量化 大模型

行业资讯
大模型量化技术
大模型量化技术是一种用于减少大模型存储和计算需求的重要方法,以下是其具体介绍:量化是将模型参数的精度从高位宽降低到低位宽的过程,旨在以较少的位数表示浮点数据,从而减少模型尺寸和内存消耗,并在一些低模型的精度,适用于对模型精度要求较高的场景。量化感知微调:在微调过程中对大模型进行量化,主要目标是确保经过微调的大模型在量化为较低位宽后仍保持性能,在模型压缩和保持性能之间取得平衡。训练后量化:在大每个量化通道为单位,每个通道单独使用一组量化参数,量化粒度更细,能获得更高的量化精度,但计算更复杂。量化阶段分类量化感知训练:在模型训练过程中加入伪量化算子,通过训练时统计输入输出的数据范围提升量化后模型训练完成后对其参数进行量化,只需要少量校准数据,适用于追求高易用性和缺乏训练资源的场景,但可能会在量化过程中引入一定程度的精度损失。精度运算较快的处理器上提高推理速度,通常将float32等格式的浮点型权重近似为int8等有限多个离散值1。量化形式线性量化:假设表示量化前的浮点数,量化后的整数可以表示为,其中和分别表示取整和截断操作
量化 大模型 更多内容

行业资讯
金融模型,实现量化交易
量化交易:开启金融市场的智能密码量化交易:金融领域的新变革在金融市场的风云变幻中,量化交易正逐渐崭露头角,成为投资领域的新宠。它借助数学模型和计算机算法,让交易决策不再依赖于主观判断和经验直觉,而是基于严谨的数据计算和分析,从而实现交易的自动化与智能化。量化交易以其高效性、客观性和精准性,颠覆了传统交易模式,为投资者开辟了全新的盈利途径。量化交易的基石:金融模型金融模型是量化交易的核心,它如同精密的导航系统,引领投资者在复杂多变的金融市场中找准方向。从数据收集到模型构建,再到实盘测试,每一个环节都紧密相连,缺一不可。模型构建的前期准备数据,是构建金融模型的基石,其重要性不言而喻。在量化交易中宏观经济数据、公司财务数据等,将资产价格作为因变量,通过线性回归模型来预测价格走势。神经网络则是一种更复杂的算法,它模拟了人类大脑神经元的结构和工作方式,具有强大的非线性拟合能力。神经网络可以自动学习直观的方法,它通过在指定的参数范围内,对每个参数的不同取值进行组合,然后逐一测试这些组合,找到使模型性能最优的参数组合。风险管理也是模型构建中不可或缺的一部分。在量化交易中,风险无处不在,我们需要通过

行业资讯
企业商用量化模型
解锁企业商用量化模型:开启商业决策新时代揭开量化模型的神秘面纱什么是企业商用量化模型简单来说,量化模型就像是一个超级智能的“商业翻译器”,它把企业运营中产生的大量复杂数据,运用数学和统计学的方法进行分析和建模,将这些数据转化为有价值的预测性和决策性信息。在实际商业场景中,量化模型能够对市场趋势、消费者行为、产品销售情况等进行精准分析和预测。核心构成要素数据收集:这是量化模型的基石,数据的质量和问题和数据特点。验证与优化:使用历史数据对构建好的模型进行回测和验证,评估模型的准确性和可靠性。通过不断调整模型的参数、变量或改进模型结构,使其更好地适应实际情况。量化模型的应用领域金融投资领域资产配置:量化模型能够根据投资者的风险偏好、投资目标和市场环境,运用现代投资组合理论(MPT)等方法,对不同资产类别的历史表现、预期收益、风险水平以及它们之间的相关性进行精确分析,从而为投资者制定出最优的资产组合方案。风险管理:它可以实时监测投资组合的风险状况,利用风险价值模型(VaR)、条件风险价值模型(CVaR)等量化工具,对市场风险、信用风险、流动性风险等进行精准度量和分析。量化交易:量化交易是量化

