大模型场景需求有哪些

行业资讯
大数据模型,大数据模型有哪些应用场景?
大数据模型是指利用大数据技术,通过数据预处理、数据挖掘等步骤,从海量数据中提取有价值信息,构建数学模型来描述业务需求和模式。大数据模型应用场景:大数据模型广泛应用于金融投资、市场营销、风险管理等多个领域。例如,通过NLP大语言模型进行主题数据分析,以辅助投资决策;在监管领域,大数据监督模型用于纠正不当处罚,提升执法效率。大数据模型是通过数学化的方法从大量数据中提取价值信息,服务于业务决策和模式理解。学习和应用这些模型需要深厚的理论基础和实践经验,并且随着技术进步,其应用场景不断扩展,对各行各业的决策支持作用日益增强。同时,随着数据安全问题的凸显,相关保护措施也在不断发展和完善。
大模型场景需求有哪些 更多内容

行业资讯
大数据平台有哪些?
星环大数据基础平台-TranswarpDataHubTranswarpDataHub(TDH)是星环科技自主研发的企业级一站式多模型数据管理平台。凭借星环科技创新的技术架构和深厚的产品研发能力,TDH帮助企业加速数字化转型,更全面、更便捷、更智能、更安全地运用数据,大幅降低综合成本。基于星环大数据基础平台构建核心商业系统,是企业实现一站式数字化转型、加速业务创新的致胜关键。核心优势创新多模型技术模型使用数据的高度一致。支持10种存储引擎、11种存储模型,自动化应对多部门业务需求:TDH通过10种独立的存储引擎,支持业界主流的11种存储模型。这10种存储引擎是:关系型分析引擎、宽表存储引擎不同数据库中的数据,帮助企业构建强大的数据底座。用户只需简单改变SQL语句,即实现各类复杂跨模型查询,不仅大幅提升效率,更能轻松完成高阶数据分析需求。保障高性能的同时降低系统总拥有成本:TDH简洁高效的架构,轻松胜任高阶数据分析:TDH采用领先的多模型技术架构,用于构建服务于整个企业的统一数据资源库,彻底打破不同部门间的数据隔阂,支持数据跨部门灵活调用,创造更大的数据价值。统一数据管理,保障数据一致

行业资讯
金融大模型有哪些?
金融大模型在金融领域的应用具有重要的意义和价值,可以提供准确的金融分析和预测,为金融决策和风险管理提供有力支持。金融大模型有哪些?星环无涯金融大模型-Infinityhttps模型。主要通过自监督的增量训练和有监督的指令微调,使用星环科技高性能计算集群训练而成。星环科技无涯使用上百万的高质量的专业金融语料,涵盖了研报、公告、政策、新闻等高质量的自然语言文本,作为基础大模型的二次预训练语料,使得无涯具备对包括基本面、技术面、消息面在内的金融通识领域准确的理解能力,满足行业分析师的需求。其次,星环科技无涯使用了上百类特定事件类型和20多万事件实例,完成对大模型的指令微调,从而使得无涯能够对齐专业研究员的分析推理能力,更加智能和可靠。再次,在此基础上,星环科技无涯构建了包括政策、舆情、ESG、风险、量价、产业链等六类大模型基础因子集,所构建的复合因子体系满足投资经理的需求智能投研大模型无涯Infinity。星环科技基于大模型的事件驱动与深度图引擎,实现对事件语义刻画、定价因子挖掘、时序编码、异构关系图卷积传播,进而构建包含事件冲击、时序变化、截面联动和决策博弈等多个维度

行业资讯
金融场景大模型
彻底改变着传统投资模式。以往,投资者往往依赖投资顾问的经验和有限的市场分析来做出投资决策,这种方式不仅效率低,而且难以满足不同投资者的个性化需求。如今,借助金融场景大模型,智能投顾平台能够根据投资者的服务质量金融机构在拓展业务时,精准找到目标客户至关重要。金融场景大模型通过对海量客户数据的分析,能够深入了解客户的消费习惯、金融需求和潜在痛点。银行想要推广一款新的理财产品,大模型可以从客户的资产规模金融场景大模型:重塑金融行业新格局在数字化浪潮汹涌的当下,金融行业正经历着深刻变革,而金融场景大模型的出现,无疑成为推动这场变革的关键力量。它宛如一把神奇的钥匙,开启了金融领域智能化、高效化的全新大门。一、深度剖析金融场景大模型金融场景大模型,是专门针对金融领域复杂业务场景打造的人工智能模型。它并非普通的AI模型,而是融合海量金融数据、先进算法与强大算力的结晶。通过对金融市场历史数据、经济指标建议。与通用大模型相比,金融场景大模型具有鲜明的独特优势。它对金融专业知识的理解和运用更加深入,能够准确处理金融领域特有的术语、业务逻辑和风险评估方式。在风险评估中,通用大模型可能只是泛泛分析,而金融

