基于大模型可以做什么

基于模型开发应用是当前人工智能领域的热门方向,以下从应用场景、开发流程、面临挑战等方面介绍如何基于模型应用:应用场景探索智能客服:利用模型理解用户咨询内容,自动生成准确回答。如电商平台的售后咨询,模型可快速回应商品退换货政策、物流进度等常见问题,提高客服效率与用户满意度。内容创作辅助:在写作、设计领域发挥作用。例如,帮助文案撰写人员生成创意、完善内容,为设计师提供设计理念和文案描述基础代码框架,检查代码中的语法错误并给出修改建议。开发流程明确需求:确定应用解决的具体问题和功能。如开发智能客服,需梳理常见问题类型、用户交互方式、响应速度要求等。选择模型:依据需求和资源选择合适的模型。考虑模型的性能、适用场景、可访问性、成本等。数据准备:部分场景下,需用特定数据微调模型。收集、整理相关数据,如智能客服收集历史对话数据,确保数据质量与多样性。开发集成:通过API调用或本地部署方式将模型集成到应用中。使用API简单快捷,适合初创项目;本地部署可保障数据安全与隐私,适合对数据敏感的应用。开发过程中,结合前端界面设计,打造良好用户体验。测试优化:对应用进行功能测试,检查

基于大模型可以做什么 更多内容

基于模型开发应用是当前人工智能领域的热门方向,以下从应用场景、开发流程、面临挑战等方面介绍如何基于模型应用:应用场景探索智能客服:利用模型理解用户咨询内容,自动生成准确回答。如电商平台的售后咨询,模型可快速回应商品退换货政策、物流进度等常见问题,提高客服效率与用户满意度。内容创作辅助:在写作、设计领域发挥作用。例如,帮助文案撰写人员生成创意、完善内容,为设计师提供设计理念和文案描述基础代码框架,检查代码中的语法错误并给出修改建议。开发流程明确需求:确定应用解决的具体问题和功能。如开发智能客服,需梳理常见问题类型、用户交互方式、响应速度要求等。选择模型:依据需求和资源选择合适的模型。考虑模型的性能、适用场景、可访问性、成本等。数据准备:部分场景下,需用特定数据微调模型。收集、整理相关数据,如智能客服收集历史对话数据,确保数据质量与多样性。开发集成:通过API调用或本地部署方式将模型集成到应用中。使用API简单快捷,适合初创项目;本地部署可保障数据安全与隐私,适合对数据敏感的应用。开发过程中,结合前端界面设计,打造良好用户体验。测试优化:对应用进行功能测试,检查
基于模型开发应用是当前人工智能领域的热门方向,以下从应用场景、开发流程、面临挑战等方面介绍如何基于模型应用:应用场景探索智能客服:利用模型理解用户咨询内容,自动生成准确回答。如电商平台的售后咨询,模型可快速回应商品退换货政策、物流进度等常见问题,提高客服效率与用户满意度。内容创作辅助:在写作、设计领域发挥作用。例如,帮助文案撰写人员生成创意、完善内容,为设计师提供设计理念和文案描述基础代码框架,检查代码中的语法错误并给出修改建议。开发流程明确需求:确定应用解决的具体问题和功能。如开发智能客服,需梳理常见问题类型、用户交互方式、响应速度要求等。选择模型:依据需求和资源选择合适的模型。考虑模型的性能、适用场景、可访问性、成本等。数据准备:部分场景下,需用特定数据微调模型。收集、整理相关数据,如智能客服收集历史对话数据,确保数据质量与多样性。开发集成:通过API调用或本地部署方式将模型集成到应用中。使用API简单快捷,适合初创项目;本地部署可保障数据安全与隐私,适合对数据敏感的应用。开发过程中,结合前端界面设计,打造良好用户体验。测试优化:对应用进行功能测试,检查
