大模型数据集 对比
大模型数据集 对比 更多内容

行业资讯
大模型数据集构建
大模型数据集构建包括从多渠道收集海量数据,进行清洗、分词、标注等预处理,划分训练集、验证集和测试集,通过回译等方式增强数据,构建指令、对话、长文本等特定数据集,还涉及质量评估、优化、更新和维护。以下任务和模型需求,对数据进行标注,如分类任务中的类别标注、问答任务中的问题与答案标注等。标注工作可由专业人员或众包平台完成,但需保证标注的一致性和准确性。数据集划分训练集:用于训练大模型,使其学习领域的大模型,需收集该领域的专业数据。数据规模:大模型通常需要海量的数据来学习,一般要收集数十亿甚至上百亿的文本数据,以保证模型能够学习到足够的语言知识和语义信息。数据预处理清洗数据:去除数据中的噪声和语言知识和各种模式,通常占数据集的大部分,如80%左右。验证集:在训练过程中用于评估模型的性能,调整模型的超参数,一般占数据集的10%-20%。测试集:用于最终评估模型的泛化能力和性能表现,其数据应与训练集对应的输入输出对,让模型学习根据不同的指令生成相应的文本。多轮对话数据集:收集或构建多轮对话的文本数据,使模型能够学习到对话的逻辑和上下文理解能力,如聊天记录、客服对话等。长文本数据集:针对处理长文

行业资讯
大模型训练数据集
大模型的训练数据集是其性能和泛化能力的关键。常见类型文本数据:是大模型训练中最常见且基础的一种数据类型。包括新闻报道、小说、论文、百科知识、社交媒体帖子、评论等各种文本来源。例如,大量的新闻文章能够、监控摄像头等。音频数据:包括语音、音乐、环境声音等。例如,语音数据集可以是人们日常对话、演讲、广播等的录音,通过对这些数据的学习,模型能够实现语音识别、语音合成等功能;音乐数据集则包含各种风格、类型的音乐曲目,可用于音乐创作、音乐风格分类等任务;环境声音数据集如风声、雨声、车辆行驶声等,有助于模型对不同环境声音的识别和理解。视频数据:由一系列连续的图像帧和对应的音频组成,来源广泛,如电影、电视剧领域的专业性和针对性,对于训练面向该领域的大模型具有重要价值,能够使模型更好地理解和处理相关业务场景下的问题,但企业在使用自有数据时,也需要注意数据的合规性和用户隐私保护。学术研究机构:高校、科研院所等学术机构在开展科研项目过程中,会收集和整理一些特定领域的数据,用于学术研究和实验。部分学术机构也会将其收集的数据公开共享,为大模型训练提供有价值的数据资源,推动相关领域的研究和发展。构建过程数据收集

行业资讯
什么是大模型数据集?
大模型数据集是指用于训练和优化大型模型的大规模数据集合,是大模型具备强大性能和广泛知识的基础。通常包括:预训练语料库通用预训练语料库:包含来自不同领域和主题的大规模文本数据混合。其目标是为自然语言好的大模型进行性能评估,以了解模型在不同任务和场景下的表现。特定任务数据集涵盖了各种传统的自然语言处理任务的数据集,如分类、摘要、翻译、问答等。这些数据集针对特定的任务进行标注和整理,可用于训练和评估大模型在相应任务上的性能,帮助模型更好地理解和处理不同类型的自然语言任务。处理任务提供通用的语言知识和数据资源,使模型具备广泛的语言理解和生成能力。特定领域预训练语料库:专门包含特定领域或主题的相关数据,如金融、医疗、法律、交通、数学等,旨在为大模型提供专业知识,使其在特定领域的任务中表现更出色。指令微调数据集构建方式:由一系列“指令输入”和“答案输出”的文本对组成,构建方式包括手动创建、模型生成、收集和改进现有的开源数据集以及上述三种方法的结合。主要类别:分为通用指令微调数据集和特定领域指令微调数据集。通用指令微调数据集包含多个领域的各种类型指令,可提高模型在广泛任务中的性能;特定领域指令微调数据集的指令则是专门为特定领域设计的,能使模型学习和执行特定领域的任务,如

