大模型 分布式

模型分布式推理是应对模型推理过程中算力需求和成本挑战的重要技术手段。模型通常具有海量的参数,其推理对算力要求极高,导致推理成本中95%用于算力,且“万卡集群”的使用效率经常在50%以下,存在算需求。增强系统的可扩展性:随着数据量和模型规模的不断增加,可以方便地添加更多的计算设备到分布式系统中,实现系统的线性扩展,以应对不断增长的业务需求。的闲置和浪费,进一步降低了运营成本。提高推理性能:分布式推理可以并行处理多个任务,大大缩短了推理的时间,提高了系统的响应速度和吞吐量,能够更好地满足实时性要求较高的应用场景,如在线客服、智能助手等的力资源浪费的情况。单张GPU卡的显存难以支撑模型的推理,无法满足模型的实时性和高吞吐量要求。实现方式模型并行:将模型分割成多个子模型,分配到不同的计算设备上进行推理,然后再将结果进行合并。例如一致性和同步问题。优势降低算力成本:通过将推理任务分布到多个计算设备上,可以充分利用现有的算力资源,避免了为单个大模型配备昂贵的高端计算设备,从而降低了硬件成本。同时,提高了算力的使用效率,减少了算力

大模型 分布式 更多内容

模型分布式推理是应对模型推理过程中算力需求和成本挑战的重要技术手段。模型通常具有海量的参数,其推理对算力要求极高,导致推理成本中95%用于算力,且“万卡集群”的使用效率经常在50%以下,存在算需求。增强系统的可扩展性:随着数据量和模型规模的不断增加,可以方便地添加更多的计算设备到分布式系统中,实现系统的线性扩展,以应对不断增长的业务需求。的闲置和浪费,进一步降低了运营成本。提高推理性能:分布式推理可以并行处理多个任务,大大缩短了推理的时间,提高了系统的响应速度和吞吐量,能够更好地满足实时性要求较高的应用场景,如在线客服、智能助手等的力资源浪费的情况。单张GPU卡的显存难以支撑模型的推理,无法满足模型的实时性和高吞吐量要求。实现方式模型并行:将模型分割成多个子模型,分配到不同的计算设备上进行推理,然后再将结果进行合并。例如一致性和同步问题。优势降低算力成本:通过将推理任务分布到多个计算设备上,可以充分利用现有的算力资源,避免了为单个大模型配备昂贵的高端计算设备,从而降低了硬件成本。同时,提高了算力的使用效率,减少了算力
模型分布式推理是应对模型推理过程中算力需求和成本挑战的重要技术手段。模型通常具有海量的参数,其推理对算力要求极高,导致推理成本中95%用于算力,且“万卡集群”的使用效率经常在50%以下,存在算需求。增强系统的可扩展性:随着数据量和模型规模的不断增加,可以方便地添加更多的计算设备到分布式系统中,实现系统的线性扩展,以应对不断增长的业务需求。的闲置和浪费,进一步降低了运营成本。提高推理性能:分布式推理可以并行处理多个任务,大大缩短了推理的时间,提高了系统的响应速度和吞吐量,能够更好地满足实时性要求较高的应用场景,如在线客服、智能助手等的力资源浪费的情况。单张GPU卡的显存难以支撑模型的推理,无法满足模型的实时性和高吞吐量要求。实现方式模型并行:将模型分割成多个子模型,分配到不同的计算设备上进行推理,然后再将结果进行合并。例如一致性和同步问题。优势降低算力成本:通过将推理任务分布到多个计算设备上,可以充分利用现有的算力资源,避免了为单个大模型配备昂贵的高端计算设备,从而降低了硬件成本。同时,提高了算力的使用效率,减少了算力
模型分布式推理是应对模型推理过程中算力需求和成本挑战的重要技术手段。模型通常具有海量的参数,其推理对算力要求极高,导致推理成本中95%用于算力,且“万卡集群”的使用效率经常在50%以下,存在算需求。增强系统的可扩展性:随着数据量和模型规模的不断增加,可以方便地添加更多的计算设备到分布式系统中,实现系统的线性扩展,以应对不断增长的业务需求。的闲置和浪费,进一步降低了运营成本。提高推理性能:分布式推理可以并行处理多个任务,大大缩短了推理的时间,提高了系统的响应速度和吞吐量,能够更好地满足实时性要求较高的应用场景,如在线客服、智能助手等的力资源浪费的情况。单张GPU卡的显存难以支撑模型的推理,无法满足模型的实时性和高吞吐量要求。实现方式模型并行:将模型分割成多个子模型,分配到不同的计算设备上进行推理,然后再将结果进行合并。例如一致性和同步问题。优势降低算力成本:通过将推理任务分布到多个计算设备上,可以充分利用现有的算力资源,避免了为单个大模型配备昂贵的高端计算设备,从而降低了硬件成本。同时,提高了算力的使用效率,减少了算力
