大模型 大数据

行业资讯
大数据模型
大数据模型是指利用大数据技术构建的,从海量数据中提取有价值信息的数学模型。以下是关于它的详细介绍:目的与作用挖掘信息价值:大数据模型旨在从海量、多样、快速增长的数据中,通过特定的算法和技术,提取、预警系统等。常见类型预测模型:用于预测未来的趋势或行为,例如时间序列分析模型可对未来的销售数据、股价走势等进行预测;回归模型能根据自变量预测因变量的取值。描述模型:用于解释现有数据的规律或特征,像聚类模型将数据分成不同的群体,以发现数据集中的内在结构和规律;关联规则模型用于发现数据之间的关联关系。应用场景金融领域:用于信用评估、风险控制、投资决策等,如通过分析客户的交易记录、信用记录等数据,评估客户的出隐藏在其中的有价值信息和知识,比如消费者的购买偏好、疾病的发病模式等。支持决策优化:依据对数据的分析和理解,为企业、组织或个人提供决策支持,辅助制定更科学、合理的策略,如企业的市场推广策略、医院的治疗方案等。实现预测与推荐:通过学习历史数据中的模式和规律,对未来的趋势、事件或行为进行预测,或者为用户提供个性化的推荐内容。技术实现环节数据采集与存储:从各种数据源,如传感器、社交媒体、日志文件、医疗设备
大模型 大数据 更多内容

行业资讯
大数据模型
解锁大数据模型:从原理到应用的全面解析一、大数据模型是什么(一)定义与概念大数据模型,简单来说,就是利用大数据技术构建的,从海量数据中提取有价值信息的数学模型。在当今数字化时代,数据如同源源不断的洪流,以惊人的速度产生和积累。这些数据涵盖了我们生活的方方面面,从日常的网络购物记录、社交媒体上的互动,到企业的运营数据、科研机构的实验数据等等。大数据模型就像是一位智慧的“数据探险家”,深入到这浩如烟海的数据之中,通过各种算法和技术手段,挖掘出隐藏在其中的规律、模式和趋势,将看似杂乱无章的数据转化为具有实际价值的信息,为决策提供有力的支持。(二)分类与特点大数据模型主要可以分为预测模型和描述模型这两类,它们如同大数据世界中的两大支柱,各自发挥着独特而重要的作用,共同支撑起大数据应用的广阔天空。预测模型,如其名,是用于预测未来的趋势或行为的模型。它就像一位神奇的“预言家”,借助历史数据和各种复杂、大数据模型的优势(一)精准预测与决策支持在当今竞争激烈的商业环境中,大数据模型凭借其强大的数据分析能力,为企业提供了精准的预测和决策支持,成为企业在市场浪潮中破浪前行的有力武器。(二)个性化服务与体验

行业资讯
国内大模型产品
定制开发,提供知识构建、知识建模、知识问答系统构建等服务。星环求索大数据分析大模型-TranswarpSoLar大数据分析大模型SoLar“求索”是一款针对大数据行业全生命周期各种场景的大数据领域大模型。它可以衍生出许多子领域子任务微调大模型。“求索”大模型具备大数据行业需求理解、推理、各类(含多模型)结构化查询语言和代码生成、文本生成、嵌入向量生成、知识推理等能力;用户只需使用自然语言,就能利用“求索”大模型获取所需的数据分析、展示和报告。星环大模型相关产品星环无涯金融大模型-TranswarpInfinity针对智能投研领域特定的业务逻辑,星环科技通过预训、提示、增强、推导范式的构建,实现Financial-Specific-LLM的训练,推出了金融行业智能投研大模型无涯Infinity。星环科技基于大模型的事件驱动与深度图引擎,实现对事件语义刻画、定价因子挖掘、时序编码、异构关系图卷积传播,进而构建包含事件冲击、时序变化、截面联动和决策博弈等多个维度的智能投研新范式。星环大语言模型运营平台-SophonLLMOps为了帮助企业用户基于大模型构建未来应用,星环科技推出了大模型持续提升和开发工具SophonLLMOps,实现