行业资讯
向量化,什么是向量化?
技术可以将一个大规模的科学计算问题分解成许多小规模的子问题,并将这些子问题转换为向量计算。在数据处理中,向量化技术可以将一个大规模的数据处理任务分解成许多小规模的子任务,并将这些子任务转换为向量处理。在图像处理中,向量化技术可以将一个大规模的图像处理任务分解成许多小规模的子任务,并将这些子任务转换为向量处理。在人工智能中,向量化技术可以将一个大规模的机器学习任务分解成许多小规模的子任务,并将这些子什么是向量化?向量化是一种计算机科学技术,指的是将程序中的标量代码转换成向量代码的过程。在计算机科学中,标量是一个单独的数值,而向量是一组数值的集合。向量的大小和方向可以变化,而标量的大小和方向是固定的。向量化技术通过将程序中的标量操作转换成向量操作,可以显著提高程序的性能和效率。向量化的基本原理是将一个数组或一个矩阵中的元素同时进行相同的操作,而不是对数组或矩阵中的每个元素单独进行操作。通过将标量操作转换成向量操作,向量化可以减少程序中的指令数量和循环次数,从而提高程序的运行速度。向量化技术可以应用于各种计算机程序中,包括科学计算、数据处理、图像处理、人工智能等领域。在科学计算中,向量化

行业资讯
量化交易模型
量化交易模型针对智能投研领域特定的业务逻辑,星环科技通过预训、提示、增强、推导范式的构建,实现Financial-Specific-LLM的训练,推出了金融行业智能投研大模型无涯Infinity。星量化领域、超大规模参数量的生成式大语言模型。主要通过自监督的增量训练和有监督的指令微调,使用星环科技高性能计算集群训练而成。星环科技无涯使用上百万的高质量的专业金融语料,涵盖了研报、公告、政策、新闻因子体系满足投资经理的需求。从应用上看,无涯金融大模型强化以下几个能力:针对金融行业,拥有准确理解和合理分析的能力。无涯擅长处理金融量化领域的各类问题,诸如在政策和研报分析、新闻解读、事件总结和演绎环科技基于大模型的事件驱动与深度图引擎,实现对事件语义刻画、定价因子挖掘、时序编码、异构关系图卷积传播,进而构建包含事件冲击、时序变化、截面联动和决策博弈等多个维度的智能投研新范式。无涯是一款面向金融等高质量的自然语言文本,作为基础大模型的二次预训练语料,使得无涯具备对包括基本面、技术面、消息面在内的金融通识领域准确的理解能力,满足行业分析师的需求。星环科技无涯使用了上百类特定事件类型和20多万事

行业资讯
大模型训练方法
大模型训练方法包括预训练、指令微调、强化学习、模型并行与分布式训练、优化器与学习率调整以及模型压缩与量化等,各环节协同助力大模型训练与优化。以下是一些常见的大模型训练方法:预训练数据收集与预处理强化学习(RLHF):让人类对模型生成的结果进行评价和打分,基于这些反馈信息训练一个奖励模型。奖励模型学习预测生成结果的评分,然后在强化学习过程中,利用奖励模型的输出作为奖励信号,引导大模型生成更符合人类期望的高质量响应,不断优化模型的策略和参数。迭代优化:通过多次迭代的生成、评估、调整和优化过程,使模型逐渐收敛到更好的性能状态。在每次迭代中,根据奖励模型的反馈,对大模型的参数进行更新,以提高其生:当模型规模过大,单个设备无法容纳整个模型时,将模型的不同层或部分分配到不同的设备上进行计算,设备之间需要进行通信以传递中间结果,从而实现对大规模模型的训练。混合并行:结合数据并行和模型并行的方法压缩与量化剪枝:去除模型中不重要的连接或参数,减少模型的存储空间和计算量,同时尽量保持模型的性能。通过评估参数的重要性,将对模型性能影响较小的连接或参数剪掉,得到一个更精简的模型结构。量化:将模型的参数