基于模型开发应用是当前人工智能领域的热门方向,以下从应用场景、开发流程、面临挑战等方面介绍如何基于模型应用:应用场景探索智能客服:利用模型理解用户咨询内容,自动生成准确回答。如电商平台的售后咨询,模型可快速回应商品退换货政策、物流进度等常见问题,提高客服效率与用户满意度。内容创作辅助:在写作、设计领域发挥作用。例如,帮助文案撰写人员生成创意、完善内容,为设计师提供设计理念和文案描述基础代码框架,检查代码中的语法错误并给出修改建议。开发流程明确需求:确定应用解决的具体问题和功能。如开发智能客服,需梳理常见问题类型、用户交互方式、响应速度要求等。选择模型:依据需求和资源选择合适的模型。考虑模型的性能、适用场景、可访问性、成本等。数据准备:部分场景下,需用特定数据微调模型。收集、整理相关数据,如智能客服收集历史对话数据,确保数据质量与多样性。开发集成:通过API调用或本地部署方式将模型集成到应用中。使用API简单快捷,适合初创项目;本地部署可保障数据安全与隐私,适合对数据敏感的应用。开发过程中,结合前端界面设计,打造良好用户体验。测试优化:对应用进行功能测试,检查
基于模型开发应用是当前人工智能领域的热门方向,以下从应用场景、开发流程、面临挑战等方面介绍如何基于模型应用:应用场景探索智能客服:利用模型理解用户咨询内容,自动生成准确回答。如电商平台的售后咨询,模型可快速回应商品退换货政策、物流进度等常见问题,提高客服效率与用户满意度。内容创作辅助:在写作、设计领域发挥作用。例如,帮助文案撰写人员生成创意、完善内容,为设计师提供设计理念和文案描述基础代码框架,检查代码中的语法错误并给出修改建议。开发流程明确需求:确定应用解决的具体问题和功能。如开发智能客服,需梳理常见问题类型、用户交互方式、响应速度要求等。选择模型:依据需求和资源选择合适的模型。考虑模型的性能、适用场景、可访问性、成本等。数据准备:部分场景下,需用特定数据微调模型。收集、整理相关数据,如智能客服收集历史对话数据,确保数据质量与多样性。开发集成:通过API调用或本地部署方式将模型集成到应用中。使用API简单快捷,适合初创项目;本地部署可保障数据安全与隐私,适合对数据敏感的应用。开发过程中,结合前端界面设计,打造良好用户体验。测试优化:对应用进行功能测试,检查
基于模型开发应用是当前人工智能领域的热门方向,以下从应用场景、开发流程、面临挑战等方面介绍如何基于模型应用:应用场景探索智能客服:利用模型理解用户咨询内容,自动生成准确回答。如电商平台的售后咨询,模型可快速回应商品退换货政策、物流进度等常见问题,提高客服效率与用户满意度。内容创作辅助:在写作、设计领域发挥作用。例如,帮助文案撰写人员生成创意、完善内容,为设计师提供设计理念和文案描述基础代码框架,检查代码中的语法错误并给出修改建议。开发流程明确需求:确定应用解决的具体问题和功能。如开发智能客服,需梳理常见问题类型、用户交互方式、响应速度要求等。选择模型:依据需求和资源选择合适的模型。考虑模型的性能、适用场景、可访问性、成本等。数据准备:部分场景下,需用特定数据微调模型。收集、整理相关数据,如智能客服收集历史对话数据,确保数据质量与多样性。开发集成:通过API调用或本地部署方式将模型集成到应用中。使用API简单快捷,适合初创项目;本地部署可保障数据安全与隐私,适合对数据敏感的应用。开发过程中,结合前端界面设计,打造良好用户体验。测试优化:对应用进行功能测试,检查
基于模型开发应用是当前人工智能领域的热门方向,以下从应用场景、开发流程、面临挑战等方面介绍如何基于模型应用:应用场景探索智能客服:利用模型理解用户咨询内容,自动生成准确回答。如电商平台的售后咨询,模型可快速回应商品退换货政策、物流进度等常见问题,提高客服效率与用户满意度。内容创作辅助:在写作、设计领域发挥作用。例如,帮助文案撰写人员生成创意、完善内容,为设计师提供设计理念和文案描述基础代码框架,检查代码中的语法错误并给出修改建议。开发流程明确需求:确定应用解决的具体问题和功能。如开发智能客服,需梳理常见问题类型、用户交互方式、响应速度要求等。选择模型:依据需求和资源选择合适的模型。考虑模型的性能、适用场景、可访问性、成本等。数据准备:部分场景下,需用特定数据微调模型。收集、整理相关数据,如智能客服收集历史对话数据,确保数据质量与多样性。开发集成:通过API调用或本地部署方式将模型集成到应用中。使用API简单快捷,适合初创项目;本地部署可保障数据安全与隐私,适合对数据敏感的应用。开发过程中,结合前端界面设计,打造良好用户体验。测试优化:对应用进行功能测试,检查