行业资讯
大数据模型,大数据模型有哪些应用场景?
大数据模型是指利用大数据技术,通过数据预处理、数据挖掘等步骤,从海量数据中提取有价值信息,构建数学模型来描述业务需求和模式。大数据模型应用场景:大数据模型广泛应用于金融投资、市场营销、风险管理等多个领域。例如,通过NLP大语言模型进行主题数据分析,以辅助投资决策;在监管领域,大数据监督模型用于纠正不当处罚,提升执法效率。大数据模型是通过数学化的方法从大量数据中提取价值信息,服务于业务决策和模式理解。学习和应用这些模型需要深厚的理论基础和实践经验,并且随着技术进步,其应用场景不断扩展,对各行各业的决策支持作用日益增强。同时,随着数据安全问题的凸显,相关保护措施也在不断发展和完善。

行业资讯
大模型和小模型
大模型通常指使用大规模数据和强大的计算能力训练出来的具有大量参数的模型,是“大数据+大算力+强算法”结合的产物,参数量可达数十亿甚至数千亿。小模型参数量相对较少的深度神经网络模型,计算需求低,体积小,训练和推理速度快。特点大模型:强大的性能和泛化能力:能够更精确地拟合复杂的数据分布,在自然语言处理、图像识别、语音识别等复杂任务上展现出更出色的性能和准确度,可适应一系列不同类型的任务。高预测能力:能在大数据集上捕捉更多细节和模式,从而提供更准确的预测和决策支持。训练和推理成本高:由于参数量巨大,训练时间长,需要大量的时间和计算资源投入,对硬件要求高,部署和维护成本也较高,包括计算资源、存储空间以及专业人员的维护费用等。小模型:轻量化和高效性:参数量少,计算需求低,训练和推理速度快,可在资源有限的设备和环境中使用,如移动设备、嵌入式系统等,适合对实时性要求高的应用,能够快速响应。低成本:训练

行业资讯
领域大模型
开发和训练工具及向量数据库,星环科技率先推出了金融和大数据分析两款领域大模型,并成功实现了AI助理在企业落地的愿景。金融大模型星环“无涯”是一款面向金融量化领域的生成式大语言模型,具备超大规模的参数集合,构建立体的归因解释体系。金融领域大模型还能够从时间和空间、深度和广度等多个方面扩展投资研究的视角,实现全新的智能智能投研范式。另一款领域大模型是大数据分析大模型SoLar星环“求索”,它具备自然语言描述涉及多种数据模型的复杂业务需求的能力。该模型采用THD特有的“多模型”技术,能够对不同模态(如图数据、文本数据、结构化数据)的数据进行关联分析和展示。大数据分析大模型使用海量的SQL编译语料量。该模型采用上百万研报、公告、政策、新闻等高质量的自然语言文本进行预训练,并基于图数据库和深度图推理算法技术进行二次预训练,形成了大规模高质量的金融类事件训练指令集。相较于通用大模型,金融大模型更加领域大模型是一种针对特定领域或行业的大规模语言模型,通过训练大规模语料库来提高在特定领域的表现。随着大模型技术的快速发展,领域大模型已经成为推动人工智能发展和企业数字化转型的重要力量。结合大模型持续

行业资讯
国内大模型公司
大模型时代的到来,给软件开发行业带来了巨大的变革,企业需要一个工具链来开发大模型。星环科技作为国内领先的大数据基础软件开发商,打造数据管理平台的多模态、智能化、敏捷化和平民化产品。为帮助企业构建自己科技还推出了无涯金融大模型Infinity、大数据分析大模型SoLar“求索”,促进金融分析和大数据分析的平民化。星环科技将自主研发的领先创新技术赋能各行各业,与生态伙伴共同打造国产化大数据技术生态的降本增效与科技创新。求索具备大数据行业需求理解、推理、各类(含多模型)结构化查询语言和OpenCypher代码生成、文本生成、嵌入向量生成、知识推理等能力。借助这一领域大模型,企业的业务人员、数据的大模型,星环科技推出了机器学习模型全生命周期管理的工具平台SophonLLMOps,支持从数据接入开发、提示工程、大模型微调、上架部署到应用编排和业务效果对齐的全链路流程,结合自研向量数据库Hippo和分布式图数据库StellarDB,能够赋予大模型“长期记忆”,打破通用大模型的时空限制,用户可以快速便捷地构建深谙企业自有专业领域知识的垂直行业大模型,从而让每个人都拥有个性化AI助理。同时星环