行业资讯
金融智能投研大模型
星环无涯金融大模型-TranswarpInfinity星环无涯金融智能投研大模型TranswarpInfinity是一款面向金融量化领域、超大规模参数量的生成式大语言模型,融合了舆情、资金、人物挖掘、时序编码、异构关系图卷积传播,进而构建包含事件冲击、时序变化、截面联动和决策博弈等多个维度的智能投研新范式。星环科技无涯金融大模型的核心优势:一是利用海量金融专业语料和舆情工商产业链大宗卫星等多源推演。四是专门设计针对金融行业的大语言模型架构,具备准确理解和合理分析金融领域的专业能力。五是背靠大数据全生命周期技术栈,为企业提供全套解决方案,助力金融机构实现应用创新。目前,星环科技无涯金融大模型已在多家金融监管机构、证券金融客户中使用。将在金融投研、量化投资和智能推理领域为分析师、研究员和投资经理提供有力辅助,帮助企业更好地应对复杂的市场环境和业务需求,促进整体行业的降本增效与科技创新。

行业资讯
水利大模型
水利大模型是一种以大语言模型为核心,结合水利专业知识进行预训练和微调,通过水利知识图谱强化逻辑,以及水利专业模型耦合进行量化计算赋能,构建的水利专业领域的数据处理、逻辑理解、模型调用和智能决策的行业大模型。通俗来说,水利大模型是解决计算机如何理解人类关于水利的语言、如何分解水利工作流程、如何运用水利专业数据推理计算、如何按照水利业务逻辑和要素进行展示等问题的辅助决策智能工具与应用。水利大模型具备。5.“可驱动设施装备”:驱动水利设施和装备。水利大模型能够降低水利复杂业务的门槛,减少业务人员重复工作量,为业务决策者提供更全面的决策信息和智能化决策方案建议。通过预训练和微调的行业领域训练范式,以及基于知识图谱强化构建,提升了大模型在水利领域的理解力和任务执行力。此外,水利大模型还能驱动水利专业模型计算寻优技术,实现模型参数的自适应动态优化,提升智能算法寻优效率。同时,还能赋能水利“天空地”监测感知能力的提升,通过水利大模型驱动设备智能运行、监测数据智能汇集处理、监测误差智能识别等功能的实现。以下五个方面的行业落地能力:1.“听懂水利话”:理解水利专业语言。2.“会分解水利任务”:分解水利工作流程。3.“可调用水利专业模型”:调用水利专业模型进行计算。4.“可展示推演结果”:展示推演结果

行业资讯
AI数据库向量化
大规模数据检索,减少训练时间和计算资源。当模型需要更新时,可以只更新部分数据,而不是整个数据集。实现步骤数据向量化:使用特定的模型将数据转换为向量。向量存储:将向量存储在向量数据库中。向量检索:通过向量于文档相似性分析、智能问答系统、文本分类等任务。图像和视频检索:利用图像特征向量进行快速相似图像搜索,支持基于内容的图像检索系统。模型训练和更新:在AI大模型训练过程中,向量数据库可以加速特征提取和AI数据库向量化是指将文本、图像、声音等数据转换为数值向量,并存储在向量数据库中,以便进行高效的相似性搜索和检索。以下是AI数据库向量化的一些关键点和应用场景:关键点数据转换:不同类型的数据需要通过特定的算法转换为向量形式。例高效检索:向量数据库通过构建索引,能够快速找到与查询向量相似的向量,显著提高检索效率。统一数据格式:向量化后的数据格式统一,便于不同数据类型之间的交互和计算。降维(可选):在需要减少计算复杂度的情况下,可以通过降维技术减少向量的维度,同时尽量保留原始数据的特征。应用场景推荐系统:通过用户和物品的特征向量计算相似度,实现个性化推荐。自然语言处理:文本数据向量化后,可以用
猜你喜欢

行业资讯
数据库国产化替代
数据库作为提供数据存储与处理能力的基础软件,是信息系统的基础、信息安全的基石,因此,数据库自主可控和国产化替代已经刻不容缓。兼容性是国产化替代关键,自研数据库更具潜力Oracle数据库发展较早,在国内市场内占领了一定先机,企业经过信息化的长期积累和革新,基于Oracle开发了大量的系统业务。为了能够适配新的国产数据库产品,必须对应用代码进行大量修改,各数据表的数据类型、函数、语法规则需要进行系统、全面的改造,这就要求新的国产数据库对原有数据库能够有很好的兼容性支持,降低迁移的代码改造成本。Oracle经过多年的发展,在SQL语言、性能、实例形态、容灾方案等方面有很多积累扩展。若要实现Oracle数据库的国产化替代,除了要能够提供在性能、容灾能力、安全能力等方面全方位提供对等的能力,首先要解决的就是如何兼容Oracle的大量SQL方言,尤其是Oracle的PL/SQL这一独特的广受欢迎的语法体系。中国信通院《数据库发展研究报告》中表示,“国内关系型数据库产品中多数是基于MySQL和PostgreSQL二次开发的”。因此,这些产品对MySQL、PostgreSQL兼容性较好,但没有体系化的...

