大模型平台 收费

行业资讯
模型商业化
模型市场规模将达到120亿元,显示出模型商业化的快速增长趋势。收费模式:当前模型市场的收费方式主要分为三种:单独的模型模型加算力、模型加应用。其中,“模型+算力”是最主流的收费方式,拓展商业化市场空间。出海机会:中国大模型厂商在跨境电商、游戏、社交媒体等泛娱乐领域有出海机会。商业化路径:模型的商业化路径多样,包括API开放平台模式、ToB产品化、与现有产品集成等,这些路径使得模型商业化通过提供API服务、集成到现有产品、订阅模式等多种途径,将AI技术转化为实际的经济效益,推动企业和市场的智能化转型。模型商业化主要涉及以下几个方面:市场规模增长:预计到2024年,中国。行业应用:能源和金融行业在模型商业化进度上位居前列,尤其是中央企业和国有企业在推动模型的应用和预算投入方面表现积极。商业化趋势:随着模型生态的成熟,应用层将成为模型商业化的主力。同时,新的需求如LLMOps、模型一体机等将为商业化提供更多机会。服务价格下降:模型服务价格的逐渐下降将加速其在中小企业中的渗透,推动模型市场的蓬勃发展。开源模型:通过降低开发门槛和成本,加速模型应用的渗透

大模型平台 收费 更多内容

行业资讯
模型平台
模型平台是一种为开发、训练、优化和应用规模人工智能模型而设计的综合性平台,以下是具体介绍:功能特性模型训练与优化:提供强大的计算资源和高效的训练算法,支持对规模深度学习模型进行训练,可对模型的监控和评估,及时发现问题并进行调整和优化,还可以对模型的预测结果进行分析和解释。主要类型通用模型平台:具有广泛的知识和强大的语言处理能力,可应用于多种自然语言处理任务和领域,为用户提供通用的智能服务和解决方案。行业大模型平台:针对特定行业的需求和特点进行定制化开发和优化,如金融领域的模型平台、医疗领域的模型平台等,能够更好地满足行业内的专业需求,提供更精准和有效的智能应用。开源模型平台训练好的模型方便地部署到生产环境中,提供多种接口和工具,使开发者能够将模型集成到各种应用程序中,如智能客服、内容生成、智能推荐等。监控与评估:在模型训练和应用过程中,对模型的性能、运行状态等进行实时:开源了大量的预训练模型和相关工具,供全球的开发者和研究人员使用和贡献,促进了模型技术的快速发展和创新,开发者可以在此基础上进行二次开发和定制。应用场景自然语言处理领域:可用于机器翻译、文本摘要、问答
行业资讯
模型平台
模型平台是指基于规模参数的机器学习模型构建的平台,这些平台通常提供模型训练、部署、推理等服务,支持多种应用场景。以下是对模型平台的详细阐述:定义模型平台是基于具有规模参数和复杂计算结构的机器学习模型构建的平台。这些模型通常由深度神经网络构建而成,拥有数十亿甚至数千亿个参数。模型平台的设计目的是为了提高模型的表达能力和预测性能,能够处理更加复杂的任务和数据。特点巨大的规模:模型包含数十亿个参数,模型小可以达到数百GB甚至更大。涌现能力:当模型的训练数据突破一定规模时,模型会涌现出之前小模型所没有的复杂能力和特性。更好的性能和泛化能力:模型通常具有更强大的学习能力和泛化能力,能够在各种任务上表现出色。多任务学习:模型通常会一起学习多种不同的任务,如自然语言处理中的机器翻译、文本摘要、问答系统等。数据训练:模型需要海量的数据来训练,通常在TB以上甚至PB级别的数据集。强大的计算资源:训练模型通常需要数百甚至上千个GPU,以及大量的时间。应用场景自然语言处理:语言模型(LLM)是模型的子分类,专门通过处理大量文本数据来理解和生成人类语言,执行各种自然语言处理任务
行业资讯
模型平台