模型分布式推理是应对模型推理过程中算力需求和成本挑战的重要技术手段。模型通常具有海量的参数,其推理对算力要求极高,导致推理成本中95%用于算力,且“万卡集群”的使用效率经常在50%以下,存在算需求。增强系统的可扩展性:随着数据量和模型规模的不断增加,可以方便地添加更多的计算设备到分布式系统中,实现系统的线性扩展,以应对不断增长的业务需求。的闲置和浪费,进一步降低了运营成本。提高推理性能:分布式推理可以并行处理多个任务,大大缩短了推理的时间,提高了系统的响应速度和吞吐量,能够更好地满足实时性要求较高的应用场景,如在线客服、智能助手等的力资源浪费的情况。单张GPU卡的显存难以支撑模型的推理,无法满足模型的实时性和高吞吐量要求。实现方式模型并行:将模型分割成多个子模型,分配到不同的计算设备上进行推理,然后再将结果进行合并。例如一致性和同步问题。优势降低算力成本:通过将推理任务分布到多个计算设备上,可以充分利用现有的算力资源,避免了为单个大模型配备昂贵的高端计算设备,从而降低了硬件成本。同时,提高了算力的使用效率,减少了算力
模型分布式推理是应对模型推理过程中算力需求和成本挑战的重要技术手段。模型通常具有海量的参数,其推理对算力要求极高,导致推理成本中95%用于算力,且“万卡集群”的使用效率经常在50%以下,存在算需求。增强系统的可扩展性:随着数据量和模型规模的不断增加,可以方便地添加更多的计算设备到分布式系统中,实现系统的线性扩展,以应对不断增长的业务需求。的闲置和浪费,进一步降低了运营成本。提高推理性能:分布式推理可以并行处理多个任务,大大缩短了推理的时间,提高了系统的响应速度和吞吐量,能够更好地满足实时性要求较高的应用场景,如在线客服、智能助手等的力资源浪费的情况。单张GPU卡的显存难以支撑模型的推理,无法满足模型的实时性和高吞吐量要求。实现方式模型并行:将模型分割成多个子模型,分配到不同的计算设备上进行推理,然后再将结果进行合并。例如一致性和同步问题。优势降低算力成本:通过将推理任务分布到多个计算设备上,可以充分利用现有的算力资源,避免了为单个大模型配备昂贵的高端计算设备,从而降低了硬件成本。同时,提高了算力的使用效率,减少了算力
模型分布式训练是一种在多个计算节点上并行训练大型机器学习模型的方法,它能够显著提高训练效率和缩短训练时间。以下是一些关键的分布式训练技术和策略:数据并行:数据并行是最常见的分布式训练策略,数据被结构和计算资源的特点,可以选择最适合的并行策略组合进行训练。异步更新机制:在分布式训练中,异步更新机制可以提高效率,通过无锁数据结构最小化同步开销,并支持批量更新提高吞吐量。分布式训练器设计与实现:分布式训练器负责协调数据加载、前向传播、反向传播和参数更新等过程。一个高效的训练器需要处理多个关键问题,包括混合精度训练、梯度累积、优化器集成等。切分为多份并分发到每个设备上进行计算。每个设备都拥有完整的模型参数,计算完成后,设备间的梯度会被聚合并更新模型参数。这种方法能够充分利用多个设备的计算能力,加快训练速度。模型并行:在模型并行中,模型的不同部分被分配到不同的设备上进行计算。每个设备仅拥有模型的一部分,这使得超大的模型能够在有限的计算资源上训练。模型并行通常与流水线并行结合使用,数据按顺序经过所有设备进行计算。流水线并行:流水线并行是
