推出大模型的公司叫什么

什么模型模型是指模型具有庞大参数规模和复杂程度机器学习模型。在深度学习领域,模型通常是指具有数百万到数十亿参数神经网络模型。这些模型需要大量计算资源和存储空间来训练和存储,并且往往,推出相应工具,帮助企业构建自有的行业大模型,通过大模型基础设施,形成具备“新型人机交互”且“敏捷可持续迭代“人工智能应用。为了帮助企业用户基于模型构建未来应用,星环科技推出语言模型应用,成功在实际生产中投入应用;第三,帮助客户运营在生产中应用语言模型模型持续提升。除此之外,星环科技在行业首先推出了两行业大模型:服务于金融行业星环金融模型无涯,以及数据分析模型SoLar“求索”。需要进行分布式计算和特殊硬件加速技术。模型设计和训练旨在提供更强大、更准确模型性能,以应对更复杂、更庞大数据集或任务。模型通常能够学习到更细微模式和规律,具有更强泛化能力和表达能力。然而,模型也面临一些挑战。首先是资源消耗问题,模型需要大量计算资源、存储空间和能源来进行训练和推理,对计算设备要求较高。其次是训练时间较长,由于模型参数规模增大,模型训练过程会更加耗时

推出大模型的公司叫什么 更多内容

行业资讯
免费模型
国内AI模型正在快速发展,许多公司推出了免费大型语言模型,以满足学生、职场人和其他用户需求。星环科技无涯·问知InfinityInteligence星环科技无涯·问知条款、监管规则、试行办法等提出问题,无涯·问知将提供法律风险预警以及应对建议。财经:无涯·问知内置了丰富上市公司财报和产业链图谱数据,能够为金融机构提供全面深入投资研究分析工具。此外,星环自研模型InfinityInteligence,是一款基于星环模型底座,结合个人知识库、企业知识库、法律法规、财经等多种知识源企业级垂直领域问答产品。个人知识库:支持用户一键上传文档、表格、图片、音视频等多模数据,基于星环自研模型底座可自动对知识进行处理与入库,快速实现海量多模知识检索与智能问答。企业知识库:通过管理端构建企业知识库后,员工可以基于企业知识库进行问答,知识库作为企业内部知识共享平台,促进不同团队和部门底座自动化知识工程特性,使其在处理和分析数据方面具有显著优势,允许用户上传文档、表格、图片等多源数据,并支持与外部数据源对接,使用户能够构建属于自己专属领域模型。这一创新功能极大地扩展了模型应用范围和深度,用户可基于自身私域知识库进行更为个性化和深入数据分析。
语言模型什么意思?语言模型是通过深度学习技术,在规模文本语料库上训练而成人工智能模型。这些模型具备对自然语言进行理解、生成和处理能力,并能够在各种任务中表现出较高水平。语言模型可以企业打造自己专属模型星环科技在行业内首先提出行业大模型应用创新场景,推出相应工具,帮助企业构建自有的行业大模型,通过大模型基础设施,形成具备“新型人机交互”且“敏捷可持续迭代“人工智能应用。为了帮助企业用户基于模型构建未来应用,星环科技推出了SophonLLMOps,帮助企业构建自己行业大模型。除此之外,星环科技在行业首先推出了两行业大模型:服务于金融行业星环金融模型无涯,以及数据分析模型SoLar“求索”。理解人类自然语言输入,并根据输入内容生成语义上相关输出。通过学习大量文本数据,语言模型可以获得对语言结构、语法、语义等方面的深入理解。语言模型在各类自然语言处理任务中都可以发挥作用,比如机器翻译、文本摘要、问答系统等。能够帮助人们解决复杂语言问题,提供相关信息和见解,甚至可以进行对话交流。语言模型基本原理是通过深度学习技术,通过多层神经网络去建模语言统计规律和潜在语义信息。语言