基于模型开发应用是当前人工智能领域的热门方向,以下从应用场景、开发流程、面临挑战等方面介绍如何基于模型应用:应用场景探索智能客服:利用模型理解用户咨询内容,自动生成准确回答。如电商平台的售后咨询,模型可快速回应商品退换货政策、物流进度等常见问题,提高客服效率与用户满意度。内容创作辅助:在写作、设计领域发挥作用。例如,帮助文案撰写人员生成创意、完善内容,为设计师提供设计理念和文案描述基础代码框架,检查代码中的语法错误并给出修改建议。开发流程明确需求:确定应用解决的具体问题和功能。如开发智能客服,需梳理常见问题类型、用户交互方式、响应速度要求等。选择模型:依据需求和资源选择合适的模型。考虑模型的性能、适用场景、可访问性、成本等。数据准备:部分场景下,需用特定数据微调模型。收集、整理相关数据,如智能客服收集历史对话数据,确保数据质量与多样性。开发集成:通过API调用或本地部署方式将模型集成到应用中。使用API简单快捷,适合初创项目;本地部署可保障数据安全与隐私,适合对数据敏感的应用。开发过程中,结合前端界面设计,打造良好用户体验。测试优化:对应用进行功能测试,检查
基于模型开发应用是当前人工智能领域的热门方向,以下从应用场景、开发流程、面临挑战等方面介绍如何基于模型应用:应用场景探索智能客服:利用模型理解用户咨询内容,自动生成准确回答。如电商平台的售后咨询,模型可快速回应商品退换货政策、物流进度等常见问题,提高客服效率与用户满意度。内容创作辅助:在写作、设计领域发挥作用。例如,帮助文案撰写人员生成创意、完善内容,为设计师提供设计理念和文案描述基础代码框架,检查代码中的语法错误并给出修改建议。开发流程明确需求:确定应用解决的具体问题和功能。如开发智能客服,需梳理常见问题类型、用户交互方式、响应速度要求等。选择模型:依据需求和资源选择合适的模型。考虑模型的性能、适用场景、可访问性、成本等。数据准备:部分场景下,需用特定数据微调模型。收集、整理相关数据,如智能客服收集历史对话数据,确保数据质量与多样性。开发集成:通过API调用或本地部署方式将模型集成到应用中。使用API简单快捷,适合初创项目;本地部署可保障数据安全与隐私,适合对数据敏感的应用。开发过程中,结合前端界面设计,打造良好用户体验。测试优化:对应用进行功能测试,检查
处理海量数据关联关系时具有非常高的性能优势,能够快速找到实体间的深度关联关系,并且数据模型非常灵活,可以轻松实现添加或删除顶点、边,扩充或者缩小图模型。此外,图数据库模型非常敏捷直观,降低数据挖掘和,从而有效地发现团伙套现行为。基于卡片和商户的交易情况,通过StellarDB的PageRank算法可以快速识别商户与其他节点的关联度,将关联度低的卡片和商户识别出来。通过StellarDB实体查询可将什么是图数据库?在计算机科学中,图数据库(GraphDatabase)是一种使用图结构进行语义查询的数据库,它使用点、边和属性来表示和存储数据。图数据库这项新兴技术,与传统关系型数据相比,图数据库在智能投研知识图谱,赋能投资研究场景应用。金融领域在金融领域,图数据库通过利用多维交叉关联信息可以深度刻画交易行为,可以有效识别规模化、隐蔽性的欺诈网络,结合机器学习、聚类分析、风险传播等相关算法,可以、企业及关联公司构成的复杂网络,以股权为纽带,向上穿透到目标企业终实际控制人,向下穿透到该企业任意层股权投资的所有企业及其股东。以信用卡反欺诈场景为例基于行内信用卡相关数据对点和边进行定义,包括用户