模型分布式训练是一种在多个计算节点上并行训练大型机器学习模型的方法,它能够显著提高训练效率和缩短训练时间。以下是一些关键的分布式训练技术和策略:数据并行:数据并行是最常见的分布式训练策略,数据被结构和计算资源的特点,可以选择最适合的并行策略组合进行训练。异步更新机制:在分布式训练中,异步更新机制可以提高效率,通过无锁数据结构最小化同步开销,并支持批量更新提高吞吐量。分布式训练器设计与实现:分布式训练器负责协调数据加载、前向传播、反向传播和参数更新等过程。一个高效的训练器需要处理多个关键问题,包括混合精度训练、梯度累积、优化器集成等。切分为多份并分发到每个设备上进行计算。每个设备都拥有完整的模型参数,计算完成后,设备间的梯度会被聚合并更新模型参数。这种方法能够充分利用多个设备的计算能力,加快训练速度。模型并行:在模型并行中,模型的不同部分被分配到不同的设备上进行计算。每个设备仅拥有模型的一部分,这使得超大的模型能够在有限的计算资源上训练。模型并行通常与流水线并行结合使用,数据按顺序经过所有设备进行计算。流水线并行:流水线并行是
模型分布式训练是一种在多个计算节点上并行训练大型机器学习模型的方法,它能够显著提高训练效率和缩短训练时间。以下是一些关键的分布式训练技术和策略:数据并行:数据并行是最常见的分布式训练策略,数据被结构和计算资源的特点,可以选择最适合的并行策略组合进行训练。异步更新机制:在分布式训练中,异步更新机制可以提高效率,通过无锁数据结构最小化同步开销,并支持批量更新提高吞吐量。分布式训练器设计与实现:分布式训练器负责协调数据加载、前向传播、反向传播和参数更新等过程。一个高效的训练器需要处理多个关键问题,包括混合精度训练、梯度累积、优化器集成等。切分为多份并分发到每个设备上进行计算。每个设备都拥有完整的模型参数,计算完成后,设备间的梯度会被聚合并更新模型参数。这种方法能够充分利用多个设备的计算能力,加快训练速度。模型并行:在模型并行中,模型的不同部分被分配到不同的设备上进行计算。每个设备仅拥有模型的一部分,这使得超大的模型能够在有限的计算资源上训练。模型并行通常与流水线并行结合使用,数据按顺序经过所有设备进行计算。流水线并行:流水线并行是
模型分布式训练是一种在多个计算节点上并行训练大型机器学习模型的方法,它能够显著提高训练效率和缩短训练时间。以下是一些关键的分布式训练技术和策略:数据并行:数据并行是最常见的分布式训练策略,数据被结构和计算资源的特点,可以选择最适合的并行策略组合进行训练。异步更新机制:在分布式训练中,异步更新机制可以提高效率,通过无锁数据结构最小化同步开销,并支持批量更新提高吞吐量。分布式训练器设计与实现:分布式训练器负责协调数据加载、前向传播、反向传播和参数更新等过程。一个高效的训练器需要处理多个关键问题,包括混合精度训练、梯度累积、优化器集成等。切分为多份并分发到每个设备上进行计算。每个设备都拥有完整的模型参数,计算完成后,设备间的梯度会被聚合并更新模型参数。这种方法能够充分利用多个设备的计算能力,加快训练速度。模型并行:在模型并行中,模型的不同部分被分配到不同的设备上进行计算。每个设备仅拥有模型的一部分,这使得超大的模型能够在有限的计算资源上训练。模型并行通常与流水线并行结合使用,数据按顺序经过所有设备进行计算。流水线并行:流水线并行是
产品文档
2 Quick Start
ThistutorialwillguideyouthroughthefollowingtaskswithinHippoCloud:EstablishingatablePerusingthetableIncorporatingdataExecutingsearchoperationsEliminatingrowsDissolvingthetableBeforeyoustartInthisguide,wewillbeutilizingthePythonAPI.Priortocommencement,ensurethatyouhave:RegisteredforaHippoCloudaccount.SubscribedtothecomplimentaryplanandestablishedatrialclusterwithinHippoCloud,orsubscribedtothestandard/enterpriseplansandconstructedadedicatedcluster.IfyouanticipateemployingPythonfordevelopment,ascert...