行业资讯
数据安全出境解决方案
近年来,随着数字经济的蓬勃发展,数据跨境活动日益频繁,数据处理者的数据出境需求快速增长。为规范数据出境活动,保护个人信息权益,维护国家安全和社会公共利益,促进数据跨境安全、自由流动,国家互联网信息办公室公布了《数据出境安全评估办法》,9月1日起施行。《数据安全出境评估办法》构建了我国数据出境安全评估的制度,然而企业在具体落地方面,还存在诸如数据分类分级;重要数据识别、存储、管理;数据安全监督;敏感数据防泄露等实际困难,国内迫切需要落实数据安全出境的企业。星环科技致力于打造企业级大数据基础软件,围绕数据的集成、存储、治理、建模、分析、挖掘和流通等数据全生命周期提供基础软件与服务,构建明日数据世界。在数据安全与流通方面,星环科技具备一系列产品和解决方案。针对有数据跨境需求的企业,星环科技可以提供一套可落地的企业数据安全出境合规解决方案,为企业提供数据跨境一站式服务,助力企业高效、合规的开展数据流通业务。以某智能车企云端车联网全球化数据安全合规案例为例,针对客户面对的系统内存在大量个人隐私数据,但是没有资产地图;缺乏数据分类分级策略;缺乏个人隐私数据使用、流转的监测与防护;需要敏感资产风险评...

行业资讯
数据底座解决方案实践应用
星环科技数据底座方案已在多个场景落地应用:广西某水电企业工业大数据生态云平台按照“统一规划、统一设计、统一建设”原则开展适应电力能源需求的“云-雾-端”多级、多云协同云计算架构设计。形成电力能源企业计算云、存储云、网络云、安全云等多云架构体系。打造包含智慧运营中心、设备状态诊断中心、安全应急中心、气象资源中心、智慧营销中心与智慧电厂的核心智慧化平台,实现数字化业务管控、智慧化企业经营和生态化商业服务的完整生态,实现企业的数字化转型。工业大数据生态云平台实施分为平台构建、数据资产治理实施与基础门户建设三个部分。其中IaaS层提供计算资源、存储资源、网络资源等基础设施服务;PaaS层由容器云、微服务治理、DevOps、敏捷开发平台、大数据平台、数据资产管理、统一应用门户等组成,为上层智慧企业应用提供基础能力平台的支撑,未来可进一步扩展人工智能平台、元宇宙、区块链、数字孪生等新技术应用平台;SaaS层应用提供数字化业务管理、智慧化企业运营管控、生态化商业服务等应用,并基于统一应用门户为用户提供交互服务。新能源集控中心是实时数仓在新能源方面的应用,跟水电比较像,比如区域监控中心一体化大数据应用...

行业资讯
构建城轨交通数据底座
利用星环科技数据云平台TDC打造的基于PaaS平台的绿色轨道交通线网指挥中心,为轨交集团打造技术中台、数据中台、模型中台、业务中台。与传统模式相比,PaaS模式采取集约化部署,能大大提高资源利用率;可为开发人员提供隔离的租户环境,灵活选择所需大数据与AI能力,进行探索分析和数据挖掘。技术中台:统一资源管控,灵活资源分配,快速资源申请与部署。数据中台:全量数据接入;面向应用主题的指标计算与规范化数据存储。模型中台:基于人工智能、深度学习的算法模型,支撑业务分析、评估、与决策。业务中台:采用微服务架构,串联系统功能,打通整合业务应用。通过采集实时能耗、电能质量、设备状态等实时数据和客流信息、列车运营信息、基础信息等非实时数据,基于星环科技智能分析工具Sophon进行建模预测,支撑上层能耗统计与监测应用、能耗综合评估应用,实现行车调度精细化,促进轨道交通绿色低碳发展。星环科技致力于打造企业级大数据基础软件,围绕数据全生命周期提供基础软件与服务,形成了大数据与云基础平台、分布式关系型数据库、数据开发与智能分析工具的软件产品矩阵。通过为企业搭建数字化转型的数字底座,星环科技助力政府、金融、能源、...

