通信大模型

星环无涯·问知
星环科技无涯·问知Infinity Intelligence,是一款基于星环模型底座,结合个人知识库、企业知识库、法律法规、财经等多种知识源的企业级垂直领域问答产品。

通信大模型 更多内容

通信数据归集方法在当今信息爆炸的时代,通信数据已经成为社会运转的重要基础。从手机通话记录到互联网浏览痕迹,从物联网设备上传的数据到卫星传输的信号,这些通信数据的归集与处理直接影响着信息技术的应用效率。那么,通信数据究竟是如何被归集的呢?本文将介绍几种常见的通信数据归集方法。传统的数据归集主要依赖于集中式采集。这种方法通常在企业或机构的内部网络中应用,通过部署中央服务器收集来自各个终端设备的数据。这种方法减轻了中心节点的压力,提高了系统整体的容错能力。边缘计算就是分布式归集的典型代表,它通过在数据产生源头附近进行处理,有效减少了网络带宽的占用。日志归集是另一种常见的数据收集方式。几乎所有的通信数据,这些数据对于分析用户行为和改进产品体验至关重要。随着无线通信技术的发展,传感器网络数据归集也变得越来越重要。在环境监测、智慧城市等场景中,大量传感器节点持续采集温度、湿度、位置等信息。这些节点通常采用自组织网络的形式,通过多跳传输将数据汇聚到网关设备。为了节省能源,传感器网络常采用数据融合技术,即在传输过程中就对冗余数据进行过滤和聚合。值得一提的是,现代通信数据归集越来越注重实时性。流式
行业资讯
模型API
模型API(ApplicationProgrammingInterface,应用程序编程接口)是一组定义和协议,主要用于构建和集成应用程序软件,允许不同的软件系统之间进行通信和数据交换。模型API主要功能与用途模型API提供了强大的自然语言处理(NLP)能力,可以应用于各种任务,包括但不限于:自然语言理解和生成:理解和生成自然语言文本,如撰写文章、生成对话、回答问题等。智能聊天机器人:创建
行业资讯
通信数据归集
通信数据归集:数字时代的脉络与挑战在当今这个万物互联的时代,通信数据如同空气一般无处不在。从清晨手机闹铃响起的那一刻,到深夜浏览最后一条社交媒体信息,我们的每一天都在产生海量的通信数据。这些看似零散的数据碎片,经过系统的归集与整合,正悄然改变着我们的生活、工作和社会运行方式。通信数据归集,简而言之就是将分散在不同源头、不同格式的通信信息进行收集、整理和存储的过程。这些数据可能来自手机通话记录,通过各种终端设备和通信网络获取原始数据;其次是数据清洗,剔除无效或错误信息;接着是数据转换,将不同格式的数据统一处理;然后是数据存储,将整理好的信息分类存放。这一系列操作看似简单,实则面临诸多技术挑战。例如,如何实时处理每秒数以万计的数据包?如何确保不同运营商、不同设备产生的数据能够无缝对接?这些都是工程师们需要解决的难题。通信数据归集的价值体现在多个层面。在城市管理方面,通过对移动通信数据的分析,可以精准掌握人流分布和迁徙规律,为交通规划、应急管理提供科学依据。在商业领域,运营商通过分析用户通信模式,能够优化网络资源配置,提升服务质量。医疗健康领域则可以利用可穿戴设备产生的通信数据,实现远程
统一——统一纳管、统一运维、统一应用、统一监控、统一评估、统一解释外,针对语言模型的微调、持续提升、评估、对齐等提供从计算框架、工具到计算、存储、通信的调度和优化支持。第三,SophonLLMOps具有星环语言模型运营平台-SophonLLMOpsSophonLLMOps作为一个全面的模型统一运营管理平台,旨在为用户打通从数据接入和开发、提示工程、模型微调、模型上架部署到模型应用编排和业务效果对齐的全链路流程,从而实现针对模型的“数据和分析的持续提升”。星环科技SophonLLMOps的工具链优势体现在以下几个方面:首先,SophonLLMOps拥有自己的样本仓库能力,覆盖训练数据开发、推理数据开发、数据维护等工作,对语言模型涉及的原始数据、样本数据、提示词数据做清洗、探索、增强、评估和管理等。第二,SophonLLMOps具有模型运维管理能力。除了传统MLOps的六语言模型和其他任务的编排、调度和上线能力。SophonLLMOps提供Agent、Ops、DAG,结合星环科技的多款数据、数据库产品,如向量库Hippo和分布式图数据库StellarDB等,将不同
行业资讯
模型 训练