模型平台是集成了模型技术、数据处理、模型训练、评估与部署等全栈能力的服务平台。可以为企业提供高效、便捷的模型应用解决方案,帮助企业快速构建和部署基于模型的智能应用。模型平台优势与特点高效数据的安全性和隐私保护。持续更新:平台支持模型的持续更新和优化,确保企业能够享受到新的模型技术成果。模型平台应用场景模型平台广泛应用于金融、传媒、文旅、政务、教育等多个行业场景,为这些行业提供定制化的智能解决方案。例如:金融行业:利用模型平台进行风险评估、欺诈检测、智能投顾等应用。传媒行业:通过大模型平台实现内容生成、舆情分析、个性化推荐等功能。文旅行业:利用模型平台提升旅游体验,实现智能导览、个性化旅游规划等应用。政务行业:借助模型平台优化政务服务流程,提高政府决策的科学性和精准性。便捷:提供一站式模型开发工具链和基础设施,降低企业使用模型的门槛和成本。灵活定制:支持根据企业需求进行模型定制和微调,满足不同行业和场景的应用需求。安全可靠:采取高标准的数据安全管理措施,确保企业
模型服务平台是一种基于云计算和人工智能技术,为用户提供模型相关服务的平台,支持模型的开发、训练、部署和应用。模型平台功能特点模型训练:提供强大的计算资源和工具,帮助用户使用海量的数据对模型进行训练,使其能够学习到各种知识和模式,以适应不同的任务和应用场景。模型部署:将训练好的模型部署到生产环境中,使其能够为用户提供实际的服务和应用。平台会提供相应的部署工具和技术支持,确保模型的稳定处理用于训练模型的数据。高质量的数据是训练出优秀模型的基础,平台的数据管理功能可以确保数据的质量和可用性。应用开发:提供相应的开发工具和接口,方便用户基于模型开发各种人工智能应用,如自然语言处理应用、计算机视觉应用、语音识别应用等,降低应用开发的难度和门槛,加速人工智能应用的落地和推广。模型平台优势降低技术门槛:模型训练和应用开发需要较高的技术水平和专业知识,而模型服务平台将这些复杂的技术和工具进行了封装和简化,使得普通用户和企业也能够轻松地使用模型技术,无需深入了解其底层原理和技术细节。节省成本:训练模型需要大量的计算资源和数据,成本高昂。通过使用模型服务平台,用户可以按需
通行记录,到摄像头捕捉到的路况画面;从传感器收集的路面状况、气象信息,到收费系统的交易数据,都被汇聚其中。高速公路数据平台的架构通常包含多个层次,以确保数据的高效处理和应用。最底层是数据采集层,负责和持续发展的重要环节。高速公路数据平台运用数据技术进行费用精细管理,如同为高速公路收费装上了一双“火眼金睛”,有效打击偷逃费行为,保障了收费的公平性和高速公路运营收益。在传统的收费模式下,由于人工稽核工单,相关工作人员可以进一步核实并进行追缴。某高速公路管理部门利用数据平台进行收费稽核后,成功追缴了大量偷逃的通行费用,有效维护了高速公路收费秩序。数据平台还能对收费数据进行统计分析,为高速公路高速公路数据平台:解锁智慧交通新密码高速公路数据平台,究竟是什么?在当今数字化时代,数据技术正深刻改变着各个行业,高速公路领域也不例外。高速公路数据平台,作为一种集数据采集、存储、分析和应用技术,为交通管理、运营决策、公众出行服务等提供支持。功能揭秘:它如何让高速更“聪明”(一)精准流量洞察,告别拥堵烦恼在数据时代,高速公路数据平台让人们告别拥堵烦恼。它就像一个精准的“流量侦察兵
星环模型运营平台TranswarpLLMOps是面向企业级用户的模型全生命周期运营管理平台,旨在帮助企业快速、高效、闭环地将模型落地至业务场景中。平台覆盖语料、模型、应用三核心要素,打通了从提示词工程、检索增强、智能体构建、模型推理优化、模型安全和持续提升等模型开发落地的全流程,同时兼容传统机器学习和深度学习模型,一站式满足企业全A1场景需求。此外,平台支持GPU/NPU异构算力(ARM/x86)混合部署、资源精细化切分和调度、海量多源模型统管、全局状态监控及预警等企业级功能。SophonLLMOps提供语料知识沉淀、高质量资产共享、灵活应用开发、可持续服务运营等能力,有助于降低企业使用门槛,并支持多种开发方式,具备企业级功能和安全防护,保障数据安全和合规性。