行业资讯
大模型应用场景有哪些?
随着数据的快速增长和计算能力的提升,大模型在各个领域发挥着越来越重要的作用。下面将介绍几个常见的大模型应用场景。自然语言处理(NLP):在自然语言处理领域,大模型被广泛用于语言模型、机器翻译、问答模型训练工具,帮助企业打造自己的专属大模型星环科技在行业内首先提出行业大模型应用创新场景,推出相应的工具,帮助企业构建自有的行业大模型,通过大模型基础设施,形成具备“新型人机交互”且“敏捷可持续迭代系统等任务。通过使用大规模的语料库进行训练,大模型可以更好地理解语言的含义和语境,并生成更准确的文本。计算机视觉(CV):在计算机视觉领域,大模型用于目标检测、图像分类、图像生成等任务。通过在大规模图像数据集上进行训练,大模型可以提取更深入和高级的特征,从而提高图像识别和理解的准确性。金融风险管理:在金融领域,大模型被应用于风险预测、市场预测和欺诈检测等方面。通过处理大量的市场数据和交易记录,大模型可以分析市场趋势和风险,并提供有力的决策支持。医疗诊断:在医疗领域,大模型被应用于疾病诊断、影像解读以及药物研发等方面。通过处理大量的患者数据和医学图像,大模型可以辅助医生进行准确的诊断和治疗。交通与
行业资讯
隐私计算平台有哪些
隐私计算平台有哪些当前主流的隐私计算平台主要分为三大类型,满足不同场景下的数据安全计算需求。开源平台方面,FATE(FederatedAITechnologyEnabler)是最受欢迎的联邦学习框架。这些平台在实际应用中展现出显著价值。某股份制商业银行采用蚂蚁摩斯平台后,在联合征信场景中数据使用合规率提升至99.9%,同时模型准确度保持行业领先水平。值得注意的是,行业垂直化解决方案正在兴起,如医疗领域专用的隐私计算平台,支持DICOM等专业数据格式的安全处理。过程可审计;腾讯云数盾则凭借与微信生态的深度整合,在营销场景表现突出。云服务厂商也纷纷入局,AWSCleanRooms和微软AzureConfidentialComputing都提供了即用型的隐私计算服务

行业资讯
大模型推理平台有哪些
大模型推理平台有哪些随着人工智能技术的快速发展,大型预训练模型已成为当前AI领域的重要研究方向和应用基础。这些拥有数十亿甚至数千亿参数的模型在自然语言处理、计算机视觉、语音识别等多个领域展现出惊人的纳入考量范围。大模型推理平台作为连接前沿AI研究与实际应用的桥梁,其重要性日益凸显。了解各类平台的特点和适用场景,有助于开发者和企业做出合理的技术选型,发挥大模型的潜力,创造更多价值。能力。然而,如何有效地部署和运行这些"庞然大物",使其在实际应用中发挥价值,就需要依赖专门的大模型推理平台。大模型推理平台的基本概念大模型推理平台是指专门为大型人工智能模型提供计算资源、优化推理开发而非底层基础设施。主流大模型推理平台的类型当前市场上的大模型推理平台大致可以分为三类:公有云服务、私有化部署方案和开源框架。公有云服务用户按需付费使用,优势在于无需维护硬件、弹性伸缩能力强。私有化部署方案通常面向企业客户,提供更高安全性和定制化服务。开源框架则允许开发者在自有基础设施上构建推理系统,灵活性最高但技术门槛也较高。大模型推理平台的核心功能优秀的大模型推理平台通常具备多项关键功能