近日,在2024世界人工智能大会“迈向AGI:大模型焕新与产业赋能”论坛上,《2024大模型典型示范应用案例集》(以下简称《案例集》)重磅发布!星环科技无涯·问知InfinityIntelligence成功入选《案例集》。2024年,我国将人工智能的发展上升为国家战略,大模型的产业化应用落地进一步提速。作为以产业化为导向的重磅前沿研究成果,《案例集》展示了新全的大模型创新融合应用发展成果,推动了大模型为代表的人工智能前沿技术赋能千行百业,推动社会经济高质量发展。无涯·问知是一款基于星环科技自研预训练模型无涯Infinity和向量数据库Hippo、图数据库StellarDB构建的企业级垂直领域理解能力及数据分析能力,可用于市场研究分析、企业供应链分析、法律风险预警、设备故障诊断等丰富的业务场景中。主要产品优势体现在:精准问答能力,减少大模型幻觉基于向量索引技术的信息检索:基于星环自研向量多层次关系,从而进行深度的关联分析,提供了更为深入和准确的洞察结论。确保答案可验证性:无涯·问知的所有回答均提供标注信息来源,确保答案的透明度和可验证性,有效避免大模型幻觉。多模数据来源,提升回答丰富

行业资讯
大模型训练
:采用有监督微调训练好的模型,训练奖励模型时,冻结该模型的参数。数据集准备训练任务:构建一个文本质量对比模型,通过二分类模型等对输入的两个结果之间的优劣进行判断,其本质是一个排序学习任务。强化学习阶段大模型训练是一个复杂且系统性的工程,以语言大模型为例,通常包括以下关键步骤2:预训练阶段模型准备:确定模型架构,随机初始化模型的参数。数据收集:采集海量数据,构建具有多样性的内容。数据预处理:对原始数据进行清洗,去除噪声、重复和错误数据;将文本数据转化为整数序列。有监督微调阶段模型准备:使用预训练阶段得到的基础模型。数据集准备:收集少量高质量的包含用户输入提示词和对应理想输出结果的数据集合,这些数据更具针对性和专业性,用于让模型学习特定任务的模式和规则。微调训练:将准备好的数据集输入到基础模型中,通过调整模型的参数,使模型能够更好地适应特定任务,具备遵循指令的能力。奖励模型训练阶段模型准备模型与环境交互:将大模型作为智能体,使其与环境进行交互。环境会根据智能体的输出给出相应的反馈,即奖励信号。策略优化:根据奖励信号,利用强化学习算法如PPO等,调整模型的参数,使得模型在后续的交互中能够

行业资讯
大模型数据处理
大模型数据处理包括多渠道收集海量数据,进行清洗、标注、归一化等预处理,采用高性能存储系统存储并进行压缩、备份恢复,还要进行数据管理如目录和元数据管理、版本控制、安全隐私保护,通过数据增强扩充数据,最后划分训练集、验证集和测试集用于模型训练和评估。数据收集多渠道数据获取:从互联网、专业数据库、企业内部系统等多种渠道收集数据,如搜索引擎的网页数据、社交媒体的文本和图像数据、医疗领域的电子病历和影像数据等,以丰富数据的来源和类型。数据规模考量:大模型通常需要海量的数据来训练,以学习到丰富的语言知识和语义理解能力,因此要确保收集的数据量足够大。数据预处理数据清洗:去除数据中的噪声、重复、错误或不完整模型的鲁棒性和创造力。数据分割训练集、验证集和测试集划分:将数据划分为训练集、验证集和测试集,一般按照一定的比例,训练集用于模型的训练,验证集用于模型的参数调整和优化,测试集用于评估模型的性能和泛化的数据,例如删除网页数据中的广告、无效链接,修正文本数据中的错别字、语法错误等,以提高数据的质量和准确性。数据标注:对数据进行标注,如对文本进行分类标注、情感标注,对图像进行物体识别标注等,为模型训练