模型训练平台是一个为开发者提供定制化模型解决方案的平台,它汇集了行业内知名的模型,通过轻量级的训练和丰富的训练方法,帮助开发者快速构建专属的模型。以下是模型训练平台的详细定义、功能和应用场景:定义模型训练平台是面向AI开发者的一站式模型开发及服务运行平台,基于云管基座平台和算力平台,为用户提供从数据管理、模型训练、模型管理到模型服务的全流程开发支持。功能数据工程:提供数据导入、数据、模型调优、模型评测、模型量化编译等功能。平台提供丰富的预训练模型,用户可在平台上采用不同的训练方式(预训练、监督微调SFT)进行模型训练,不断调优迭代模型效果,从而提升模型性能。服务部署:提供模型自动驾驶的安全性和可靠性。个性化推荐:在电商与社交平台中,模型通过分析用户行为和偏好,为用户提供精准的广告、内容和商品推荐,从而提升了用户体验和营销效果。清洗、数据增强、数据管理等功能,并支持开源已处理的数据集。用户可以根据实际需求,依照平台数据格式要求上传数据信息或使用平台内的开源数据集,为后续训练、评估、编译等流程提供支撑。模型开发:提供模型训练
星环语言模型运营平台-SophonLLMOpsSophonLLMOps作为一个全面的模型统一运营管理平台,旨在为用户打通从数据接入和开发、提示工程、模型微调、模型上架部署到模型应用编排和业务效果对齐的全链路流程,从而实现针对模型的“数据和分析的持续提升”。星环科技SophonLLMOps的工具链优势体现在以下几个方面:首先,SophonLLMOps拥有自己的样本仓库能力,覆盖训练数据开发、推理数据开发、数据维护等工作,对语言模型涉及的原始数据、样本数据、提示词数据做清洗、探索、增强、评估和管理等。第二,SophonLLMOps具有模型运维管理能力。除了传统MLOps的六统一——统一纳管、统一运维、统一应用、统一监控、统一评估、统一解释外,针对语言模型的微调、持续提升、评估、对齐等提供从计算框架、工具到计算、存储、通信的调度和优化支持。第三,SophonLLMOps具有语言模型和其他任务的编排、调度和上线能力。SophonLLMOps提供Agent、Ops、DAG,结合星环科技的多款数据、数据库产品,如向量库Hippo和分布式图数据库StellarDB等,将不同
模型平台是指提供规模预训练模型服务的平台,这些模型拥有数十亿甚至数千亿个参数,能够在自然语言处理、计算机视觉、语音识别等任务中表现出色。根据最新报告,2023年中国大模型平台及相关应用市场规模达到了17.65亿元人民币,显示出这一领域快速发展的趋势。模型平台通常包括通用模型和行业大模型两大类。通用模型适用于广泛的任务和场景,而行业大模型则针对特定行业或领域的特定需求进行优化。例如,在医疗、金融、教育等行业,有专门的模型来解决行业内的复杂问题。选择最适合的模型平台时,需要考虑多个因素,如模型的性能、应用场景的匹配度、技术支持和服务等。主流的模型开发平台提供了丰富的工具和资源,帮助开发者快速构建和部署基于模型的应用。星环语言模型运营平台-SophonLLMOps为了帮助企业用户基于模型构建未来应用,,星环科技推出了模型持续提升和开发工具SophonLLMOps,实现领域模型的训练、上架和选代。SophonLLMOps服务于模型开发者,帮助企业快捷地构建自己的行业大模型,通过大模型基础设施,形成具备“新型人机交互”且“敏捷可持续迭代“的人工智能应用。
垂直领域知识图谱产品主要用于面向特定领域知识应用需求,通过构建和应用知识图谱解决对应领域的专业问题。目前,知识图谱在智慧医疗与智慧金融领域已取得了一系列成功实践,被应用于辅助医生、药物发现、临床科研、风险防控、内部监管、投资研究、保险理赔等众多实际业务场景,并涌现出了一批知识图谱产品或服务平台。星环科技自主研发的知识图谱平台Sophon正是一款覆盖知识全生命周期,集知识的采集、建模、融合、存储、计算及应用为一体的知识图谱产品。平台支持低代码图谱构建、智能化知识抽取、多模态知识存储与融合、多形式知识计算和推理以及多维度的图谱分析。除了具备链路完备性,平台还从业务场景出发,沉淀了金融、保险等场景的图数据模型、规则模型和算法模型,可以帮助用户快速解决不同场景下的业务问题。目前,星环科技Sophon已经在金融等多个行业成功落地,在反洗钱、反欺诈、疫情防控、公共安全、企业级营销、保险知识智能问答等场景有着广泛的应用。同时星环科技在推动知识图谱技术创新和成功落地的过程中,也获得了多项荣誉和权威认可:入选Gartner《MarketGuideforArtificialIntelligenceStar...