行业资讯
大数据技术平台有哪些?
大数据技术平台有哪些?大数据技术平台是当今信息技术领域的重要组成部分,它为企业、科研机构和政府部门提供了处理海量数据的能力。随着数据量的爆炸式增长,各类大数据平台应运而生,满足不同场景下的数据处理需求。本文将介绍几类主流的大数据技术平台及其特点。分布式存储与计算平台分布式架构是大数据处理的基础,这类平台通过将数据和计算任务分散到多台服务器上,实现了横向扩展能力。最典型的代表是开源分布式文件系统部署和灵活扩展。它们与云存储、身份认证、监控告警等云服务深度集成,提供了开箱即用的体验。同时,这些平台也开始支持混合云和多云部署模式,满足不同企业的IT策略需求。大数据技术平台种类繁多,各有侧重。企业在选择平台时,需要考虑数据规模、处理延迟要求、分析复杂度、团队技能水平以及预算等因素。未来,随着人工智能、边缘计算等技术的发展,大数据平台将继续演进,提供更强大、更易用的功能。了解这些平台的特点和应用场景,有助于我们更好地利用数据创造价值。组件。它们能够有效处理批量数据,适合离线分析场景。随着技术的发展,一些平台还增加了对实时计算的支持,扩展了应用范围。实时数据处理平台与传统批处理平台不同,实时数据处理平台专为低延迟场景设计。它们采用

行业资讯
有哪些大数据管理平台?
有哪些大数据管理平台?在当今数据驱动的时代,大数据管理平台已成为企业和组织不可或缺的基础设施。这些平台能够帮助用户存储、处理、分析海量数据,并从中提取有价值的信息。随着技术的不断发展,大数据管理平台也呈现出多样化的形态,满足不同场景下的需求。大数据管理平台可以根据其核心功能和架构特点分为几大类。一类是分布式存储系统,这类平台主要解决海量数据的存储问题。它们通常采用分布式架构,将数据分散存储在多个图计算平台专门用于处理图结构数据,在社交网络分析、推荐系统等领域有广泛应用;时序数据库平台则针对时间序列数据进行了优化,适用于物联网、金融交易等场景。选择合适的大数据管理平台需要考虑多方面因素。数据了大数据应用的广泛性。了解各类平台的特点和适用场景,有助于我们根据实际需求做出合理选择,充分发挥数据的价值。未来,随着新技术的出现和应用场景的拓展,大数据管理平台必将持续创新,为数据驱动决策提供更强大的支持。实时处理连续不断产生的数据流,适用于需要即时响应的场景,如实时监控、在线推荐系统等。这类平台通常具有低延迟、高吞吐的特点,能够保证数据处理的时效性。第四类是综合型大数据平台,这类平台集成了存储、计算、分析

行业资讯
国内大模型有哪些?
提供有力辅助,帮助企业更好地应对复杂的市场环境和业务需求,促进整体行业的降本增效与科技创新。星环求索大数据分析大模型-SoLar大数据分析大模型SoLar“求索”是一款针对大数据行业全生命周期各种场景自然语言,就能利用“求索”大模型获取所需的数据分析、展示和报告。星环大语言模型运营平台-SophonLLMOps为了满足企业应用大语言模型的需求,星环科技率先在行业中提出了行业大模型应用创新场景,并推出的大数据领域大模型。它可以衍生出许多子领域子任务微调大模型。“求索”大模型具备大数据行业需求理解、推理、各类(含多模型)结构化查询语言和代码生成、文本生成、嵌入向量生成、知识推理等能力;用户只需使用提升、评估和对齐等方面的需求。在模型和其他任务的编排和调度上线阶段,SophonLLMOps工具链还需提供Agent、Ops、DAG等提示词编排功能,结合大数据、向量数据库或图数据库产品,将不同大语言模型、传统机器学习和其他流程等编排成符合企业实际领域和业务需求的任务。国内各大互联网公司纷纷投入AI大模型的研发,涉及多种类型的大模型。以下是星环科技大模型相关产品:星环无涯金融大模型-TranswarpInfinity星环无涯金融智能投研大模型
猜你喜欢