什么是大型语言模型?大型语言模型是一种利用深度学习技术训练出来规模自然语言处理模型。它具有巨大模型参数和能力,可以自动学习语言规则、模式和语义,从而能够生成连贯、准确文本。大型语言模型业内首先提出行业大模型应用创新场景,推出相应工具,帮助企业构建自有的行业大模型,通过大模型基础设施,形成具备“新型人机交互”且“敏捷可持续迭代“人工智能应用。为了帮助企业用户基于模型构建未来应用,星环科技推出了SophonLLMOps,帮助企业构建自己行业大模型。具体来看,它解决了客户三个核心痛点:第一,提供一站式工具链,帮助客户从“通用语言模型”训练/微调,得到“满足自身业务特点领域语言模型”;第二,帮助客户将原型语言模型应用,成功在实际生产中投入应用;第三,帮助客户运营在生产中应用语言模型模型持续提升。除此之外,星环科技在行业首先推出了两行业大模型:服务于金融行业星环金融模型无涯,以及数据分析模型SoLar“求索”。广泛应用于自然语言处理、机器翻译、文本生成等领域。大型语言模型训练过程通常需要使用大量文本数据,例如互联网上规模文本语料库。通过深度学习方法,模型可以从这些数据中学习到语法结构、词汇选择和语义
。长话短说,故事正式开始什么是图数据库?从前,有个男人叫小帅,他有个弟弟小强,他们有个漂亮邻居小美,他们三个在同一所学校读书。小帅喜欢小美,小强也喜欢小美,但小美不喜欢小强,小美喜欢的人是小帅速度更快。图数据库优势小美有个闺蜜漂亮,漂亮喜欢小帅弟弟小强。于是小帅和小美想撮合小强和漂亮,他们给小强和漂亮制造了很多相处机会。经过一段时间相处,小强逐渐对漂亮产生了好感。我们数据库在数据关联关系查询中具有更高性能。传统关系型数据库多个表之间连接操作、外键约束,导致较大额外开销。而图模型固有的数据索引结构,使得它数据查询与分析速度更快。灵活性:从漂亮这个实体以及其关系很:使用图模型进行数据存储,可以针对图数据做优化,从而带来更好性能。非原生图数据库:底层存储使用非图模型进行存储,在存储之上封装图语义,进行图处理,其优点是易于开发,适合产品众多大型公司,形成相互配合近年来图数据库越来越火,讨论话题也越来越多,但很多小伙伴还不清楚图数据库到底是个啥?和传统关系型数据库有什么区别?具体又有什么特点?通过有个男人叫小帅故事来给大家通俗易懂地介绍下什么是图数据库
模型,全称为大型语言模型(LargeLanguageModel,LLM),是人工智能领域中一种关键技术。随着计算能力提升和数据量激增,模型已经成为AI研究和应用新焦点。模型特点模型,从而在自然语言处理任务上展现出强大性能。模型不仅限于语言理解,还可以扩展到跨模态应用,如图像生成、语音识别等。模型应用领域模型广泛应用于智能助手、自动问答系统、内容生成、机器翻译、代码编写等拥有从语料到模型再到应用完整AIInfra工具集,覆盖语料开发和管理、模型训练与持续提升、多模态知识工程、多模知识存储与服务、原生AI应用构建编排和应用服务等重要阶段,提供提示词工程、检索增强、智能体构建等模型应用快速构建和提升、模型推理优化、模型安全和持续提升技术。通过星环科技AIInfra工具,企业能够准确、高效地将拥有的多种来源多模语料转换为高质量专业领域知识,并且源源不断是通过训练海量数据(包括但不限于文本、图像等)和使用复杂深度学习架构(如Transformer)构建神经网络模型。这些模型通常拥有数十亿甚至数千亿参数,使得它们能够学习到更丰富语言模式和知识
什么是通义模型?通用语义模型是一种基于深度学习技术,包含大量参数、在某些人工智能任务上具有通用性和泛化能力深度学习模型。这些模型通常使用大量数据进行训练,采用预训练和微调方法,可以在各种星环科技在行业内首先提出行业大模型应用创新场景,推出相应工具,帮助企业构建自有的行业大模型,通过大模型基础设施,形成具备“新型人机交互”且“敏捷可持续迭代“人工智能应用。为了帮助企业用户基于模型构建未来应用,星环科技推出了SophonLLMOps,帮助企业构建自己行业大模型。