新时代需要新技术,企业应抓住机遇实现旧平台的改造升级数据库技术经过不断的发展,已经从以Oracle、IBM为代表的集中式数据库,演进到分布式、多模型、云原生的形态,并在很多场景应用落地,带来了真实的业务价值。当前得益于国家政策的大力扶持以及国内市场环境的快速发展,国产软件加速发展,国产化替代进程正在不断加速。自主可控是国产化替代的核心,同时也是一个阶段性的目标。我们不应该满足于此,应该抓住国产化改造的机遇,用新技术去替代老技术,实现自主可控的同时,完成旧系统的改造升级,这也是信创的主旨。星环科技致力于打造企业级大数据基础软件,围绕数据全生命周期提供基础软件与服务,在分布式技术、多模型技术、数据云技术等方面有很多技术突破。比如大数据基础平台TDH是全球首个通过TPC-DS基准测试的产品;提出了创新的多模型统一技术架构,支持业内主流的10种数据模型,Gartner®发布的中国数据库技术发展趋势报告引用星环科技多模型联合分析用例,论证了多模型融合分析的趋势和价值。基于多年积累的分布式技术、多模型统一技术、数据云技术等,星环科技打造了分布式数据库ArgoDB、分布式交易型数据库KunDB、分布...
数据要素是数字经济发展的关键生产要素,是数字经济发展的基础。加快培育数据要素市场是全面建设社会主义现代化国家的一项基础性工作,对推动经济高质量发展、建设数字中国和数字强省、促进经济社会数字化转型具有重要意义。星环科技致力于打造企业级大数据基础软件,围绕数据全生命周期提供基础软件与服务。基于在大数据、分布式数据库、隐私计算、数据安全流通领域的多年积累,星环科技研发了数据要素流通全过程的一系列工具,在各方数据不出域的前提下,为数据资源方和数据消费方提供数据交付服务。2021年星环科技成为上海数据交易所首批签约数商。2022年9月星环科技曾受邀出席“深数交”数据合规活动,分享数据安全出境解决方案。2022年12月星环科技与中国东信旗下北部湾大数据交易中心达成了战略合作。星环科技在产品的各层级上都完善了安全技术,从而可以给用户提供体系化的数据安全防护能力,助力企业高效、合规的开展数据流通业务。在基础设施层,星环科技提供基于容器的云原生操作系统TCOS,它不仅能够提供容器隔离和镜像扫描,还新增了漏洞检测以及面向业务的微隔离安全技术,从而可以为用户开辟一个独立的数据与计算环境,外部的服务未经授权无...
星环科技图数据库StellarDB是国产高性能图数据库,采用分布式架构和原生图计算引擎,支持超大规模数据管理和高效的图计算。TranswarpStellarDB具有以下特点:原生图存储:StellarDB为数据存储设计了专有的图存储结构,优化查询性能,通过高效的压缩算法减少磁盘和内存的使用量。根据分区策略,图数据均匀分布于集群各节点。优越的性能:存储引擎和计算引擎结合,使计算引擎可以利用数据locality提升计算性能,拥有卓越的数据读写能力,支持大规模并行处理,毫秒级的查询响应。高扩展性:完全的分布式架构,具有良好的可扩展性,支持在线扩容和升级。拥有万亿级图数据处理能力,支持数据多副本,提供集群高可用和高可靠。灵活的查询方式:计算引擎支持灵活易懂的图查询语言TranswarpExtended-OpenCypher,拥有丰富的图操作语法。同时提供SQL支持,多模场景灵活切换。深度分析能力:支持10层及以上的图深度遍历和复杂分析。丰富的算法库:内置丰富的算法库,几十种图算法开箱即用,优化的分布式并行图算法,千万级子图计算效率达到行业先进水平。企业级功能:支持用户权限认证、集群状态监控、日...