行业资讯
图计算平台代表厂商
星环科技作为一家企业级大数据基础软件开发商,在图计算领域深耕多年,有着深厚的技术积淀和丰富的实践经验。星环科技自主研发的分布式图数据库StellarDB,兼容openCypher查询语言,提供海量图数据的存储和分析能力,支持原生图存储结构,支持万亿边PB级数据存储。同时,StellarDB具备毫秒级点边查询能力,10+层的深度链路分析能力,提供近40种的图分析算法,具备数据2D和3D展示能力。StellarDB克服了海量关联图数据存储的难题,通过集群化存储和丰富算法,实现了传统数据库无法提供的低延时多层关系查询,目前已经用于金融、政府、交通等众多行业,用于反洗钱、风险控制、营销等多种场景。同时StellarDB还获得了多项行业权威认可:入选信通院2022大数据十大关键词“图计算平台”代表厂商;通过了中国信通院图数据库和图计算平台基础能力两项专项测评;入选著名咨询机构Gartner《中国数据库市场指南》、《工具:中国数据库管理系统供应商甄选》报告等,彰显了其产品技术领先性。如今,5G、物联网、AI等技术的发展应用让数据呈指数倍增长,为图数据库发展提供了更广阔的应用空间。顺势而为,乘势而上...

行业资讯
数据中台建设
随着行业和技术领域的变化日新月异,从数据仓库、动态数仓,到数据湖,从新一代湖仓一体技术到可插拔数据库,概念的引入虽然简单,但如何做到更有效,更复杂的数据资产管理就考验着对生产能力和工艺过程的管理能力。星环科技认为数据中台是一种能力、是一种组织上的策略而不仅仅是一种技术架构,它是在信息化基础上建立的可编织和可复用的数据可分析能力,从而支撑企业数字化转型。星环科技的数据中台三中心、六能力、两个体系星环科技很早就在数据中台领域布局,结合星环科技全系产品的相关组件实现数据中台能力建设。星环科技把数据中台建设归纳为三中心、六能力、两个体系,这当中都会有星环科技产品作为支撑,从而保证企业能够快速实现,并搭建起数据中台,满足企业未来发展变化。数据存储、分析探索、业务赋能三中心第一,帮助企业构建存储中心,提升数据的汇聚和整合能力;第二,构建数据分析探索中心,专注于智能分析能力和实时计算能力的提升,推动智能推荐能力和全链路实时监测和保障能力;第三,构建业务赋能中心,提供统一的访问能力实现跨平台联邦,统一的访问层控制,确保数据安全可用,同时搭建统一的服务能力,面向多场景的服务应用支撑。安全和运维、数据和分...

行业资讯
数据中台推荐供应商
作为一家企业级大数据基础软件开发商,星环科技很早就在数据中台领域布局,结合星环科技全系产品的相关组件实现数据中台能力建设。星环科技把数据中台建设归纳为三中心、六能力、两个体系,这当中都会有星环科技产品作为支撑,从而保证企业能够快速实现,并搭建起数据中台,满足企业未来发展变化。其中,三中心分别是存储中心、分析探索中心、业务赋能中心;六能力包括数据汇聚能力、数据整合能力、智能分析能力、实时计算能力、统一访问能力、统一服务能力;两个体系则是安全和运维保障体系与数据和分析支撑体系。三中心、六能力、两个保障体系都构建在一个云底座之上,满足企业私有化或者混合云多云的部署形态,同时灵活组件式的可插拔式部署形态,能够帮助企业更迅速的起步,按规划分步完善数据中台建设。除了提供基础组件和相应的工具帮助客户快速构建数据中台之外,星环科技还提供咨询实施服务,可以为企业提供量身定制的“数据云基础设施+咨询服务的端到端产品+服务”的综合解决方案。在星环科技的咨询服务产品体系中,包括为企业构建中台的架构规划、应用规划,以及帮助企业实施建设数据底座、数据中台、数据仓库,以及数据治理服务,也包括了数据的分析、业务分析、...