行业资讯
预训练大模型,预训练大模型是什么?
预训练大模型是指在大型数据集上进行训练的深度神经网络模型,其中包含大量的参数和层级。这些模型通常使用大量的计算资源和大数据集进行训练,可以提高其性能和泛化能力。预训练大模型可以通过预先在大数据集上进行训练,来提高模型在特定任务上的表现,并减少对于任务特征依赖。预训练大模型通常需要在海量的数据集上进行训练,以获得更好的性能。在训练预训练大模型时,通常会使用大量的计算资源和基础设施,例如GPU集群领域中取得了显著的成效,例如计算机视觉、自然语言处理、语音识别等。预训练大模型是一种有效的机器学习技术,它在大型数据集上进行训练,可以提高模型的性、泛化和自适应能力,可以应用在多个领域,有关领域的应用、超级计算机和云服务。与传统的机器学习方法相比,预训练大模型具有更高的学习能力和性能,因为它们可以自动地从海量数据中发现隐藏的模式和规律,并通过相应任务的调整,进行微调实现更好的表现。这种方法已经在许多模型和大模型的持续提升。除此之外,星环科技在行业首先推出了两大行业大模型:服务于金融行业的星环金融大模型无涯,以及大数据分析大模型SoLar“求索”。

行业资讯
大模型数据
随着人工智能技术的快速发展,大模型已经成为AI领域的核心组成部分。这些模型需要海量的数据进行训练,以提升其性能和泛化能力。1.数据来源互联网文本数据:这是大模型训练数据的主要来源之一。书籍和学术文献:通过扫描和数字化的书籍以及各种学术数据库中的研究论文、报告等也是重要的数据。对于自然语言处理的大模型,学术文献提供了专业、严谨的语言表达方式和深入的知识体系。企业内部数据:企业在运营过程中积累了大量的数据,如客户数据、交易记录、产品信息等。这些数据可以用于构建企业专用的大模型,以提升企业在客户服务、产品推荐、供应链管理等方面的智能化水平。政府数据:政府部门发布的数据,如统计数据、政策文件、法律法规等也可以作为训练数据。这些数据在构建涉及公共事务、经济分析、政策解读等方面的大模型时非常有用。多媒体数据的文本化:对于图像、音频、视频等多媒体数据,通常会通过技术手段(如图像字幕提取、音频转文字)将其转换为文本信息后纳入训练数据。2.数据规模与多样性要求规模要求:大模型需要海量的数据来训练,以学习到足够复杂的模式和丰富的知识。一般来说,参数数量较多的大模型需要与之相匹配的大规模数据。例如,一些

行业资讯
大模型微调流程
大模型微调流程包含明确任务与目标、选基底大模型、准备数据集、选目标函数、微调模型、迭代调整与更新、评估性能以及应用部署这几个主要步骤。大模型微调一般可分为以下步骤:1.明确任务与目标确定具体的应用场景和任务需求,例如是进行文本分类、情感分析、机器翻译,还是其他自然语言处理任务等,以便后续选择合适的数据集和评估指标。2.选择基底大模型综合考虑模型的性能、可扩展性、部署成本及任务适应性等因素,选择一个合适的预训练大模型作为基底模型。3.准备数据集收集数据:根据任务需求收集相关的数据,如对于文本分类任务,需要收集带有分类标签的文本数据;对于机器翻译任务,需要收集源语言和目标语言对应的文本数据等。数据预处理:对收集到的数据进行清洗、去噪、重复数据删除等操作,确保数据的质量。然后根据所选大模型的要求,对文本进行分词、编码等预处理操作,并将数据划分为训练集、验证集和测试集。4.选择目标函数根据监督微调过程中的超参数,如学习率、批量大小、训练轮数、优化器等。这些参数的选择需要通过实验来确定,以找到最适合当前任务和数据集的组合。执行微调:将训练数据输入到模型中,通过梯度下降等优化算法,根据任务数据
猜你喜欢