星环科技致力于打造企业级大数据基础软件,基于在大数据、分布式数据库、隐私计算、数据安全流通领域有着多年积累,研发了数据要素流通全过程的一系列工具,在各方数据不出域的前提下,为数据资源方和数据消费方提供数据交付服务。2022年9月星环科技曾受邀出席“深数交”数据合规活动,分享数据安全出境解决方案。2021年星环科技成为上海数据交易所首批签约数商。2022年12月星环科技与中国东信旗下北部湾大数据交易中心达成了战略合作。伴随数字经济蓬勃发展,融入全球数据跨境流动的趋势不可避免。数据出境安全治理受到广泛重视,为进一步规范数据出境活动,保护个人信息权益,维护国家安全和社会公共利益,促进数据跨境安全,国家互联网信息办公室发布了《数据出境安全评估办法》。国内运营的外企(尤其是零售、化工等)、新能源汽车以及生态企业(含自动驾驶等)、国际化企业与出海企业、跨境电商和物流、有融资需求的基于数字化做业务创新的创业公司等是国内迫切需要落实数据安全出境的企业。然而企业在落地数据出境安全方面存在一些实际困难,主要体现在:错综复杂的数据如何分类分级,如何识别重要数据;重要数据如何存储和管理,才能达到相关法律法规的...
银行图数据库的应用场景:反洗钱:图数据库可以将可疑交易数据存储于其中,帮助银行更快速地提取、分析与关系,识别出潜在的洗钱行为。客户关系管理:银行图数据库可以将客户的不同信息(如交易记录、信用评级、客户所在地和行业等)进行整合,并将这些信息在一个数据仓库中呈现出来。这使得银行能够更加精准地分析客户需求,提供更加符合客户需求、更加优质的服务。风险管理:银行是一个与风险息息相关的行业。图数据库可以帮助银行对相关风险进行整合和分析。通过解析大量的金融数据,图数据库可以找出潜在的风险点,提前控制风险。数字化转型:图数据库能够将社交网络、收集的数据等信息关联起来,并创造性地开拓新业务模式。除了与客户密切相关的业务领域,图数据库还能够在支持业务流程优化方面发挥重要作用。营销:银行可以使用图数据库来收集客户数据、行为数据等,这样可以更加精确地预测客户习惯,对客户进行更加细致的营销和服务。银行图数据库有着广泛的应用场景,可以在多个角度上支持银行的业务发展,提高服务的质量和效率。星环分布式图数据库StellarDB星环科技致力于打造企业级大数据基础软件,围绕数据的集成、存储、治理、建模、分析、挖掘和流通等...
星环科技分布式隐私计算平台SophonP²C集多方安全计算、联邦学习等多种功能,为隐私计算提供完整的解决方案,以隐私保护为前提,解决了跨组织协作时无法安全利用各方数据的困境。平台支持联邦学习、多方安全计算、匿踪查询等功能;性能方面,联邦学习与多方安全计算可达亿级数据量,助力数据要素安全流通和价值迸发,实现数字经济时代下的跨企业和行业的AI协作。星环科技的隐私计算技术已落地如数据流通、政务民生、金融营销等垂直业务场景,为跨企业数据协作提供安全可信的平台支持。在政务民生场景,SophonP²C通过纵向联邦学习联合居民用电数据与用水数据,生成群租房预测名单。在联合建模过程中,全程明文数据不出,有效保护了居民用水用电的数据隐私信息。联合训练模型比本地单独用电数据训练的模型AUC提升20%以上,赋能政务决策高效的处理分析能力,为政府有效排查群租房,消除群租房造成的消防、安全隐患,打造和谐、安全、美丽的生活环境作出了突出贡献,为政务决策、民生建设发挥信息化支撑保障作用。在精准营销场景,通过纵向联邦学习,车企安全引入了多方数据,丰富用户特征维度,对用户行为进行统计分析。在联合建模过程中,全程明文数据...