行业资讯
数据安全实践案例
近年来,企业数据安全问题的重要性被提上了前所未有的高度。星环科技提供了从云基础设施、数据平台、数据资源、数据应用的数据安全能力。覆盖数据生命周期的各个阶段,涉及数据的收集、存储、使用、加工以及开放流通。全方位保障企业的数据安全,支撑业务合法合规的开展。星环科技凭借全面的数据安全能力助力某支付机构构建安全防线的落地实践。该支付机构拥有大量数据资产,目前机构面临着较大的挑战,需要加强数据安全管理,为此,机构决定与星环科技合作,利用星环科技的技术来提升数据安全管理能力,共同打造一个基于隐私计算的数据服务平台DaaS。根据客户需求,星环科技在基础设施层提供了基于容器的云原生操作系统TCOS,可以为用户提供独立的数据与计算环境,减少数据对外暴露的风险。在数据平台层,星环科技大数据基础平台TDH新版本增强了安全技术,支持行列级权限控制、动态脱敏等。在数据资产层,星环科技借助两款新产品:数据安全管理平台Defensor帮助企业构建整个数据安全管理域及数据流通平台Navier:包含隐私计算平台SophonP²C和数据交易门户datamall,提供包括联邦学习和差分隐私等技术能力。该支付机构的数据管理平...

行业资讯
企业级AI能力运营平台
为解决AI落地难的问题,星环科技从用户需求端出发,研发了一款基于云原生架构的企业级AI能力运营平台SophonMLOps,助推AI模型落地。SophonMLOps是基于云原生架构构建的企业级AI能力运营平台,聚焦于机器学习模型全生命周期中的模型管理、模型部署、模型监控预警、模型评估和模型迭代等关键环节。通过统一纳管、统一运维、统一应用、统一监控、统一评估、统一解释,赋予企业客户易用、高效且安全可靠的AI能力运营服务,协助客户规模化管理日益增长的机器学习模型,提升模型使用效率,降低模型集成管理成本,控制模型生产环境风险。SophonMLOps针对企业AI运营的痛点,围绕企业AI模型接入、运营管理、持续训练的全生命周期,分别提供规模化集成管理、高效模型推理、模型监控预警、模型性能评估、隐私安全保障等功能,为企业的AI日常运营插上翅膀。SophonMLOps打通了AI的全生命周期,为企业的各类用户角色搭建了统一的AI协作平台。对于企业而言,MLOps规模化集成管理了多源异构的机器学习模型,并提供高效且保障隐私安全的模型推理、监控预警及性能评估服务;对用户而言,能感受到操作上的快捷,AI应用与...

行业资讯
省市级碳排放监测服务平台建设方案
双碳目标下,全国碳排放监测服务平台启动建设力争2030年前实现碳达峰、2060年前实现碳中和,我国明确提出“双碳”目标,充分彰显了在构建人类命运共同体进程中的大国担当。国家电网公司主动担当重要使命,提出“实现双碳目标,能源是主战场,电力是主力军,电网是排头兵”的战略部署,率先行动,发布《全国碳排放监测服务平台建设工作方案》。“双碳”目标的实现离不开科技支撑。《全国碳排放监测服务平台建设工作方案》指出,全国碳排放监测服务平台建设的总体目标是以电网数字化赋能和助力国家碳达峰碳中和,实现“电力看双碳”,“双碳看经济”,为国家碳排放统计核算体系建设、宏观调控政策制定、经济社会全面绿色转型发展等工作提供决策支持。平台建设需要解决以下问题:以数字化平台技术解决各省的地市、区县、重点行业碳排放数据维度不全面、核算方法不完善、碳核算体系不统一等方面的问题;强化数据应用,发挥好决策支撑作用,深挖电力大数据价值,开展“电力看环保”“电力看经济”等大数据应用。积极响应号召,星环科技打造碳排放监测服务平台解决方案星环科技作为大数据基础软件领域的代表性企业,有着高度的责任感和使命感,为响应“全国碳排放监测服务平...

行业资讯
什么是分布式时空数据库?
时空数据库时空数据库是一种针对时空数据处理的数据库系统。它以时间和空间为基础,整合了空间信息和时间信息,能够对时空数据进行存储、查询和分析。时空数据库广泛应用于交通运输、城市规划、GIS等领域。分布式时空数据库分布式时空数据库是一种对时空数据进行存储和处理的数据库系统,通过分布式存储和分布式计算等技术,可以实现对大规模时空数据的高效处理和分析。与传统的集中式数据库系统不同,分布式时空数据库将数据存储在多个存储节点上,并将计算任务分配给多个计算节点来完成,从而极大地提高了时空数据的处理能力和可靠性。分布式时空数据库的出现,使得处理大规模时空数据成为了可能,也更好地满足了各个领域对时空数据深度分析的需求。星环分布式时空数据库-TranswarpSpactureSpacture是星环科技自主研发的一款面向空间、时空数据的存储与管理,集计算与存储为一体的分布式数据库产品,支持大规模矢量数据、时空轨迹数据的存储与计算,具有完备的数据查询、分析和挖掘能力,可用于时空查询分析、时空模式挖掘、时空轨迹聚类等时空轨迹数据分析场景,广泛应用于交通物流、城市管理、位置服务等场景。