行业资讯
边缘计算平台
在边缘计算领域,星环科技研发了边缘计算平台Sophon。Sophon是解决多模态数据集成和治理过程中的边缘化、智能化的云端-边缘端融合计算平台,支持标准的视频和物联网协议接入,低代码的业务流程构建,高性能的数据处理和分析,企业级的云-边数据、服务治理,以及针对边缘嵌入式和云端服务器等异构硬件的适配。星环科技Sophon平台包括设备数据管理、模型训练迭代、边缘模型部署、应用构建分发、数据治理能力、边缘自治能力、云边协同能力七大能力。Sophon可以从两个层面实现效益价值:降低长尾应用的实施人力,降低从数据到模型,模型到应用的构建成本;改变长尾应用的落地模式,从粗放的一次性模型交付到精细化的模型持续运营。其主要技术创新包括:边缘可视化流处理构建、边缘数据采样驱动模型迭代、边缘实时数据可视化、边缘深度推理引擎。Sophon在智能制造、智能安防、智能工地、智能交通、智能城市、智能校园、智能加油站等城市治理、设备可预测性维护等云边一体场景有着广泛的应用。当前边缘计算作为产业数字化转型核心技术已形成共识,我国也高度重视边缘计算的发展,积极推进边缘计算在工业互联网等多个领域的技术、标准与产业发展。星...

行业资讯
国内隐私计算平台
星环SophonP²C是企业级隐私计算平台,拥有多项性能及安全认证,平台支持不同场景的隐私计算需求,包括横纵向联邦学习、多方安全计算、基于差分隐私的数据发布、匿踪查询等,为多方数据安全协作提供完整的平台底座。SophonP²C可用于解决跨组织协作时无法安全利用各方数据的难题,助力数据流通应用的合法合规。在保障隐私的前提下,围绕数据的集成、存储、治理、建模、分析、挖掘和流通等数据全生命周期,提供多种开箱即用的工具,方便用户进行数据处理、分析、特征工程等工作,可快速进行多方数据统计、分析建模和应用工作。平台拥有的多种适应不同安全和通讯环境的加密安全手段和通信架构,为跨组织的数据协作提供安全、可靠、高效的平台支持。分布式隐私计算平台SophonP²C产品优势:支持多种隐私计算框架,平台易用易部署1.采用同态加密、差分隐私、秘密分享、不经意传输等隐私技术,覆盖联邦学习(FL)、多方安全计算(MPC)、匿踪查询(PIR)、隐私求交(PSI)等多种隐私计算功能。2.支持大数据规模的隐私计算场景,支持亿级数据进行联邦学习、多方安全计算和隐私求交。3.提供页面可视化安装部署,并支持实体部署、容器部署、...

企业选择合适的图数据库需要考虑多方面的因素,包括以下几点:数据集规模:如果需要处理大规模的图形数据,应选择支持水平扩展和集群部署的图数据库。查询需求:不同的图数据库对数据类型和查询需求的支持程度有所不同,应根据实际需求选择。性能和可扩展性:不同的图数据库性能和可扩展性有所不同,应选择性能和可扩展性良好的图数据库。支持程度:选择使用支持程度好的图数据库,可以得到更好的技术支持。维护和成本:选择维护成本低、方便使用的图数据库,能够降低维护成本和使用难度。在选择图数据库时,应根据具体需求进行综合分析、评估和选择。星环科技分布式图数据库是国内比较知名的图数据库产品之一。星环分布式图数据库StellarDB星环科技在图计算领域深耕多年,自主研发了分布式图数据库StellarDB,兼容openCypher查询语言,提供海量图数据的存储和分析能力,支持原生图存储结构,支持万亿边PB级数据存储。同时,StellarDB具备毫秒级点边查询能力,10+层的深度链路分析能力,提供近40种的图分析算法,具备数据2D和3D展示能力。StellarDB在数据导入、多跳查询和图算法性能方面实现了数倍升级,同时在易用...