产品文档
8 性能分析
本节测试主要描述了Hippo1.0在关键测试上的一些性能表现,该份测试同样也是Hippo的基准测试,后续版本发布也会在不同版本上进行该测试进行对比分析。术语表142.Hippo性能测试术语TermDescriptionnq一次搜索请求中搜索的向量个数topk一次请求中对于要检索的每个向量(依赖nq),所能检索到最近距离的向量个数RT一次请求从发起到接受响应的时间]QPS请求在每秒内成功执行的次数dataset测试所用数据集,不同数据集表示不同的业务场景测试集群配置硬件配置表143.性能测试硬件配置硬件规范Nodes3CPUIntel®Xeon®Gold5218RCPU@2.10GHzMemory16*\16GBRDIMM,3200MT/sDISKNVMeSSD2T*4GPUNONE软件配置表144.性能测试软件配置软件版本Hippov1.2TranswarpManagerTDH9.3.0测试集表145.性能测试数据集数据集名称数据集介绍向量维度向量总数查询数量数据总量距离类型Sift-128-euclidean该数据集是基于Texmex的数据集整理,使用SIFT算法得到的图片特征向量。...
产品文档
5.3 写入类操作
本节介绍Hippo表写入相关操作。Hippo会返回写入成功数据的下标以及总共写入成功的数据条数,如果出现行级错误(比如主键冲突),Hippo会返回具体的行级错误。插入本节介绍如何向Hippo中插入数据。curl-ushiva:shiva-XPUT'localhost:8902/hippo/v1/{table}/_bulk?database_name={database_name}&pretty'-H'Content-Type:application/json'-d'{"fields_data":[{"field_name":"book_id","field":[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74...
产品文档
3.3 Cluster
OverviewAclusterisaHippoCloudinstanceassociatedwithspecificcomputingresources.Youcancreaterelatedtables,insertcorrespondingdata,andcompleteproductexperiencewithinacluster.Beforeyouusethedemoenvironment,youneedtocreateacluster.CreateClusterYouneedtogotothespecificproject.Iftherearenoclustersunderthecurrentproject,youcanclickthe'Createcluster'buttonbelowtheclustercreationguidancepagetoentertheclustercreation.Ifthereareclustersunderthecurrentproject,youcanclickthe'+Cluster'buttonabovetheclusterlist...