统一,即统一纳管、统一运维、统一应用、统一监控、统一评估和统一解释外,还需要提供计算框架、工具以及计算、存储、通信的调度和优化支持,以满足语言模型的微调、持续提升、评估和对齐等方面的需求。在模型和其他模型训练是指使用规模数据集进行模型训练的过程。模型训练的目标主要是提高模型的准确性和泛化能力,以便更好地应对各种实际应用场景。模型训练是一个需要结合多种策略和技术的复杂过程,需要在保证准确性和泛化能力的同时,尽可能提高训练速度和效率。模型持续开发和训练工具为了满足企业应用语言模型的需求,星环科技率先在行业中提出了行业大模型应用创新场景,并推出了相应的模型持续开发和训练工具——SophonLLMOps。这款工具旨在帮助企业构建自有的行业大模型,通过大模型基础设施打造面向未来的、具备“新型人机交互”且“敏捷可持续迭代”的人工智能应用。针对语言模型及其衍生数据、模型和应用方面的问题,SophonLLMOps工具链需要完成从通用语言模型的训练和微调、模型上架到模型持续运营及提升迭代的全流程任务,从而成功构建满足企业自身业务特点的领域语言模型。在模型训练微调阶段
行业资讯
模型底座
。作用与意义提供基础架构支持:模型底座为整个大模型的构建提供了底层的技术框架和基础设施,包括硬件架构、软件架构、通信机制等,确保模型能够高效地运行和处理规模的数据。承载和预处理数据:负责数据的收集模型底座是支撑模型训练和应用的基础设施和技术框架,是构建模型的基础支撑部分。AI底座作为模型时代的基础设施,不仅提供从数据管理到模型部署的全方位服务,还在各个行业中展现出广泛的应用潜力模型的训练过程,提高训练效率,同时通过各种优化手段,如调整参数、改进架构等,不断提升模型的性能和表现。实现模型的通用性和扩展性:一个好的模型底座能够使模型具备较强的通用性,适用于多种不同的应用场景和和共享。算力层:硬件设备:包括高性能的、计算芯片,以及规模的存储设备和高速网络设备,为模型训练和推理提供强大的计算能力和数据传输能力。算力调度与管理:通过分布式计算、云计算等技术,实现对计算资源的灵活调度和管理,提高资源的利用率和任务的并行处理能力,确保模型训练能够在高效、稳定的算力环境下进行。算法层:基础模型架构:设计和选择适合模型的基础架构,为模型的学习和表示能力提供保障。训练与优化算法:采用
通信行业在数字化转型中面临着来自互联网行业的竞争和客户需求的升级,需要调整企业结构,利用数字化手段提升服务质量和客户感知。提供数字化服务:运营商通过全在线体验和智能化方式,如服务在线化、营销服务智能化,提升客户体验,从通信服务转向信息服务。打造创新生态平台:通过与合作伙伴共建生态,融合资源和产品,创造新的业务增长点,实现客户引流和业务模式创新。建立数字化企业架构:优化通信企业的系统架构,基于,用数字化工具替代传统工作流程。星环科技助力企业数字化转型星环科技为企业进行数字化转型提供数据全生命周期的处理工具,包括数据平台、分布式数据库、数据开发和智能分析工具、以及容器化的资源管理平台。为
行业资讯
模型训练
,例如数据并行、模型并行、流水线并行和张量并行等。此外,模型训练还需要考虑存储和网络通信的问题,例如如何有效地存储和传输规模的数据和模型。在训练过程中,需要使用更多的计算资源和存储资源,因此需要更高模型训练是一种机器学习的方法,通过训练规模的模型来提高训练速度和减少训练时间。在训练过程中,通常使用并行计算的方法来加速训练。同时,为了处理规模的数据和模型,需要使用更高效的算法和优化技术效地管理和调度这些资源。随着深度学习和数据技术的发展,模型训练已经成为机器学习领域的重要研究方向之一。星环科技模型训练工具,帮助企业打造自己的专属模型星环科技在行业内首先提出行业大模型应用创新场景,推出相应的工具,帮助企业构建自有的行业大模型,通过大模型基础设施,形成具备“新型人机交互”且“敏捷可持续迭代“的人工智能应用。为了帮助企业用户基于模型构建未来应用,星环科技推出了SophonLLMOps,帮助企业构建自己的行业大模型。具体来看,它解决了客户三个核心痛点:第一,提供一站式工具链,帮助客户从“通用语言模型”训练/微调,得到“满足自身业务特点的领域语言模型”;第二,帮助客户将
行业资讯
模型分析