行业资讯
国产时空数据库有哪些?
随着科技和信息技术的快速发展,时空数据已经成为重要的技术支撑和决策工具。与此同时,国内也出现了不少优秀的国产时空数据库产品,不仅在空间分析、时序分析等方面实现了卓越的表现,同时也在存储管理、可视化展示等方面有着出色的成果。不少时空数据库产品已实现了高可靠性、高性能和高稳定性的功能,在交通运输、城市规划、GIS和物流供应链等领域都有着广泛的应用。其中星环科技的分布式时空数据库-TranswarpSpacture就是其中一款优秀的时空数据库产品。星环分布式时空数据库-TranswarpSpactureSpacture是星环科技自主研发的一款面向空间、时空数据的存储与管理,集计算与存储为一体的分布式数据库产品,支持大规模矢量数据、时空轨迹数据的存储与计算,具有完备的数据查询、分析和挖掘能力,可用于时空查询分析、时空模式挖掘、时空轨迹聚类等时空轨迹数据分析场景,广泛应用于交通物流、城市管理、位置服务等场景。产品优势原生空间:时空数据类型,针对空间时空数据的特定优化。兼容OGC标准:提供丰富的分析函数,具备复杂分析挖掘能力。支持SQL:基于SQL完成空间分析和轨迹分析,降低产品使用门槛。兼容Po...

行业资讯
数字政府建设
近日,领先的IT市场研究和咨询公司IDC发布2022年数字政府百强榜,梳理出数字政府领域领先的技术供应商,评估了技术提供商的市场能力及市场份额。星环科技作为企业级大数据基础软件开发商,成功入选IDC数字政府百强榜“大数据及数据治理”模块。星环科技致力于打造企业级大数据基础软件,围绕数据的集成、存储、治理、建模、分析、挖掘和流通等数据全生命周期提供基础软件与服务,形成了大数据与云基础平台、分布式关系型数据库、数据开发与智能分析工具的软件产品矩阵。在政府领域,星环科技通过智慧政务数字底座为政府数字化转型建设提供计算、存储、算法等基础能力支撑,归集业务数据,优化业务流程,治理出有价值的数据资源,进行专题分析沉淀数据资产,服务部门之间数据共享与业务协同,服务领导决策与政策制定,服务公众、企业便捷办事。公司产品已被多个部委或省市机关部门使用,助力构建数字化政府,提升治理效率。比如星环科技基于数据云平台TDC为建设上海市数据资源平台提供了底层支撑,将70多个委办局以及16个区县业务库的结构化和非结构化数据进行归集,构建三级数据共享交换体系,保障数据安全,支撑“一网通办”等数据服务能力。此外,根据不...

行业资讯
图数据库有哪些?
图数据库是一种用于处理图形数据的特殊类型的数据库。它们旨在存储和管理关系和连接,具有比其他类型的数据库更强大的能力。目前国内有众多优秀图数据库产品,星环科技图数据库产品StellarDB其中之一。TranswarpStellarDB是星环科技自主研发的企业级分布式图数据库,提供高性能的图存储、计算、分析、查询和展示服务。StellarDB支持原生图存储,千亿点、万亿边、PB级大规模图数据存储;具备10+层的深度链路分析能力,提供丰富的图分析算法和深度图算法;支持标准图查询语言并兼容openCypher,并具备海量数据3D图展示能力。可以帮助用户快速开发欺诈检测、推荐引擎、社交网络分析、知识图谱等应用。TranswarpStellarDB优势:原生图存储:StellarDB为数据存储设计了专有的图存储结构,优化查询性能,通过高效的压缩算法减少磁盘和内存的使用量。根据分区策略,图数据均匀分布于集群各节点。优越的性能:存储引擎和计算引擎结合,使计算引擎可以利用数据locality提升计算性能,拥有卓越的数据读写能力,支持大规模并行处理,毫秒级的查询响应。高扩展性:完全的分布式架构,具有良好的...