具体来看,它解决了客户三个核心痛点:第一,提供一站式工具链,帮助客户从“通用语言模型”训练/微调,得到“满足自身业务特点领域语言模型”;第二,帮助客户将原型语言模型应用,成功在实际生产中投入应用;第三,帮助客户运营在生产中应用语言模型模型持续提升。除此之外,星环科技在行业首先推出了两行业大模型:服务于金融行业星环金融模型无涯,以及数据分析模型SoLar“求索”。自然语言处理任务上达到在任务特定语料上训练模型以上性能。通用语义模型旨在解决自然语言处理中通用性问题,如推理、情感分析、阅读理解等。通用语义模型虽然可以高效地解决很多自然语言处理任务,但是要
是图数据库。长话短说,故事正式开始什么是图数据库从前,有个男人叫小帅,他有个弟弟小强,他们有个漂亮邻居小美,他们三个在同一所学校读书。小帅喜欢小美,小强也喜欢小美,但小美不喜欢小强,小美喜欢的人数据查询与分析速度更快。图数据库优势小美有个闺蜜漂亮,漂亮喜欢小帅弟弟小强。于是小帅和小美想撮合小强和漂亮,他们给小强和漂亮制造了很多相处机会。经过一段时间相处,小强逐渐对漂亮产生发现,图数据库在数据关联关系查询中具有更高性能。传统关系型数据库多个表之间连接操作、外键约束,导致较大额外开销。而图模型固有的数据索引结构,使得它数据查询与分析速度更快。灵活性:从漂亮这个实体数据库:使用图模型进行数据存储,可以针对图数据做优化,从而带来更好性能。非原生图数据库:底层存储使用非图模型进行存储,在存储之上封装图语义,进行图处理,其优点是易于开发,适合产品众多大型公司近年来图数据库越来越火,讨论话题也越来越多,但很多小伙伴还不清楚图数据库到底是个啥?和传统关系型数据库有什么区别?具体又有什么特点?那今天小编将通过有个男人叫小帅故事来给大家通俗易懂地介绍下什么
什么是通用模型?通用模型是指能够处理多领域、多任务规模预训练模型。这些模型通过在丰富数据集上进行预训练,能够学习到更广泛知识和语言表示能力,通常具有更好语义理解和生成能力。通用模型模型星环科技在行业内首先提出行业大模型应用创新场景,推出相应工具,帮助企业构建自有的行业大模型,通过大模型基础设施,形成具备“新型人机交互”且“敏捷可持续迭代“人工智能应用。为了帮助企业用户基于模型构建未来应用,星环科技推出了SophonLLMOps,帮助企业构建自己行业大模型。具体来看,它解决了客户三个核心痛点:第一,提供一站式工具链,帮助客户从“通用语言模型”训练/微调,得到“满足自身业务特点领域语言模型”;第二,帮助客户将原型语言模型应用,成功在实际生产中投入应用;第三,帮助客户运营在生产中应用语言模型模型持续提升。除此之外,星环科技在行业首先推出了两行业大模型:服务于金融行业星环金融模型无涯,以及数据分析模型SoLar“求索”。设计旨在解决传统模型面临领域依赖性、规模限制和任务特定训练需求等问题。它们可以用于多领域文本分类、命名实体识别、句子关系识别、情感分析等任务。星环科技提供模型训练工具,帮助企业打造自己专属
什么是语言模型?语言模型是指基于深度学习规模神经网络模型,用于自然语言处理任务。这些模型被训练来理解和生成人类语言,并具有广泛语言理解和生成能力。语言模型通常由多层神经网络组成,包括输入,推出相应工具,帮助企业构建自有的行业大模型,通过大模型基础设施,形成具备“新型人机交互”且“敏捷可持续迭代“人工智能应用。为了帮助企业用户基于模型构建未来应用,星环科技推出语言模型应用,成功在实际生产中投入应用;第三,帮助客户运营在生产中应用语言模型模型持续提升。除此之外,星环科技在行业首先推出了两行业大模型:服务于金融行业星环金融模型无涯,以及数据分析模型SoLar“求索”。层、隐藏层和输出层。输入层将文本转化为数值向量表示,隐藏层通过学习文本内在表示来提取语义信息,输出层根据任务不同进行相应计算。语言模型应用非常广泛,包括自然语言理解、机器翻译、问答系统、文本生成等。通过使用语言模型,可以改善和加强这些应用性能,并提供更准确和流畅自然语言处理能力。星环科技提供模型训练工具,帮助企业打造自己专属模型星环科技在行业内首先提出行业大模型应用创新场景