查看Master节点通过以下命令,查看集群Master节点信息:curl-ushiva:shiva-XGET'localhost:8902/hippo/v1/_cat/master?v'返回结果:epochtimestampactive.master.hostactive.master.portmaster.group169079683909:47:19172.29.203.18926841172.29.203.189:26841,172.29.203.189:26851,172.29.203.189:26861查看数据节点curl-ushiva:shiva-XGET'localhost:8902/hippo/v1/_cat/nodes?v'//查看所有节点curl-ushiva:shiva-XGET'localhost:8902/hippo/v1/_cat/nodes/{node}?v'//{node}表示待匹配的节点地址,支持以*通配,支持指定多个pattern,多个pattern以逗号分割返回结果:
产品文档
10 Hippo 运维
运维管理界面WebserverWebserver是Hippo提供运维监控的界面。默认访问地址为:4567"class="bare">http://<webserver_ip>:4567。或者在Manager管理界面我们可以通过下图所示的查看链接这里进行跳转。图15.登录HippoWebserverWebserver主要由下面几个部分构成。概况图16.概况该页面展示了Hippo集群的基本信息,包括:Masterstatus:当前的ActiveMaster,MasterGroup,MasterAddress,Master的健康状态TabletServerStatus:TabletServerAddress,健康状态,逻辑机架和数据中心信息,容量使用以及Tablet个数TabletNum:当前集群表的个数Version:Hippo版本信息库表图17.库表页面以库和表的概念集群存储的各类数据信息。库信息:库名库创建时间库内各类表的信息:点击某个库,可以看到库下所有表的信息,主要包括:••表的ID••表的名字••表的状态••表的Tablet数量••表的Engine类型••表的副本数•...
产品文档
5.7 查询类操作
过滤条件表达式Hippo当前支持如下表达式,可用于标量或向量查询。表46.过滤条件表达式表达式描述and当前版本支持and,不支持or/not==等值<小于⇐小于等于>大于>=大于等于inin[1,2,3]notinnot_in[1,2,3]like'_'表示匹配任一字符,'%'表示匹配任意字符,'\'为转义符向量相似性检索本节描述如何进行向量相似度搜索。Hippo中的向量相似性搜索计算查询向量与表中向量的距离,返回最相似的结果集。通过指定标量过滤条件,用户可以进行向量与标量的混合搜索。curl-ushiva:shiva-XGET'localhost:8902/hippo/v1/{table}/_search?pretty'-H'Content-Type:application/json'-d'{"output_fields":["book_id"],"search_params":{"anns_field":"book_intro","topk":2,"params":{"nprobe":10},"embedding_index":"ivf_flat_index"}...
产品文档
5.3 写入类操作
本节介绍Hippo表写入相关操作。Hippo会返回写入成功数据的下标以及总共写入成功的数据条数,如果出现行级错误(比如主键冲突),Hippo会返回具体的行级错误。插入本节介绍如何向Hippo中插入数据。curl-ushiva:shiva-XPUT'localhost:8902/hippo/v1/{table}/_bulk?database_name={database_name}&pretty'-H'Content-Type:application/json'-d'{"fields_data":[{"field_name":"book_id","field":[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74...