图数据库有许多适用场景,常见的应用场景有:社交媒体:社交媒体中的用户和关系可以建模为图结构。用图数据库来管理和查询这些社交数据,可以实现更精确的社交关系分析。金融:在金融领域中,图数据库可以用于合规风控、反欺诈、投资和信贷决策等众多场景。例如,通过在图中存储和分析不同实体(如银行账户、信用卡、电话、邮箱、运单等)之间的关系,可以准确识别欺诈降低风险。物流和运输:物流和运输领域也是图数据库的应用场景之一。例如,通过在图中存储城市、仓库、货物、运输路线等信息,可以进行物流管理、运输计划优化、货物追踪等任务。生命科学:在生命科学领域,图数据库可以用于存储和分析复杂的基因、蛋白质、代谢物等数据,帮助科学家发现新的治疗方法和疾病机制。游戏:游戏开发者可以使用图数据库来管理玩家角色、各种装备、地图、任务等复杂的游戏数据,实现更好的游戏体验。图数据库的灵活性和高效性使其在多个领域都有着广泛的应用。星环分布式图数据库StellarDB星环科技致力于打造企业级大数据基础软件,围绕数据的集成、存储、治理、建模、分析、挖掘和流通等数据全生命周期提供基础软件与服务,在图计算领域深耕多年,自主研发了分布式图数据...
图数据库是现代数据库系统中的一种,它主要的特点就是使用了图论的概念来进行数据管理。传统的关系型数据库通常是基于表和列的结构进行数据管理,而图数据库则是构建了节点和边的图形结构,可以更好的表示现实世界中的复杂关系。下面是图数据库的几个主要特点:1.基于图形结构:图数据库是基于图形结构来进行数据管理的。它通过节点和边来构建数据的表示形式,使得数据之间的关系和结构更加直观和清晰。这对于处理关联复杂、数据关系复杂的场景具有重要意义。2.高效地关系查询和分析:图数据库具有高效的关系查询和分析能力。对于一个大规模的图,传统的SQL查询方式显然不能满足查询时间的要求。而图数据库则可以通过图数据库内部的算法来进行实时的查询和分析。尤其是针对一些复杂的图分析算法,图数据库更能够快速地获得结果,提高查询速度。3.可扩展性:由于采用了分布式的技术设计,使图数据库的可扩展性极佳。当需要管理的数据量增加时,图数据库可以通过简单的集群扩展方式来实现性能的提升。而且,图数据库的分布式能力也可以让其在多个节点上进行操作,提高了系统的容错能力和加载能力。4.元素和关系度量:图数据库具有丰富的元素数据和关系数据量度方式。...
时空数据库(Spacial-temporaldatabase)是一种专门用于存储和管理时空数据的数据库管理系统,它是传统关系型数据库的一个扩展,可以实现对时空数据进行有效管理和处理。时空数据是指带有时空坐标或时间戳的数据,例如地图、气象数据、交通、城市规划等。因此,时空数据库可以用于多种应用程序,如地理信息系统、航空航天、气象预报、GPS导航等。时空数据库与传统数据库不同的是,它提供了额外的功能和数据类型,例如点、线、面等空间对象和时间序列数据类型。此外,时空数据库还支持空间查询和时空查询,例如常见的缓冲区查询,使得用户可以在时空范围内进行查询和分析。这种数据库可以对时空数据进行高效的存储、查询、更新和分析,并通过插件技术集成其他地理信息数据源。星环分布式时空数据库-SpactureSpacture是星环科技自主研发的一款面向空间、时空数据的存储与管理,集计算与存储为一体的分布式数据库产品,支持大规模矢量数据、时空轨迹数据的存储与计算,具有完备的数据查询、分析和挖掘能力,可用于时空查询分析、时空模式挖掘、时空轨迹聚类等时空轨迹数据分析场景,广泛应用于交通物流、城市管理、位置服务等场景。