产品文档
5.18 全文检索
Hippo在1.2版本提供了全文索引能力,兼容ElasticSearch6.7.2语法,在底层架构上复用了公司产品TranswarpScope的一部分特性,支持以Java/HTTPRestful的形式通过Hippo的HTTPServer接口进行全文索引的创建、查询、使用等各类需求,通过该能力的支持,可以更好的实现向量与全文的混合检索。通过将向量检索加全文检索的联合召回,可以降低漏检和误检的概率,能够实现比单独使用向量或全文更高的精度。同时,一套数据库系统可避免部署多套系统带来的架构复杂、开发运维成本高等问题。具体的使用方法除了访问端口需要将端口从8902调整为9200外,均可参考《TranswarpScope手册》4.TranswarpScopeAPI介绍。
产品文档
5.7 查询类操作
过滤条件表达式Hippo当前支持如下表达式,可用于标量或向量查询。表46.过滤条件表达式表达式描述and当前版本支持and,不支持or/not==等值<小于⇐小于等于>大于>=大于等于inin[1,2,3]notinnot_in[1,2,3]like'_'表示匹配任一字符,'%'表示匹配任意字符,'\'为转义符向量相似性检索本节描述如何进行向量相似度搜索。Hippo中的向量相似性搜索计算查询向量与表中向量的距离,返回最相似的结果集。通过指定标量过滤条件,用户可以进行向量与标量的混合搜索。curl-ushiva:shiva-XGET'localhost:8902/hippo/v1/{table}/_search?pretty'-H'Content-Type:application/json'-d'{"output_fields":["book_id"],"search_params":{"anns_field":"book_intro","topk":2,"params":{"nprobe":10},"embedding_index":"ivf_flat_index"}...
查看Master节点通过以下命令,查看集群Master节点信息:curl-ushiva:shiva-XGET'localhost:8902/hippo/v1/_cat/master?v'返回结果:epochtimestampactive.master.hostactive.master.portmaster.group169079683909:47:19172.29.203.18926841172.29.203.189:26841,172.29.203.189:26851,172.29.203.189:26861查看数据节点curl-ushiva:shiva-XGET'localhost:8902/hippo/v1/_cat/nodes?v'//查看所有节点curl-ushiva:shiva-XGET'localhost:8902/hippo/v1/_cat/nodes/{node}?v'//{node}表示待匹配的节点地址,支持以*通配,支持指定多个pattern,多个pattern以逗号分割返回结果:
产品文档
1 Introduction
OverviewUnstructureddatamanagementismoreimportantthaneverduetotheriseofbigdata.Managingandgleaningbusinessvaluefromunstructureddataisofutmostimportancetoenterprisestoday.Advancementsinmachinelearning,aswellasdeeplearning,technologiesnowenableorganizationstoefficientlyaddressunstructureddataandimprovequalityassuranceefforts.Inthefieldofartificialintelligenceormachinelearning,embeddingsandvectordatabaseshavebecomeincreasinglyimportantfortacklingawiderangeofproblems.Thesetechniquesareusedtorepresen...
产品文档
5.10 任务相关
在Hippo中,比较耗时的操作如激活、加载向量索引实际上是一个分布式任务,用户可以通过任务相关接口查看、删除任务。查看任务curl-ushiva:shiva-XGET"localhost:8902/hippo/v1/_jobs?pretty"-H'Content-Type:application/json'-d'{"job_ids":["fc6feff4f303455a9347f9aab323dfc8"],"action_patterns":["hippo*"]}';返回结果:{"jobs":[{"job_id":"810935a1d91a46b7af2ec35013454fed","job_status":"SHIVA_JOB_SUCCESS","embedding_number":100,"task_results":[{"id":"54ab52493dfb4bab9fb7742d850c64c4","status":"TASK_SUCCESS","server":"172.29.40.26:27841","embedding_number":100,"execute_time":...
产品文档
10 Hippo 运维
运维管理界面WebserverWebserver是Hippo提供运维监控的界面。默认访问地址为:4567"class="bare">http://<webserver_ip>:4567。或者在Manager管理界面我们可以通过下图所示的查看链接这里进行跳转。图15.登录HippoWebserverWebserver主要由下面几个部分构成。概况图16.概况该页面展示了Hippo集群的基本信息,包括:Masterstatus:当前的ActiveMaster,MasterGroup,MasterAddress,Master的健康状态TabletServerStatus:TabletServerAddress,健康状态,逻辑机架和数据中心信息,容量使用以及Tablet个数TabletNum:当前集群表的个数Version:Hippo版本信息库表图17.库表页面以库和表的概念集群存储的各类数据信息。库信息:库名库创建时间库内各类表的信息:点击某个库,可以看到库下所有表的信息,主要包括:••表的ID••表的名字••表的状态••表的Tablet数量••表的Engine类型••表的副本数•...