行业资讯
图数据库有哪些特点?
图数据库是现代数据库系统中的一种,它主要的特点就是使用了图论的概念来进行数据管理。传统的关系型数据库通常是基于表和列的结构进行数据管理,而图数据库则是构建了节点和边的图形结构,可以更好的表示现实世界中的复杂关系。下面是图数据库的几个主要特点:1.基于图形结构:图数据库是基于图形结构来进行数据管理的。它通过节点和边来构建数据的表示形式,使得数据之间的关系和结构更加直观和清晰。这对于处理关联复杂、数据关系复杂的场景具有重要意义。2.高效地关系查询和分析:图数据库具有高效的关系查询和分析能力。对于一个大规模的图,传统的SQL查询方式显然不能满足查询时间的要求。而图数据库则可以通过图数据库内部的算法来进行实时的查询和分析。尤其是针对一些复杂的图分析算法,图数据库更能够快速地获得结果,提高查询速度。3.可扩展性:由于采用了分布式的技术设计,使图数据库的可扩展性极佳。当需要管理的数据量增加时,图数据库可以通过简单的集群扩展方式来实现性能的提升。而且,图数据库的分布式能力也可以让其在多个节点上进行操作,提高了系统的容错能力和加载能力。4.元素和关系度量:图数据库具有丰富的元素数据和关系数据量度方式。...

行业资讯
金融、医疗知识图谱平台
垂直领域知识图谱产品主要用于面向特定领域知识应用需求,通过构建和应用知识图谱解决对应领域的专业问题。目前,知识图谱在智慧医疗与智慧金融领域已取得了一系列成功实践,被应用于辅助医生、药物发现、临床科研、风险防控、内部监管、投资研究、保险理赔等众多实际业务场景,并涌现出了一批知识图谱产品或服务平台。星环科技自主研发的知识图谱平台Sophon正是一款覆盖知识全生命周期,集知识的采集、建模、融合、存储、计算及应用为一体的知识图谱产品。平台支持低代码图谱构建、智能化知识抽取、多模态知识存储与融合、多形式知识计算和推理以及多维度的图谱分析。除了具备链路完备性,平台还从业务场景出发,沉淀了金融、保险等场景的图数据模型、规则模型和算法模型,可以帮助用户快速解决不同场景下的业务问题。目前,星环科技Sophon已经在金融等多个行业成功落地,在反洗钱、反欺诈、疫情防控、公共安全、企业级营销、保险知识智能问答等场景有着广泛的应用。同时星环科技在推动知识图谱技术创新和成功落地的过程中,也获得了多项荣誉和权威认可:入选Gartner《MarketGuideforArtificialIntelligenceStar...

行业资讯
什么是时空数据库?
时空数据库(Spacial-temporaldatabase)是一种专门用于存储和管理时空数据的数据库管理系统,它是传统关系型数据库的一个扩展,可以实现对时空数据进行有效管理和处理。时空数据是指带有时空坐标或时间戳的数据,例如地图、气象数据、交通、城市规划等。因此,时空数据库可以用于多种应用程序,如地理信息系统、航空航天、气象预报、GPS导航等。时空数据库与传统数据库不同的是,它提供了额外的功能和数据类型,例如点、线、面等空间对象和时间序列数据类型。此外,时空数据库还支持空间查询和时空查询,例如常见的缓冲区查询,使得用户可以在时空范围内进行查询和分析。这种数据库可以对时空数据进行高效的存储、查询、更新和分析,并通过插件技术集成其他地理信息数据源。星环分布式时空数据库-SpactureSpacture是星环科技自主研发的一款面向空间、时空数据的存储与管理,集计算与存储为一体的分布式数据库产品,支持大规模矢量数据、时空轨迹数据的存储与计算,具有完备的数据查询、分析和挖掘能力,可用于时空查询分析、时空模式挖掘、时空轨迹聚类等时空轨迹数据分析场景,广泛应用于交通物流、城市管理、位置服务等场景。

行业资讯
分布式隐私计算平台
星环科技分布式隐私计算平台SophonP²C集多方安全计算、联邦学习等多种功能,为隐私计算提供完整的解决方案,以隐私保护为前提,解决了跨组织协作时无法安全利用各方数据的困境。平台支持联邦学习、多方安全计算、匿踪查询等功能;性能方面,联邦学习与多方安全计算可达亿级数据量,助力数据要素安全流通和价值迸发,实现数字经济时代下的跨企业和行业的AI协作。星环科技的隐私计算技术已落地如数据流通、政务民生、金融营销等垂直业务场景,为跨企业数据协作提供安全可信的平台支持。在政务民生场景,SophonP²C通过纵向联邦学习联合居民用电数据与用水数据,生成群租房预测名单。在联合建模过程中,全程明文数据不出,有效保护了居民用水用电的数据隐私信息。联合训练模型比本地单独用电数据训练的模型AUC提升20%以上,赋能政务决策高效的处理分析能力,为政府有效排查群租房,消除群租房造成的消防、安全隐患,打造和谐、安全、美丽的生活环境作出了突出贡献,为政务决策、民生建设发挥信息化支撑保障作用。在精准营销场景,通过纵向联邦学习,车企安全引入了多方数据,丰富用户特征维度,对用户行为进行统计分析。在联合建模过程中,全程明文数据...