产品文档
5.18 全文检索
Hippo在1.2版本提供了全文索引能力,兼容ElasticSearch6.7.2语法,在底层架构上复用了公司产品TranswarpScope的一部分特性,支持以Java/HTTPRestful的形式通过Hippo的HTTPServer接口进行全文索引的创建、查询、使用等各类需求,通过该能力的支持,可以更好的实现向量与全文的混合检索。通过将向量检索加全文检索的联合召回,可以降低漏检和误检的概率,能够实现比单独使用向量或全文更高的精度。同时,一套数据库系统可避免部署多套系统带来的架构复杂、开发运维成本高等问题。具体的使用方法除了访问端口需要将端口从8902调整为9200外,均可参考《TranswarpScope手册》4.TranswarpScopeAPI介绍。
产品文档
5.10 任务相关
在Hippo中,比较耗时的操作如激活、加载向量索引实际上是一个分布式任务,用户可以通过任务相关接口查看、删除任务。查看任务curl-ushiva:shiva-XGET"localhost:8902/hippo/v1/_jobs?pretty"-H'Content-Type:application/json'-d'{"job_ids":["fc6feff4f303455a9347f9aab323dfc8"],"action_patterns":["hippo*"]}';返回结果:{"jobs":[{"job_id":"810935a1d91a46b7af2ec35013454fed","job_status":"SHIVA_JOB_SUCCESS","embedding_number":100,"task_results":[{"id":"54ab52493dfb4bab9fb7742d850c64c4","status":"TASK_SUCCESS","server":"172.29.40.26:27841","embedding_number":100,"execute_time":...
产品文档
3.3 Cluster
OverviewAclusterisaHippoCloudinstanceassociatedwithspecificcomputingresources.Youcancreaterelatedtables,insertcorrespondingdata,andcompleteproductexperiencewithinacluster.Beforeyouusethedemoenvironment,youneedtocreateacluster.CreateClusterYouneedtogotothespecificproject.Iftherearenoclustersunderthecurrentproject,youcanclickthe'Createcluster'buttonbelowtheclustercreationguidancepagetoentertheclustercreation.Ifthereareclustersunderthecurrentproject,youcanclickthe'+Cluster'buttonabovetheclusterlist...
产品文档
8 性能分析
本节测试主要描述了Hippo1.0在关键测试上的一些性能表现,该份测试同样也是Hippo的基准测试,后续版本发布也会在不同版本上进行该测试进行对比分析。术语表142.Hippo性能测试术语TermDescriptionnq一次搜索请求中搜索的向量个数topk一次请求中对于要检索的每个向量(依赖nq),所能检索到最近距离的向量个数RT一次请求从发起到接受响应的时间]QPS请求在每秒内成功执行的次数dataset测试所用数据集,不同数据集表示不同的业务场景测试集群配置硬件配置表143.性能测试硬件配置硬件规范Nodes3CPUIntel®Xeon®Gold5218RCPU@2.10GHzMemory16*\16GBRDIMM,3200MT/sDISKNVMeSSD2T*4GPUNONE软件配置表144.性能测试软件配置软件版本Hippov1.2TranswarpManagerTDH9.3.0测试集表145.性能测试数据集数据集名称数据集介绍向量维度向量总数查询数量数据总量距离类型Sift-128-euclidean该数据集是基于Texmex的数据集整理,使用SIFT算法得到的图片特征向量。...
产品文档
1 Introduction
OverviewUnstructureddatamanagementismoreimportantthaneverduetotheriseofbigdata.Managingandgleaningbusinessvaluefromunstructureddataisofutmostimportancetoenterprisestoday.Advancementsinmachinelearning,aswellasdeeplearning,technologiesnowenableorganizationstoefficientlyaddressunstructureddataandimprovequalityassuranceefforts.Inthefieldofartificialintelligenceormachinelearning,embeddingsandvectordatabaseshavebecomeincreasinglyimportantfortacklingawiderangeofproblems.Thesetechniquesareusedtorepresen...
产品文档
2 Quick Start
ThistutorialwillguideyouthroughthefollowingtaskswithinHippoCloud:EstablishingatablePerusingthetableIncorporatingdataExecutingsearchoperationsEliminatingrowsDissolvingthetableBeforeyoustartInthisguide,wewillbeutilizingthePythonAPI.Priortocommencement,ensurethatyouhave:RegisteredforaHippoCloudaccount.SubscribedtothecomplimentaryplanandestablishedatrialclusterwithinHippoCloud,orsubscribedtothestandard/enterpriseplansandconstructedadedicatedcluster.IfyouanticipateemployingPythonfordevelopment,ascert...