模型分析涉及多个方面,包括技术原理、算力需求、推理成本、算力基础设施挑战、多模态、长序列、混合专家模型等。技术原理:模型的预训练技术原理是利用大量无标签或弱标签的数据,通过算法模型进行训练,得到一个初步具备通用知识或能力的模型。算力需求:模型对算力的需求每年增长四倍以上,过去十年间算力需求增长约100万倍。MoE(混合专家模型)能够在保持模型性能的同时,相比同等规模的稠密模型显著降低计算资源的需求。推理成本:模型的推理成本相对较高,尤其是在边缘设备上,推理效率仍是瓶颈。算力基础设施挑战:随着模型算力需求的增长,加速集群互联技术演变成为跨尺度、多层次的复杂系统工程问题,涉及芯片设计、先进封装、高速电路等多个领域。多模态、长序列、混合专家模型:多模态、长序列、MoE模型已成为模型架构演进的确定性趋势,它们不仅提升了人工智能在内容理解和内容生成方面的能力,而且提高了模型的泛化能力和任务适应性。然而,这些模型架构的演进同时带来了更巨量的算力需求以及更复杂的集合通信需求,对现有算力基础设施带来了更大挑战。
图数据库的应用场景非常广泛,可以应用于各个行业。以下是一些常见的应用场景:金融:在金融领域,图数据库可以帮助银行、保险公司等企业处理复杂的数据结构,支持欺诈检测、交易路由、投资组合分析等操作。社交网络:图数据库可以存储和处理社交网络中的复杂关系图谱和大量用户数据,支持好友推荐、社区发现、个性化内容推荐等操作。物流:在物流领域,图数据库可以帮助企业优化路径规划、物流运输等操作,加速发货、配送时间并提高效率。制造业:图数据库可以支持企业处理复杂的设备关系结构图,进行维修保养、设备性能分析、生产计划优化等操作。能源行业:在能源领域,图数据库可以处理复杂的电网、管道等结构图谱,并支持多种能源趋势分析和紧急事件监测等操作。电商:图数据库可以应用于电商业务中,存储和处理复杂的商品与用户之间的关系,支持个性化推荐、购物车分析、用户行为预测等操作。图数据库可以在各个领域中应用,并且在处理复杂的数据结构和大量的数据时比传统数据库具有更高的性能和效率。星环分布式图数据库StellarDB星环科技致力于打造企业级大数据基础软件,围绕数据的集成、存储、治理、建模、分析、挖掘和流通等数据全生命周期提供基础软件与...
星环科技作为一家企业级大数据基础软件开发商,在图计算领域深耕多年,有着深厚的技术积淀和丰富的实践经验。星环科技自主研发的分布式图数据库StellarDB,兼容openCypher查询语言,提供海量图数据的存储和分析能力,支持原生图存储结构,支持万亿边PB级数据存储。同时,StellarDB具备毫秒级点边查询能力,10+层的深度链路分析能力,提供近40种的图分析算法,具备数据2D和3D展示能力。StellarDB克服了海量关联图数据存储的难题,通过集群化存储和丰富算法,实现了传统数据库无法提供的低延时多层关系查询,目前已经用于金融、政府、交通等众多行业,用于反洗钱、风险控制、营销等多种场景。同时StellarDB还获得了多项行业权威认可:入选信通院2022大数据十大关键词“图计算平台”代表厂商;通过了中国信通院图数据库和图计算平台基础能力两项专项测评;入选著名咨询机构Gartner《中国数据库市场指南》、《工具:中国数据库管理系统供应商甄选》报告等,彰显了其产品技术领先性。如今,5G、物联网、AI等技术的发展应用让数据呈指数倍增长,为图数据库发展提供了更广阔的应用空间。顺势而为,乘势而上...
在国产数据库产品方面,星环科技坚持自主研发与技术创新,打造了自主可控的高性能分布式数据库ArgoDB和分布式交易型数据库KunDB,以及分布式图数据库StellarDB等产品。KunDB具备较强的SQL兼容性,同时具备高可用、高并发、在线扩缩容、数据强一致性等能力,适用于操作型业务、高并发业务等场景。ArgoDB具备完整的SQL兼容性,同时具备高扩展、高可靠、多模型、存算解耦等能力,一站式满足数据仓库、实时数据仓库、数据集市、OLAP、联邦计算等场景。通过不断的打磨和对业务场景不断的落地实践,ArgoDB和KunDB已成为具有完全自主知识产权的成熟的国产数据库,能够为更多的客户提供高性能、高可靠、成熟的数据库产品服务,帮助用户应对智能数据时代海量数据的分析与探索。分布式图数据库StellarDB兼容openCypher查询语言,提供海量图数据的存储和分析能力,支持原生图存储结构,支持万亿边PB级数据存储。同时,StellarDB具备毫秒级点边查询能力,10+层的深度链路分析能力,提供近40种的图分析算法,具备数据2D和3D展示能力。星环科技StellarDB在金融、政府和社交网络等领域...