行业资讯
基于数据安全网关的跨境安全流通方案
星环科技致力于打造企业级大数据基础软件,基于在大数据、分布式数据库、隐私计算、数据安全流通领域有着多年积累,研发了数据要素流通全过程的一系列工具,在各方数据不出域的前提下,为数据资源方和数据消费方提供数据交付服务。2022年9月星环科技曾受邀出席“深数交”数据合规活动,分享数据安全出境解决方案。2021年星环科技成为上海数据交易所首批签约数商。2022年12月星环科技与中国东信旗下北部湾大数据交易中心达成了战略合作。伴随数字经济蓬勃发展,融入全球数据跨境流动的趋势不可避免。数据出境安全治理受到广泛重视,为进一步规范数据出境活动,保护个人信息权益,维护国家安全和社会公共利益,促进数据跨境安全,国家互联网信息办公室发布了《数据出境安全评估办法》。国内运营的外企(尤其是零售、化工等)、新能源汽车以及生态企业(含自动驾驶等)、国际化企业与出海企业、跨境电商和物流、有融资需求的基于数字化做业务创新的创业公司等是国内迫切需要落实数据安全出境的企业。然而企业在落地数据出境安全方面存在一些实际困难,主要体现在:错综复杂的数据如何分类分级,如何识别重要数据;重要数据如何存储和管理,才能达到相关法律法规的...

行业资讯
银行图数据库应用场景有哪些?
银行图数据库的应用场景:反洗钱:图数据库可以将可疑交易数据存储于其中,帮助银行更快速地提取、分析与关系,识别出潜在的洗钱行为。客户关系管理:银行图数据库可以将客户的不同信息(如交易记录、信用评级、客户所在地和行业等)进行整合,并将这些信息在一个数据仓库中呈现出来。这使得银行能够更加精准地分析客户需求,提供更加符合客户需求、更加优质的服务。风险管理:银行是一个与风险息息相关的行业。图数据库可以帮助银行对相关风险进行整合和分析。通过解析大量的金融数据,图数据库可以找出潜在的风险点,提前控制风险。数字化转型:图数据库能够将社交网络、收集的数据等信息关联起来,并创造性地开拓新业务模式。除了与客户密切相关的业务领域,图数据库还能够在支持业务流程优化方面发挥重要作用。营销:银行可以使用图数据库来收集客户数据、行为数据等,这样可以更加精确地预测客户习惯,对客户进行更加细致的营销和服务。银行图数据库有着广泛的应用场景,可以在多个角度上支持银行的业务发展,提高服务的质量和效率。星环分布式图数据库StellarDB星环科技致力于打造企业级大数据基础软件,围绕数据的集成、存储、治理、建模、分析、挖掘和流通等...

行业资讯
国产化替代升级实践
新时代需要新技术,企业应抓住机遇实现旧平台的改造升级数据库技术经过不断的发展,已经从以Oracle、IBM为代表的集中式数据库,演进到分布式、多模型、云原生的形态,并在很多场景应用落地,带来了真实的业务价值。当前得益于国家政策的大力扶持以及国内市场环境的快速发展,国产软件加速发展,国产化替代进程正在不断加速。自主可控是国产化替代的核心,同时也是一个阶段性的目标。我们不应该满足于此,应该抓住国产化改造的机遇,用新技术去替代老技术,实现自主可控的同时,完成旧系统的改造升级,这也是信创的主旨。星环科技致力于打造企业级大数据基础软件,围绕数据全生命周期提供基础软件与服务,在分布式技术、多模型技术、数据云技术等方面有很多技术突破。比如大数据基础平台TDH是全球首个通过TPC-DS基准测试的产品;提出了创新的多模型统一技术架构,支持业内主流的10种数据模型,Gartner®发布的中国数据库技术发展趋势报告引用星环科技多模型联合分析用例,论证了多模型融合分析的趋势和价值。基于多年积累的分布式技术、多模型统一技术、数据云技术等,星环科技打造了分布式数据库ArgoDB、分布式交易型数据库KunDB、分布...