行业资讯
电力行业数字化转型服务商
星环科技致力于打造企业级大数据基础软件,具备大数据与云基础平台、分布式关系型数据库、数据开发与智能分析工具的软件产品矩阵,多年来深耕电力领域,覆盖电力产业“发-输-变-配-用”五大环节,为推动电力行业数字化转型做出了重要贡献。在国网上海电力智能配用电大数据应用系统建设项目中,基于星环科技大数据基础平台TDH构建的智能配用电大数据应用系统汇集了浦东1210平方千米的236万户的用电数据,高负荷738万千瓦,年用电量329亿度,占上海全网四分之一。集成的内外部数据源有10个,整个数据量到现在已经接近8个T了,台账的数据总量有29.14万条。在多元数据集成及大数据平台基础之上,应用系统实现了用电查询,电力地图等基础功能及用户用电行为分析,节电用电预测网架优化和错峰调度等业务应用。基于多源异构数据的关联解析,和海量用电负荷实际数据存储、索引,实现了用电查询的基础应用,包括230万用户,26000个台区,4000余中压馈线的基本台账及用电数据的快速查询,并可以进行用户用电画像、地图定位、供电范围等数据的查询,服务响应时间在三秒以内。此前,星环科技还曾凭借《星环科技电力智慧供应链智能决策平台建设方...

行业资讯
图数据库的应用场景
图数据库的应用场景非常广泛,可以应用于各个行业。以下是一些常见的应用场景:金融:在金融领域,图数据库可以帮助银行、保险公司等企业处理复杂的数据结构,支持欺诈检测、交易路由、投资组合分析等操作。社交网络:图数据库可以存储和处理社交网络中的复杂关系图谱和大量用户数据,支持好友推荐、社区发现、个性化内容推荐等操作。物流:在物流领域,图数据库可以帮助企业优化路径规划、物流运输等操作,加速发货、配送时间并提高效率。制造业:图数据库可以支持企业处理复杂的设备关系结构图,进行维修保养、设备性能分析、生产计划优化等操作。能源行业:在能源领域,图数据库可以处理复杂的电网、管道等结构图谱,并支持多种能源趋势分析和紧急事件监测等操作。电商:图数据库可以应用于电商业务中,存储和处理复杂的商品与用户之间的关系,支持个性化推荐、购物车分析、用户行为预测等操作。图数据库可以在各个领域中应用,并且在处理复杂的数据结构和大量的数据时比传统数据库具有更高的性能和效率。星环分布式图数据库StellarDB星环科技致力于打造企业级大数据基础软件,围绕数据的集成、存储、治理、建模、分析、挖掘和流通等数据全生命周期提供基础软件与...

行业资讯
国产数据库有哪些?
在国产数据库产品方面,星环科技坚持自主研发与技术创新,打造了自主可控的高性能分布式数据库ArgoDB和分布式交易型数据库KunDB,以及分布式图数据库StellarDB等产品。KunDB具备较强的SQL兼容性,同时具备高可用、高并发、在线扩缩容、数据强一致性等能力,适用于操作型业务、高并发业务等场景。ArgoDB具备完整的SQL兼容性,同时具备高扩展、高可靠、多模型、存算解耦等能力,一站式满足数据仓库、实时数据仓库、数据集市、OLAP、联邦计算等场景。通过不断的打磨和对业务场景不断的落地实践,ArgoDB和KunDB已成为具有完全自主知识产权的成熟的国产数据库,能够为更多的客户提供高性能、高可靠、成熟的数据库产品服务,帮助用户应对智能数据时代海量数据的分析与探索。分布式图数据库StellarDB兼容openCypher查询语言,提供海量图数据的存储和分析能力,支持原生图存储结构,支持万亿边PB级数据存储。同时,StellarDB具备毫秒级点边查询能力,10+层的深度链路分析能力,提供近40种的图分析算法,具备数据2D和3D展示能力。星环科技StellarDB在金融、政府和社交网络等领域...