行业资讯
大数据模型平台
大数据模型平台是一种集成了数据处理、模型构建、训练、评估和部署等多种功能的综合性软件平台。它以大数据为基础,通过运用各种数据挖掘、机器学习、深度学习等算法构建模型,为企业或组织提供数据分析、预测,让数据科学家和开发人员能够方便地选择算法,设置模型参数,并使用预处理后的数据集对模型进行训练。在训练过程中,可以利用分布式计算框架加快训练速度,尤其是对于大规模数据集。超参数优化:支持对模型的超参数记录、重复记录)、处理缺失值(如填充或删除)和异常值(如通过统计方法识别并修正)。同时进行数据标准化、归一化等预处理操作,使数据符合模型训练的要求。特征工程:从原始数据中提取、选择和构造对模型有意义的特征。这可能包括数据转换、特征组合和特征降维等操作。在信用风险评估模型中,可能会将用户的收入、负债、信用记录等特征进行组合和筛选,以提高模型的预测能力。模型构建与训练层算法库集成:包含丰富的机器学习和深度学习率、F1-分值、均方误差、平均绝对误差、轮廓系数等。这些指标可以帮助用户全面评估模型的性能。交叉验证:采用交叉验证技术来评估模型的稳定性和泛化能力。将数据集分成K个子集,轮流将其中一个子集作为验证集

行业资讯
大模型产品
大模型时代的到来,给软件开发行业带来了巨大的变革,企业需要一个工具链来开发大模型。星环科技作为国内领先的大数据基础软件开发商,积极应对以ChatGPT为代表的人工智能带来的新挑战,打造数据管理平台的领域大显身手,有力辅助分析师、研究员和投资经理的日常工作,帮助企业更好地应对复杂的市场环境和业务需求,持续促进整体行业的降本增效与科技创新。星环求索大数据分析大模型-TranswarpSoLar星环大数据分析大模型SoLar,具备自然语言描述涉及多种数据模型的复杂业务需求的能力。该模型采用THD特有的“多模型”技术,能够对不同模态(如图数据、文本数据、结构化数据)的数据进行关联分析和展示。大数据多模态、智能化、敏捷化和平民化产品。星环大语言模型运营平台-SophonLLMOps为帮助企业构建自己的大模型,星环科技推出了机器学习模型全生命周期管理的工具平台SophonLLMOps,支持从数据接入开发、提示工程、大模型微调、上架部署到应用编排和业务效果对齐的全链路流程,结合自研向量数据库Hippo和分布式图数据库StellarDB,能够赋予大模型“长期记忆”,打破通用大模型的时空限制,用户

在大数据领域探索、积累长达10年的星环科技,基于在SQL编辑器的多年积累,结合大语言模型,推出了星环科技大数据分析大模型SoLar求索。用户可以通过自然语言,生成可成功执行的SQL或Cypher,可以使用自然语言描述业务需求,方便对多张数据表进行关联,并使用各种星环科技大数据分析平台提供的函数进行分析计算,让数据库查询平民化。其次,可以使用自然语言描述涉及多种数据模型的复杂业务需求,借助星环科技大数据平台特有的多模型技术,对不同模态如图数据、文本数据、结构化数据等的数据进行关联分析和展示。同时,为了保障生产可用和避免大语言模型的“幻觉”问题,星环科技Solar求索还为客户提供了交互式数据,从而快速获取查询的结果,能够快速降低用户的使用门槛。星环科技此次发布的SoLar求索,将作为数据查询和分析的智能副手,为数据工程师、数据科学、业务人员等提供更好的使用体验。这些非大数据分析的专业用户,可以利用SoLar求索,在不需要学习和掌握数据库编程语言的前提下,可以使用自然语言自由地按需查询数据。星环科技的数据分析大模型SoLar求索包含多个数据分析大语言模型。本次展示的是自然语言进行数据
猜你喜欢