双碳目标下,全国碳排放监测服务平台启动建设力争2030年前实现碳达峰、2060年前实现碳中和,我国明确提出“双碳”目标,充分彰显了在构建人类命运共同体进程中的大国担当。国家电网公司主动担当重要使命,提出“实现双碳目标,能源是主战场,电力是主力军,电网是排头兵”的战略部署,率先行动,发布《全国碳排放监测服务平台建设工作方案》。“双碳”目标的实现离不开科技支撑。《全国碳排放监测服务平台建设工作方案》指出,全国碳排放监测服务平台建设的总体目标是以电网数字化赋能和助力国家碳达峰碳中和,实现“电力看双碳”,“双碳看经济”,为国家碳排放统计核算体系建设、宏观调控政策制定、经济社会全面绿色转型发展等工作提供决策支持。平台建设需要解决以下问题:以数字化平台技术解决各省的地市、区县、重点行业碳排放数据维度不全面、核算方法不完善、碳核算体系不统一等方面的问题;强化数据应用,发挥好决策支撑作用,深挖电力大数据价值,开展“电力看环保”“电力看经济”等大数据应用。积极响应号召,星环科技打造碳排放监测服务平台解决方案星环科技作为大数据基础软件领域的代表性企业,有着高度的责任感和使命感,为响应“全国碳排放监测服务平...
行业资讯
数据中台建设
随着行业和技术领域的变化日新月异,从数据仓库、动态数仓,到数据湖,从新一代湖仓一体技术到可插拔数据库,概念的引入虽然简单,但如何做到更有效,更复杂的数据资产管理就考验着对生产能力和工艺过程的管理能力。星环科技认为数据中台是一种能力、是一种组织上的策略而不仅仅是一种技术架构,它是在信息化基础上建立的可编织和可复用的数据可分析能力,从而支撑企业数字化转型。星环科技的数据中台三中心、六能力、两个体系星环科技很早就在数据中台领域布局,结合星环科技全系产品的相关组件实现数据中台能力建设。星环科技把数据中台建设归纳为三中心、六能力、两个体系,这当中都会有星环科技产品作为支撑,从而保证企业能够快速实现,并搭建起数据中台,满足企业未来发展变化。数据存储、分析探索、业务赋能三中心第一,帮助企业构建存储中心,提升数据的汇聚和整合能力;第二,构建数据分析探索中心,专注于智能分析能力和实时计算能力的提升,推动智能推荐能力和全链路实时监测和保障能力;第三,构建业务赋能中心,提供统一的访问能力实现跨平台联邦,统一的访问层控制,确保数据安全可用,同时搭建统一的服务能力,面向多场景的服务应用支撑。安全和运维、数据和分...
作为一家企业级大数据基础软件开发商,星环科技很早就在数据中台领域布局,结合星环科技全系产品的相关组件实现数据中台能力建设。星环科技把数据中台建设归纳为三中心、六能力、两个体系,这当中都会有星环科技产品作为支撑,从而保证企业能够快速实现,并搭建起数据中台,满足企业未来发展变化。其中,三中心分别是存储中心、分析探索中心、业务赋能中心;六能力包括数据汇聚能力、数据整合能力、智能分析能力、实时计算能力、统一访问能力、统一服务能力;两个体系则是安全和运维保障体系与数据和分析支撑体系。三中心、六能力、两个保障体系都构建在一个云底座之上,满足企业私有化或者混合云多云的部署形态,同时灵活组件式的可插拔式部署形态,能够帮助企业更迅速的起步,按规划分步完善数据中台建设。除了提供基础组件和相应的工具帮助客户快速构建数据中台之外,星环科技还提供咨询实施服务,可以为企业提供量身定制的“数据云基础设施+咨询服务的端到端产品+服务”的综合解决方案。在星环科技的咨询服务产品体系中,包括为企业构建中台的架构规划、应用规划,以及帮助企业实施建设数据底座、数据中台、数据仓库,以及数据治理服务,也包括了数据的分析、业务分析、...
