务商
星环科技致力于打造企业级大数据基础软件,具备大数据与云基础平台、分布式关系型数据库、数据开发与智能分析工具的软件产品矩阵,多年来深耕电力领域,覆盖电力产业“发-输-变-配-用”五大环节,为推动电力行业数字化转型做出了重要贡献。在国网上海电力智能配用电大数据应用系统建设项目中,基于星环科技大数据基础平台TDH构建的智能配用电大数据应用系统汇集了浦东1210平方千米的236万户的用电数据,高负荷738万千瓦,年用电量329亿度,占上海全网四分之一。集成的内外部数据源有10个,整个数据量到现在已经接近8个T了,台账的数据总量有29.14万条。在多元数据集成及大数据平台基础之上,应用系统实现了用电查询,电力地图等基础功能及用户用电行为分析,节电用电预测网架优化和错峰调度等业务应用。基于多源异构数据的关联解析,和海量用电负荷实际数据存储、索引,实现了用电查询的基础应用,包括230万用户,26000个台区,4000余中压馈线的基本台账及用电数据的快速查询,并可以进行用户用电画像、地图定位、供电范围等数据的查询,服务响应时间在三秒以内。此前,星环科技还曾凭借《星环科技电力智慧供应链智能决策平台建设方...

行业资讯
国产数据库有哪些?
在国产数据库产品方面,星环科技坚持自主研发与技术创新,打造了自主可控的高性能分布式数据库ArgoDB和分布式交易型数据库KunDB,以及分布式图数据库StellarDB等产品。KunDB具备较强的SQL兼容性,同时具备高可用、高并发、在线扩缩容、数据强一致性等能力,适用于操作型业务、高并发业务等场景。ArgoDB具备完整的SQL兼容性,同时具备高扩展、高可靠、多模型、存算解耦等能力,一站式满足数据仓库、实时数据仓库、数据集市、OLAP、联邦计算等场景。通过不断的打磨和对业务场景不断的落地实践,ArgoDB和KunDB已成为具有完全自主知识产权的成熟的国产数据库,能够为更多的客户提供高性能、高可靠、成熟的数据库产品服务,帮助用户应对智能数据时代海量数据的分析与探索。分布式图数据库StellarDB兼容openCypher查询语言,提供海量图数据的存储和分析能力,支持原生图存储结构,支持万亿边PB级数据存储。同时,StellarDB具备毫秒级点边查询能力,10+层的深度链路分析能力,提供近40种的图分析算法,具备数据2D和3D展示能力。星环科技StellarDB在金融、政府和社交网络等领域...

行业资讯
数据中台推荐供应商
作为一家企业级大数据基础软件开发商,星环科技很早就在数据中台领域布局,结合星环科技全系产品的相关组件实现数据中台能力建设。星环科技把数据中台建设归纳为三中心、六能力、两个体系,这当中都会有星环科技产品作为支撑,从而保证企业能够快速实现,并搭建起数据中台,满足企业未来发展变化。其中,三中心分别是存储中心、分析探索中心、业务赋能中心;六能力包括数据汇聚能力、数据整合能力、智能分析能力、实时计算能力、统一访问能力、统一服务能力;两个体系则是安全和运维保障体系与数据和分析支撑体系。三中心、六能力、两个保障体系都构建在一个云底座之上,满足企业私有化或者混合云多云的部署形态,同时灵活组件式的可插拔式部署形态,能够帮助企业更迅速的起步,按规划分步完善数据中台建设。除了提供基础组件和相应的工具帮助客户快速构建数据中台之外,星环科技还提供咨询实施服务,可以为企业提供量身定制的“数据云基础设施+咨询服务的端到端产品+服务”的综合解决方案。在星环科技的咨询服务产品体系中,包括为企业构建中台的架构规划、应用规划,以及帮助企业实施建设数据底座、数据中台、数据仓库,以及数据治理服务,也包括了数据的分析、业务分析、...