行业资讯
数据安全实践案例
近年来,企业数据安全问题的重要性被提上了前所未有的高度。星环科技提供了从云基础设施、数据平台、数据资源、数据应用的数据安全能力。覆盖数据生命周期的各个阶段,涉及数据的收集、存储、使用、加工以及开放流通。全方位保障企业的数据安全,支撑业务合法合规的开展。星环科技凭借全面的数据安全能力助力某支付机构构建安全防线的落地实践。该支付机构拥有大量数据资产,目前机构面临着较大的挑战,需要加强数据安全管理,为此,机构决定与星环科技合作,利用星环科技的技术来提升数据安全管理能力,共同打造一个基于隐私计算的数据服务平台DaaS。根据客户需求,星环科技在基础设施层提供了基于容器的云原生操作系统TCOS,可以为用户提供独立的数据与计算环境,减少数据对外暴露的风险。在数据平台层,星环科技大数据基础平台TDH新版本增强了安全技术,支持行列级权限控制、动态脱敏等。在数据资产层,星环科技借助两款新产品:数据安全管理平台Defensor帮助企业构建整个数据安全管理域及数据流通平台Navier:包含隐私计算平台SophonP²C和数据交易门户datamall,提供包括联邦学习和差分隐私等技术能力。该支付机构的数据管理平...

行业资讯
电力行业数字化转型服务商
星环科技致力于打造企业级大数据基础软件,具备大数据与云基础平台、分布式关系型数据库、数据开发与智能分析工具的软件产品矩阵,多年来深耕电力领域,覆盖电力产业“发-输-变-配-用”五大环节,为推动电力行业数字化转型做出了重要贡献。在国网上海电力智能配用电大数据应用系统建设项目中,基于星环科技大数据基础平台TDH构建的智能配用电大数据应用系统汇集了浦东1210平方千米的236万户的用电数据,高负荷738万千瓦,年用电量329亿度,占上海全网四分之一。集成的内外部数据源有10个,整个数据量到现在已经接近8个T了,台账的数据总量有29.14万条。在多元数据集成及大数据平台基础之上,应用系统实现了用电查询,电力地图等基础功能及用户用电行为分析,节电用电预测网架优化和错峰调度等业务应用。基于多源异构数据的关联解析,和海量用电负荷实际数据存储、索引,实现了用电查询的基础应用,包括230万用户,26000个台区,4000余中压馈线的基本台账及用电数据的快速查询,并可以进行用户用电画像、地图定位、供电范围等数据的查询,服务响应时间在三秒以内。此前,星环科技还曾凭借《星环科技电力智慧供应链智能决策平台建设方...

行业资讯
什么是分布式时空数据库?
时空数据库时空数据库是一种针对时空数据处理的数据库系统。它以时间和空间为基础,整合了空间信息和时间信息,能够对时空数据进行存储、查询和分析。时空数据库广泛应用于交通运输、城市规划、GIS等领域。分布式时空数据库分布式时空数据库是一种对时空数据进行存储和处理的数据库系统,通过分布式存储和分布式计算等技术,可以实现对大规模时空数据的高效处理和分析。与传统的集中式数据库系统不同,分布式时空数据库将数据存储在多个存储节点上,并将计算任务分配给多个计算节点来完成,从而极大地提高了时空数据的处理能力和可靠性。分布式时空数据库的出现,使得处理大规模时空数据成为了可能,也更好地满足了各个领域对时空数据深度分析的需求。星环分布式时空数据库-TranswarpSpactureSpacture是星环科技自主研发的一款面向空间、时空数据的存储与管理,集计算与存储为一体的分布式数据库产品,支持大规模矢量数据、时空轨迹数据的存储与计算,具有完备的数据查询、分析和挖掘能力,可用于时空查询分析、时空模式挖掘、时空轨迹聚类等时空轨迹数据分析场景,广泛应用于交通物流、城市管理、位置服务等场景。

行业资讯
省市级碳排放监测服务平台建设方案
双碳目标下,全国碳排放监测服务平台启动建设力争2030年前实现碳达峰、2060年前实现碳中和,我国明确提出“双碳”目标,充分彰显了在构建人类命运共同体进程中的大国担当。国家电网公司主动担当重要使命,提出“实现双碳目标,能源是主战场,电力是主力军,电网是排头兵”的战略部署,率先行动,发布《全国碳排放监测服务平台建设工作方案》。“双碳”目标的实现离不开科技支撑。《全国碳排放监测服务平台建设工作方案》指出,全国碳排放监测服务平台建设的总体目标是以电网数字化赋能和助力国家碳达峰碳中和,实现“电力看双碳”,“双碳看经济”,为国家碳排放统计核算体系建设、宏观调控政策制定、经济社会全面绿色转型发展等工作提供决策支持。平台建设需要解决以下问题:以数字化平台技术解决各省的地市、区县、重点行业碳排放数据维度不全面、核算方法不完善、碳核算体系不统一等方面的问题;强化数据应用,发挥好决策支撑作用,深挖电力大数据价值,开展“电力看环保”“电力看经济”等大数据应用。积极响应号召,星环科技打造碳排放监测服务平台解决方案星环科技作为大数据基础软件领域的代表性企业,有着高度的责任感和使命感,为响应“全国碳排放监测服务平...