行业资讯
常见的图数据库应用场景有哪些?
图数据库有许多适用场景,常见的应用场景有:社交媒体:社交媒体中的用户和关系可以建模为图结构。用图数据库来管理和查询这些社交数据,可以实现更精确的社交关系分析。金融:在金融领域中,图数据库可以用于合规风控、反欺诈、投资和信贷决策等众多场景。例如,通过在图中存储和分析不同实体(如银行账户、信用卡、电话、邮箱、运单等)之间的关系,可以准确识别欺诈降低风险。物流和运输:物流和运输领域也是图数据库的应用场景之一。例如,通过在图中存储城市、仓库、货物、运输路线等信息,可以进行物流管理、运输计划优化、货物追踪等任务。生命科学:在生命科学领域,图数据库可以用于存储和分析复杂的基因、蛋白质、代谢物等数据,帮助科学家发现新的治疗方法和疾病机制。游戏:游戏开发者可以使用图数据库来管理玩家角色、各种装备、地图、任务等复杂的游戏数据,实现更好的游戏体验。图数据库的灵活性和高效性使其在多个领域都有着广泛的应用。星环分布式图数据库StellarDB星环科技致力于打造企业级大数据基础软件,围绕数据的集成、存储、治理、建模、分析、挖掘和流通等数据全生命周期提供基础软件与服务,在图计算领域深耕多年,自主研发了分布式图数据...

行业资讯
数据要素安全流通服务
数据要素是数字经济发展的关键生产要素,是数字经济发展的基础。加快培育数据要素市场是全面建设社会主义现代化国家的一项基础性工作,对推动经济高质量发展、建设数字中国和数字强省、促进经济社会数字化转型具有重要意义。星环科技致力于打造企业级大数据基础软件,围绕数据全生命周期提供基础软件与服务。基于在大数据、分布式数据库、隐私计算、数据安全流通领域的多年积累,星环科技研发了数据要素流通全过程的一系列工具,在各方数据不出域的前提下,为数据资源方和数据消费方提供数据交付服务。2021年星环科技成为上海数据交易所首批签约数商。2022年9月星环科技曾受邀出席“深数交”数据合规活动,分享数据安全出境解决方案。2022年12月星环科技与中国东信旗下北部湾大数据交易中心达成了战略合作。星环科技在产品的各层级上都完善了安全技术,从而可以给用户提供体系化的数据安全防护能力,助力企业高效、合规的开展数据流通业务。在基础设施层,星环科技提供基于容器的云原生操作系统TCOS,它不仅能够提供容器隔离和镜像扫描,还新增了漏洞检测以及面向业务的微隔离安全技术,从而可以为用户开辟一个独立的数据与计算环境,外部的服务未经授权无...

星环科技图数据库StellarDB是国产高性能图数据库,采用分布式架构和原生图计算引擎,支持超大规模数据管理和高效的图计算。TranswarpStellarDB具有以下特点:原生图存储:StellarDB为数据存储设计了专有的图存储结构,优化查询性能,通过高效的压缩算法减少磁盘和内存的使用量。根据分区策略,图数据均匀分布于集群各节点。优越的性能:存储引擎和计算引擎结合,使计算引擎可以利用数据locality提升计算性能,拥有卓越的数据读写能力,支持大规模并行处理,毫秒级的查询响应。高扩展性:完全的分布式架构,具有良好的可扩展性,支持在线扩容和升级。拥有万亿级图数据处理能力,支持数据多副本,提供集群高可用和高可靠。灵活的查询方式:计算引擎支持灵活易懂的图查询语言TranswarpExtended-OpenCypher,拥有丰富的图操作语法。同时提供SQL支持,多模场景灵活切换。深度分析能力:支持10层及以上的图深度遍历和复杂分析。丰富的算法库:内置丰富的算法库,几十种图算法开箱即用,优化的分布式并行图算法,千万级子图计算效率达到行业先进水平。企业级功能:支持用户权限认证、集群状态监控、日...