星环科技分布式隐私计算平台SophonP²C集多方安全计算、联邦学习等多种功能,为隐私计算提供完整的解决方案,以隐私保护为前提,解决了跨组织协作时无法安全利用各方数据的困境。平台支持联邦学习、多方安全计算、匿踪查询等功能;性能方面,联邦学习与多方安全计算可达亿级数据量,助力数据要素安全流通和价值迸发,实现数字经济时代下的跨企业和行业的AI协作。星环科技的隐私计算技术已落地如数据流通、政务民生、金融营销等垂直业务场景,为跨企业数据协作提供安全可信的平台支持。在政务民生场景,SophonP²C通过纵向联邦学习联合居民用电数据与用水数据,生成群租房预测名单。在联合建模过程中,全程明文数据不出,有效保护了居民用水用电的数据隐私信息。联合训练模型比本地单独用电数据训练的模型AUC提升20%以上,赋能政务决策高效的处理分析能力,为政府有效排查群租房,消除群租房造成的消防、安全隐患,打造和谐、安全、美丽的生活环境作出了突出贡献,为政务决策、民生建设发挥信息化支撑保障作用。在精准营销场景,通过纵向联邦学习,车企安全引入了多方数据,丰富用户特征维度,对用户行为进行统计分析。在联合建模过程中,全程明文数据...
星环科技致力于打造企业级大数据基础软件,基于在大数据、分布式数据库、隐私计算、数据安全流通领域有着多年积累,研发了数据要素流通全过程的一系列工具,在各方数据不出域的前提下,为数据资源方和数据消费方提供数据交付服务。2022年9月星环科技曾受邀出席“深数交”数据合规活动,分享数据安全出境解决方案。2021年星环科技成为上海数据交易所首批签约数商。2022年12月星环科技与中国东信旗下北部湾大数据交易中心达成了战略合作。伴随数字经济蓬勃发展,融入全球数据跨境流动的趋势不可避免。数据出境安全治理受到广泛重视,为进一步规范数据出境活动,保护个人信息权益,维护国家安全和社会公共利益,促进数据跨境安全,国家互联网信息办公室发布了《数据出境安全评估办法》。国内运营的外企(尤其是零售、化工等)、新能源汽车以及生态企业(含自动驾驶等)、国际化企业与出海企业、跨境电商和物流、有融资需求的基于数字化做业务创新的创业公司等是国内迫切需要落实数据安全出境的企业。然而企业在落地数据出境安全方面存在一些实际困难,主要体现在:错综复杂的数据如何分类分级,如何识别重要数据;重要数据如何存储和管理,才能达到相关法律法规的...
新时代需要新技术,企业应抓住机遇实现旧平台的改造升级数据库技术经过不断的发展,已经从以Oracle、IBM为代表的集中式数据库,演进到分布式、多模型、云原生的形态,并在很多场景应用落地,带来了真实的业务价值。当前得益于国家政策的大力扶持以及国内市场环境的快速发展,国产软件加速发展,国产化替代进程正在不断加速。自主可控是国产化替代的核心,同时也是一个阶段性的目标。我们不应该满足于此,应该抓住国产化改造的机遇,用新技术去替代老技术,实现自主可控的同时,完成旧系统的改造升级,这也是信创的主旨。星环科技致力于打造企业级大数据基础软件,围绕数据全生命周期提供基础软件与服务,在分布式技术、多模型技术、数据云技术等方面有很多技术突破。比如大数据基础平台TDH是全球首个通过TPC-DS基准测试的产品;提出了创新的多模型统一技术架构,支持业内主流的10种数据模型,Gartner®发布的中国数据库技术发展趋势报告引用星环科技多模型联合分析用例,论证了多模型融合分析的趋势和价值。基于多年积累的分布式技术、多模型统一技术、数据云技术等,星环科技打造了分布式数据库ArgoDB、分布式交易型数据库KunDB、分布...