行业资讯
数据中台建设
随着行业和技术领域的变化日新月异,从数据仓库、动态数仓,到数据湖,从新一代湖仓一体技术到可插拔数据库,概念的引入虽然简单,但如何做到更有效,更复杂的数据资产管理就考验着对生产能力和工艺过程的管理能力。星环科技认为数据中台是一种能力、是一种组织上的策略而不仅仅是一种技术架构,它是在信息化基础上建立的可编织和可复用的数据可分析能力,从而支撑企业数字化转型。星环科技的数据中台三中心、六能力、两个体系星环科技很早就在数据中台领域布局,结合星环科技全系产品的相关组件实现数据中台能力建设。星环科技把数据中台建设归纳为三中心、六能力、两个体系,这当中都会有星环科技产品作为支撑,从而保证企业能够快速实现,并搭建起数据中台,满足企业未来发展变化。数据存储、分析探索、业务赋能三中心第一,帮助企业构建存储中心,提升数据的汇聚和整合能力;第二,构建数据分析探索中心,专注于智能分析能力和实时计算能力的提升,推动智能推荐能力和全链路实时监测和保障能力;第三,构建业务赋能中心,提供统一的访问能力实现跨平台联邦,统一的访问层控制,确保数据安全可用,同时搭建统一的服务能力,面向多场景的服务应用支撑。安全和运维、数据和分...

行业资讯
国产数据库有哪些?
在国产数据库产品方面,星环科技坚持自主研发与技术创新,打造了自主可控的高性能分布式数据库ArgoDB和分布式交易型数据库KunDB,以及分布式图数据库StellarDB等产品。KunDB具备较强的SQL兼容性,同时具备高可用、高并发、在线扩缩容、数据强一致性等能力,适用于操作型业务、高并发业务等场景。ArgoDB具备完整的SQL兼容性,同时具备高扩展、高可靠、多模型、存算解耦等能力,一站式满足数据仓库、实时数据仓库、数据集市、OLAP、联邦计算等场景。通过不断的打磨和对业务场景不断的落地实践,ArgoDB和KunDB已成为具有完全自主知识产权的成熟的国产数据库,能够为更多的客户提供高性能、高可靠、成熟的数据库产品服务,帮助用户应对智能数据时代海量数据的分析与探索。分布式图数据库StellarDB兼容openCypher查询语言,提供海量图数据的存储和分析能力,支持原生图存储结构,支持万亿边PB级数据存储。同时,StellarDB具备毫秒级点边查询能力,10+层的深度链路分析能力,提供近40种的图分析算法,具备数据2D和3D展示能力。星环科技StellarDB在金融、政府和社交网络等领域...

行业资讯
数据中台推荐供应商
作为一家企业级大数据基础软件开发商,星环科技很早就在数据中台领域布局,结合星环科技全系产品的相关组件实现数据中台能力建设。星环科技把数据中台建设归纳为三中心、六能力、两个体系,这当中都会有星环科技产品作为支撑,从而保证企业能够快速实现,并搭建起数据中台,满足企业未来发展变化。其中,三中心分别是存储中心、分析探索中心、业务赋能中心;六能力包括数据汇聚能力、数据整合能力、智能分析能力、实时计算能力、统一访问能力、统一服务能力;两个体系则是安全和运维保障体系与数据和分析支撑体系。三中心、六能力、两个保障体系都构建在一个云底座之上,满足企业私有化或者混合云多云的部署形态,同时灵活组件式的可插拔式部署形态,能够帮助企业更迅速的起步,按规划分步完善数据中台建设。除了提供基础组件和相应的工具帮助客户快速构建数据中台之外,星环科技还提供咨询实施服务,可以为企业提供量身定制的“数据云基础设施+咨询服务的端到端产品+服务”的综合解决方案。在星环科技的咨询服务产品体系中,包括为企业构建中台的架构规划、应用规划,以及帮助企业实施建设数据底座、数据中台、数据仓库,以及数据治理服务,也包括了数据的分析、业务分析、...