为解决AI落地难的问题,星环科技从用户需求端出发,研发了一款基于云原生架构的企业级AI能力运营平台SophonMLOps,助推AI模型落地。SophonMLOps是基于云原生架构构建的企业级AI能力运营平台,聚焦于机器学习模型全生命周期中的模型管理、模型部署、模型监控预警、模型评估和模型迭代等关键环节。通过统一纳管、统一运维、统一应用、统一监控、统一评估、统一解释,赋予企业客户易用、高效且安全可靠的AI能力运营服务,协助客户规模化管理日益增长的机器学习模型,提升模型使用效率,降低模型集成管理成本,控制模型生产环境风险。SophonMLOps针对企业AI运营的痛点,围绕企业AI模型接入、运营管理、持续训练的全生命周期,分别提供规模化集成管理、高效模型推理、模型监控预警、模型性能评估、隐私安全保障等功能,为企业的AI日常运营插上翅膀。SophonMLOps打通了AI的全生命周期,为企业的各类用户角色搭建了统一的AI协作平台。对于企业而言,MLOps规模化集成管理了多源异构的机器学习模型,并提供高效且保障隐私安全的模型推理、监控预警及性能评估服务;对用户而言,能感受到操作上的快捷,AI应用与...
近年来,企业数据安全问题的重要性被提上了前所未有的高度。星环科技提供了从云基础设施、数据平台、数据资源、数据应用的数据安全能力。覆盖数据生命周期的各个阶段,涉及数据的收集、存储、使用、加工以及开放流通。全方位保障企业的数据安全,支撑业务合法合规的开展。星环科技凭借全面的数据安全能力助力某支付机构构建安全防线的落地实践。该支付机构拥有大量数据资产,目前机构面临着较大的挑战,需要加强数据安全管理,为此,机构决定与星环科技合作,利用星环科技的技术来提升数据安全管理能力,共同打造一个基于隐私计算的数据服务平台DaaS。根据客户需求,星环科技在基础设施层提供了基于容器的云原生操作系统TCOS,可以为用户提供独立的数据与计算环境,减少数据对外暴露的风险。在数据平台层,星环科技大数据基础平台TDH新版本增强了安全技术,支持行列级权限控制、动态脱敏等。在数据资产层,星环科技借助两款新产品:数据安全管理平台Defensor帮助企业构建整个数据安全管理域及数据流通平台Navier:包含隐私计算平台SophonP²C和数据交易门户datamall,提供包括联邦学习和差分隐私等技术能力。该支付机构的数据管理平...
时空数据库时空数据库是一种针对时空数据处理的数据库系统。它以时间和空间为基础,整合了空间信息和时间信息,能够对时空数据进行存储、查询和分析。时空数据库广泛应用于交通运输、城市规划、GIS等领域。分布式时空数据库分布式时空数据库是一种对时空数据进行存储和处理的数据库系统,通过分布式存储和分布式计算等技术,可以实现对大规模时空数据的高效处理和分析。与传统的集中式数据库系统不同,分布式时空数据库将数据存储在多个存储节点上,并将计算任务分配给多个计算节点来完成,从而极大地提高了时空数据的处理能力和可靠性。分布式时空数据库的出现,使得处理大规模时空数据成为了可能,也更好地满足了各个领域对时空数据深度分析的需求。星环分布式时空数据库-TranswarpSpactureSpacture是星环科技自主研发的一款面向空间、时空数据的存储与管理,集计算与存储为一体的分布式数据库产品,支持大规模矢量数据、时空轨迹数据的存储与计算,具有完备的数据查询、分析和挖掘能力,可用于时空查询分析、时空模式挖掘、时空轨迹聚类等时空轨迹数据分析场景,广泛应用于交通物流、城市管理、位置服务等场景。
星环科技致力于打造企业级大数据基础软件,具备大数据与云基础平台、分布式关系型数据库、数据开发与智能分析工具的软件产品矩阵,多年来深耕电力领域,覆盖电力产业“发-输-变-配-用”五大环节,为推动电力行业数字化转型做出了重要贡献。在国网上海电力智能配用电大数据应用系统建设项目中,基于星环科技大数据基础平台TDH构建的智能配用电大数据应用系统汇集了浦东1210平方千米的236万户的用电数据,高负荷738万千瓦,年用电量329亿度,占上海全网四分之一。集成的内外部数据源有10个,整个数据量到现在已经接近8个T了,台账的数据总量有29.14万条。在多元数据集成及大数据平台基础之上,应用系统实现了用电查询,电力地图等基础功能及用户用电行为分析,节电用电预测网架优化和错峰调度等业务应用。基于多源异构数据的关联解析,和海量用电负荷实际数据存储、索引,实现了用电查询的基础应用,包括230万用户,26000个台区,4000余中压馈线的基本台账及用电数据的快速查询,并可以进行用户用电画像、地图定位、供电范围等数据的查询,服务响应时间在三秒以内。此前,星环科技还曾凭借《星环科技电力智慧供应链智能决策平台建设方...