行业资讯
数据中台建设
随着行业和技术领域的变化日新月异,从数据仓库、动态数仓,到数据湖,从新一代湖仓一体技术到可插拔数据库,概念的引入虽然简单,但如何做到更有效,更复杂的数据资产管理就考验着对生产能力和工艺过程的管理能力。星环科技认为数据中台是一种能力、是一种组织上的策略而不仅仅是一种技术架构,它是在信息化基础上建立的可编织和可复用的数据可分析能力,从而支撑企业数字化转型。星环科技的数据中台三中心、六能力、两个体系星环科技很早就在数据中台领域布局,结合星环科技全系产品的相关组件实现数据中台能力建设。星环科技把数据中台建设归纳为三中心、六能力、两个体系,这当中都会有星环科技产品作为支撑,从而保证企业能够快速实现,并搭建起数据中台,满足企业未来发展变化。数据存储、分析探索、业务赋能三中心第一,帮助企业构建存储中心,提升数据的汇聚和整合能力;第二,构建数据分析探索中心,专注于智能分析能力和实时计算能力的提升,推动智能推荐能力和全链路实时监测和保障能力;第三,构建业务赋能中心,提供统一的访问能力实现跨平台联邦,统一的访问层控制,确保数据安全可用,同时搭建统一的服务能力,面向多场景的服务应用支撑。安全和运维、数据和分...

行业资讯
图计算平台代表厂商
星环科技作为一家企业级大数据基础软件开发商,在图计算领域深耕多年,有着深厚的技术积淀和丰富的实践经验。星环科技自主研发的分布式图数据库StellarDB,兼容openCypher查询语言,提供海量图数据的存储和分析能力,支持原生图存储结构,支持万亿边PB级数据存储。同时,StellarDB具备毫秒级点边查询能力,10+层的深度链路分析能力,提供近40种的图分析算法,具备数据2D和3D展示能力。StellarDB克服了海量关联图数据存储的难题,通过集群化存储和丰富算法,实现了传统数据库无法提供的低延时多层关系查询,目前已经用于金融、政府、交通等众多行业,用于反洗钱、风险控制、营销等多种场景。同时StellarDB还获得了多项行业权威认可:入选信通院2022大数据十大关键词“图计算平台”代表厂商;通过了中国信通院图数据库和图计算平台基础能力两项专项测评;入选著名咨询机构Gartner《中国数据库市场指南》、《工具:中国数据库管理系统供应商甄选》报告等,彰显了其产品技术领先性。如今,5G、物联网、AI等技术的发展应用让数据呈指数倍增长,为图数据库发展提供了更广阔的应用空间。顺势而为,乘势而上...

行业资讯
数据安全实践案例
近年来,企业数据安全问题的重要性被提上了前所未有的高度。星环科技提供了从云基础设施、数据平台、数据资源、数据应用的数据安全能力。覆盖数据生命周期的各个阶段,涉及数据的收集、存储、使用、加工以及开放流通。全方位保障企业的数据安全,支撑业务合法合规的开展。星环科技凭借全面的数据安全能力助力某支付机构构建安全防线的落地实践。该支付机构拥有大量数据资产,目前机构面临着较大的挑战,需要加强数据安全管理,为此,机构决定与星环科技合作,利用星环科技的技术来提升数据安全管理能力,共同打造一个基于隐私计算的数据服务平台DaaS。根据客户需求,星环科技在基础设施层提供了基于容器的云原生操作系统TCOS,可以为用户提供独立的数据与计算环境,减少数据对外暴露的风险。在数据平台层,星环科技大数据基础平台TDH新版本增强了安全技术,支持行列级权限控制、动态脱敏等。在数据资产层,星环科技借助两款新产品:数据安全管理平台Defensor帮助企业构建整个数据安全管理域及数据流通平台Navier:包含隐私计算平台SophonP²C和数据交易门户datamall,提供包括联邦学习和差分隐私等技术能力。该支付机构的数据管理平...