行业资讯
图计算平台代表厂商
星环科技作为一家企业级大数据基础软件开发商,在图计算领域深耕多年,有着深厚的技术积淀和丰富的实践经验。星环科技自主研发的分布式图数据库StellarDB,兼容openCypher查询语言,提供海量图数据的存储和分析能力,支持原生图存储结构,支持万亿边PB级数据存储。同时,StellarDB具备毫秒级点边查询能力,10+层的深度链路分析能力,提供近40种的图分析算法,具备数据2D和3D展示能力。StellarDB克服了海量关联图数据存储的难题,通过集群化存储和丰富算法,实现了传统数据库无法提供的低延时多层关系查询,目前已经用于金融、政府、交通等众多行业,用于反洗钱、风险控制、营销等多种场景。同时StellarDB还获得了多项行业权威认可:入选信通院2022大数据十大关键词“图计算平台”代表厂商;通过了中国信通院图数据库和图计算平台基础能力两项专项测评;入选著名咨询机构Gartner《中国数据库市场指南》、《工具:中国数据库管理系统供应商甄选》报告等,彰显了其产品技术领先性。如今,5G、物联网、AI等技术的发展应用让数据呈指数倍增长,为图数据库发展提供了更广阔的应用空间。顺势而为,乘势而上...

行业资讯
图数据库的应用场景
图数据库的应用场景非常广泛,可以应用于各个行业。以下是一些常见的应用场景:金融:在金融领域,图数据库可以帮助银行、保险公司等企业处理复杂的数据结构,支持欺诈检测、交易路由、投资组合分析等操作。社交网络:图数据库可以存储和处理社交网络中的复杂关系图谱和大量用户数据,支持好友推荐、社区发现、个性化内容推荐等操作。物流:在物流领域,图数据库可以帮助企业优化路径规划、物流运输等操作,加速发货、配送时间并提高效率。制造业:图数据库可以支持企业处理复杂的设备关系结构图,进行维修保养、设备性能分析、生产计划优化等操作。能源行业:在能源领域,图数据库可以处理复杂的电网、管道等结构图谱,并支持多种能源趋势分析和紧急事件监测等操作。电商:图数据库可以应用于电商业务中,存储和处理复杂的商品与用户之间的关系,支持个性化推荐、购物车分析、用户行为预测等操作。图数据库可以在各个领域中应用,并且在处理复杂的数据结构和大量的数据时比传统数据库具有更高的性能和效率。星环分布式图数据库StellarDB星环科技致力于打造企业级大数据基础软件,围绕数据的集成、存储、治理、建模、分析、挖掘和流通等数据全生命周期提供基础软件与...

行业资讯
企业级AI能力运营平台
为解决AI落地难的问题,星环科技从用户需求端出发,研发了一款基于云原生架构的企业级AI能力运营平台SophonMLOps,助推AI模型落地。SophonMLOps是基于云原生架构构建的企业级AI能力运营平台,聚焦于机器学习模型全生命周期中的模型管理、模型部署、模型监控预警、模型评估和模型迭代等关键环节。通过统一纳管、统一运维、统一应用、统一监控、统一评估、统一解释,赋予企业客户易用、高效且安全可靠的AI能力运营服务,协助客户规模化管理日益增长的机器学习模型,提升模型使用效率,降低模型集成管理成本,控制模型生产环境风险。SophonMLOps针对企业AI运营的痛点,围绕企业AI模型接入、运营管理、持续训练的全生命周期,分别提供规模化集成管理、高效模型推理、模型监控预警、模型性能评估、隐私安全保障等功能,为企业的AI日常运营插上翅膀。SophonMLOps打通了AI的全生命周期,为企业的各类用户角色搭建了统一的AI协作平台。对于企业而言,MLOps规模化集成管理了多源异构的机器学习模型,并提供高效且保障隐私安全的模型推理、监控预警及性能评估服务;对用户而言,能感受到操作上的快捷,AI应用与...