图数据库是现代数据库系统中的一种,它主要的特点就是使用了图论的概念来进行数据管理。传统的关系型数据库通常是基于表和列的结构进行数据管理,而图数据库则是构建了节点和边的图形结构,可以更好的表示现实世界中的复杂关系。下面是图数据库的几个主要特点:1.基于图形结构:图数据库是基于图形结构来进行数据管理的。它通过节点和边来构建数据的表示形式,使得数据之间的关系和结构更加直观和清晰。这对于处理关联复杂、数据关系复杂的场景具有重要意义。2.高效地关系查询和分析:图数据库具有高效的关系查询和分析能力。对于一个大规模的图,传统的SQL查询方式显然不能满足查询时间的要求。而图数据库则可以通过图数据库内部的算法来进行实时的查询和分析。尤其是针对一些复杂的图分析算法,图数据库更能够快速地获得结果,提高查询速度。3.可扩展性:由于采用了分布式的技术设计,使图数据库的可扩展性极佳。当需要管理的数据量增加时,图数据库可以通过简单的集群扩展方式来实现性能的提升。而且,图数据库的分布式能力也可以让其在多个节点上进行操作,提高了系统的容错能力和加载能力。4.元素和关系度量:图数据库具有丰富的元素数据和关系数据量度方式。...
时空数据库(Spacial-temporaldatabase)是一种专门用于存储和管理时空数据的数据库管理系统,它是传统关系型数据库的一个扩展,可以实现对时空数据进行有效管理和处理。时空数据是指带有时空坐标或时间戳的数据,例如地图、气象数据、交通、城市规划等。因此,时空数据库可以用于多种应用程序,如地理信息系统、航空航天、气象预报、GPS导航等。时空数据库与传统数据库不同的是,它提供了额外的功能和数据类型,例如点、线、面等空间对象和时间序列数据类型。此外,时空数据库还支持空间查询和时空查询,例如常见的缓冲区查询,使得用户可以在时空范围内进行查询和分析。这种数据库可以对时空数据进行高效的存储、查询、更新和分析,并通过插件技术集成其他地理信息数据源。星环分布式时空数据库-SpactureSpacture是星环科技自主研发的一款面向空间、时空数据的存储与管理,集计算与存储为一体的分布式数据库产品,支持大规模矢量数据、时空轨迹数据的存储与计算,具有完备的数据查询、分析和挖掘能力,可用于时空查询分析、时空模式挖掘、时空轨迹聚类等时空轨迹数据分析场景,广泛应用于交通物流、城市管理、位置服务等场景。
图数据库有许多适用场景,常见的应用场景有:社交媒体:社交媒体中的用户和关系可以建模为图结构。用图数据库来管理和查询这些社交数据,可以实现更精确的社交关系分析。金融:在金融领域中,图数据库可以用于合规风控、反欺诈、投资和信贷决策等众多场景。例如,通过在图中存储和分析不同实体(如银行账户、信用卡、电话、邮箱、运单等)之间的关系,可以准确识别欺诈降低风险。物流和运输:物流和运输领域也是图数据库的应用场景之一。例如,通过在图中存储城市、仓库、货物、运输路线等信息,可以进行物流管理、运输计划优化、货物追踪等任务。生命科学:在生命科学领域,图数据库可以用于存储和分析复杂的基因、蛋白质、代谢物等数据,帮助科学家发现新的治疗方法和疾病机制。游戏:游戏开发者可以使用图数据库来管理玩家角色、各种装备、地图、任务等复杂的游戏数据,实现更好的游戏体验。图数据库的灵活性和高效性使其在多个领域都有着广泛的应用。星环分布式图数据库StellarDB星环科技致力于打造企业级大数据基础软件,围绕数据的集成、存储、治理、建模、分析、挖掘和流通等数据全生命周期提供基础软件与服务,在图计算领域深耕多年,自主研发了分布式图数据...
银行图数据库的应用场景:反洗钱:图数据库可以将可疑交易数据存储于其中,帮助银行更快速地提取、分析与关系,识别出潜在的洗钱行为。客户关系管理:银行图数据库可以将客户的不同信息(如交易记录、信用评级、客户所在地和行业等)进行整合,并将这些信息在一个数据仓库中呈现出来。这使得银行能够更加精准地分析客户需求,提供更加符合客户需求、更加优质的服务。风险管理:银行是一个与风险息息相关的行业。图数据库可以帮助银行对相关风险进行整合和分析。通过解析大量的金融数据,图数据库可以找出潜在的风险点,提前控制风险。数字化转型:图数据库能够将社交网络、收集的数据等信息关联起来,并创造性地开拓新业务模式。除了与客户密切相关的业务领域,图数据库还能够在支持业务流程优化方面发挥重要作用。营销:银行可以使用图数据库来收集客户数据、行为数据等,这样可以更加精确地预测客户习惯,对客户进行更加细致的营销和服务。银行图数据库有着广泛的应用场景,可以在多个角度上支持银行的业务发展,提高服务的质量和效率。星环分布式图数据库StellarDB星环科技致力于打造企业级大数据基础软件,围绕数据的集成、存储、治理、建模、分析、挖掘和流通等...
数据要素是数字经济发展的关键生产要素,是数字经济发展的基础。加快培育数据要素市场是全面建设社会主义现代化国家的一项基础性工作,对推动经济高质量发展、建设数字中国和数字强省、促进经济社会数字化转型具有重要意义。星环科技致力于打造企业级大数据基础软件,围绕数据全生命周期提供基础软件与服务。基于在大数据、分布式数据库、隐私计算、数据安全流通领域的多年积累,星环科技研发了数据要素流通全过程的一系列工具,在各方数据不出域的前提下,为数据资源方和数据消费方提供数据交付服务。2021年星环科技成为上海数据交易所首批签约数商。2022年9月星环科技曾受邀出席“深数交”数据合规活动,分享数据安全出境解决方案。2022年12月星环科技与中国东信旗下北部湾大数据交易中心达成了战略合作。星环科技在产品的各层级上都完善了安全技术,从而可以给用户提供体系化的数据安全防护能力,助力企业高效、合规的开展数据流通业务。在基础设施层,星环科技提供基于容器的云原生操作系统TCOS,它不仅能够提供容器隔离和镜像扫描,还新增了漏洞检测以及面向业务的微隔离安全技术,从而可以为用户开辟一个独立的数据与计算环境,外部的服务未经授权无...
星环科技图数据库StellarDB是国产高性能图数据库,采用分布式架构和原生图计算引擎,支持超大规模数据管理和高效的图计算。TranswarpStellarDB具有以下特点:原生图存储:StellarDB为数据存储设计了专有的图存储结构,优化查询性能,通过高效的压缩算法减少磁盘和内存的使用量。根据分区策略,图数据均匀分布于集群各节点。优越的性能:存储引擎和计算引擎结合,使计算引擎可以利用数据locality提升计算性能,拥有卓越的数据读写能力,支持大规模并行处理,毫秒级的查询响应。高扩展性:完全的分布式架构,具有良好的可扩展性,支持在线扩容和升级。拥有万亿级图数据处理能力,支持数据多副本,提供集群高可用和高可靠。灵活的查询方式:计算引擎支持灵活易懂的图查询语言TranswarpExtended-OpenCypher,拥有丰富的图操作语法。同时提供SQL支持,多模场景灵活切换。深度分析能力:支持10层及以上的图深度遍历和复杂分析。丰富的算法库:内置丰富的算法库,几十种图算法开箱即用,优化的分布式并行图算法,千万级子图计算效率达到行业先进水平。企业级功能:支持用户权限认证、集群状态监控、日...
垂直领域知识图谱产品主要用于面向特定领域知识应用需求,通过构建和应用知识图谱解决对应领域的专业问题。目前,知识图谱在智慧医疗与智慧金融领域已取得了一系列成功实践,被应用于辅助医生、药物发现、临床科研、风险防控、内部监管、投资研究、保险理赔等众多实际业务场景,并涌现出了一批知识图谱产品或服务平台。星环科技自主研发的知识图谱平台Sophon正是一款覆盖知识全生命周期,集知识的采集、建模、融合、存储、计算及应用为一体的知识图谱产品。平台支持低代码图谱构建、智能化知识抽取、多模态知识存储与融合、多形式知识计算和推理以及多维度的图谱分析。除了具备链路完备性,平台还从业务场景出发,沉淀了金融、保险等场景的图数据模型、规则模型和算法模型,可以帮助用户快速解决不同场景下的业务问题。目前,星环科技Sophon已经在金融等多个行业成功落地,在反洗钱、反欺诈、疫情防控、公共安全、企业级营销、保险知识智能问答等场景有着广泛的应用。同时星环科技在推动知识图谱技术创新和成功落地的过程中,也获得了多项荣誉和权威认可:入选Gartner《MarketGuideforArtificialIntelligenceStar...