医疗金融类数据要素

数据要素流通工具集
星环科技基于TDS和Sophon多个产品打造了星环数据要素流通工具集解决方案,为数据资源方和数据消费方提供一系列的数据安全防护和隐私计算的能力,在各方数据不出域的前提下,提高数据流通参与方在数据存储、传输、发布、分析和联合建模等各个环节的安全保障。

医疗金融类数据要素 更多内容

行业资讯
医疗数据要素
医疗数据要素是指在医疗活动过程中产生的各种数据,这些数据能够为医疗决策、医疗质量提升、医学研究等诸多方面提供有价值的信息。范畴:患者基本信息:包括姓名、年龄、性别、联系方式、过敏史等。这些信息是构建、医保报销等方面有着重要作用。医疗数据要素的特点敏感性:医疗数据包含大量患者的个人隐私信息,如疾病史、基因信息等。一旦泄露,可能会对患者的个人生活、就业、保险等方面造成严重的负面影响。复杂性:医疗的价值。例如,在急救过程中,实时的生命体征数据对于医护人员调整治疗方案至关重要。医疗数据要素的应用场景与案例临床决策支持系统:通过整合患者的病历、检查报告等数据,利用人工智能算法为医生提供诊断建议患者完整画像的基础,对于医疗服务的个性化提供和避免医疗风险具有重要意义。医疗记录数据:如病历、诊断结果、治疗方案、手术记录、检验检查报告。这些数据详细记录了患者的病情发展和治疗过程,是医生进行诊断和治疗的关键依据。医疗设备数据:从各种医疗设备收集而来的数据,能够实时反映患者的生理状态,有助于医护人员及时发现患者的病情变化。医疗费用数据:包括医疗服务费用、药品费用、检查费用等明细,这对于医疗成本控制
行业是数据要素应用最为广泛的领域之一。金融机构可以从海量数据中挖掘出有价值的信息,优化业务流程、提升风控能力、增强客户服务体验。医疗健康:医疗行业利用数据要素进行辅助诊断、精准医疗等。通过对病人的病历、精准营销,增强消费者信任。商贸流通:数据要素在商贸流通领域的应用包括通过融合客流数据、消费行为、交通状况、人文特征等市场环境数据,打造闭环消费生态,推进直播电商、即时零售、反向定制等发展。金融服务:金融数据要素的应用场景非常广泛,以下是一些具体的应用领域和场景:智能制造:数据要素在智能制造中的应用包括通过融合设计、仿真、实验验证等数据,培育数据驱动型产品研发新模式,提升创新能力。同时,支持链主企业打通供应链上下游数据,实现敏捷柔性协同制造,提高整体生产效率。智慧农业:在农业领域,数据要素的应用体现在精准种植、精准养殖,提高农业生产效率。同时,支持第三方企业汇聚农产品数据,支撑农产品溯源管理、检查结果等数据进行分析,医生可以更加准确地判断病情,制定个性化的治疗方案。能源领域:数据要素被用于智能电网的建设、能源消耗的监测和优化等;在新能源的开发和利用方面,数据要素也发挥着重要作用。交通领域
数据要素金融服务的结合,正在推动金融行业的创新和发展。以下是数据要素金融服务中的主要作用和应用:优化金融业务和资源配置:数据要素通过协同效应,可以优化金融业务流程和资源配置,降低金融服务成本、提高效率、拓展服务边界。提升金融服务智能化水平:数据要素的复用发挥倍增效应,提升金融服务的智能化水平,如通过数据分析、挖掘和应用提升金融服务效率和质量。激发金融创新效应:将其他行业数据金融数据融合业务通过将数据资产证券化,拓宽直接融资渠道,尤其对科创型中小企业具有重要意义。提升数据要素金融属性:数据要素在商品属性上逐渐衍生出金融属性,参与金融领域的经济活动并不断深化,推出与数据要素相关的金融产品,实现数据要素的价值发现功能。普惠金融产品创新:数据要素赋能金融服务,提升中小企业对传统金融服务的可得性,尤其在数字普惠金融领域。数据要素市场建设:金融服务于数据要素市场建设,提供全面的支持,包括金融中介服务、数据信用市场和底层的数据金融服务基础设施。金融服务由被动式向主动式转换:金融机构的产品开发将从基于统计和大数理论发展到主要基于数据融合的个人精准模型,实现“以产品为中心”跨越到“以客户为中心”。数据要素驱动监管与合规模式创新:数据要素化驱动监管与合规模式创新,提高监管效率和合规性。
生成策略因子集合,构建立体的归因解释体系。星环科技长期深耕金融领域,服务大量金融行业客户,积累了上百万金融专业领域的语料;基于星环科技对图数据库、深度图推理算法的技术,形成了大规模高质量的金融类事件训练指令集。二者共同铸就了星环科技开发金融领域大语言模型的坚实底座。二次预训练语料,使得无涯具备对包括基本面、技术面、消息面在内的金融通识领域准确的理解能力,满足行业分析师的需求。其次,星环科技无涯使用了上百特定事件类型和20多万事件实例,完成对大模型的指令微调,从而金融大模型在金融领域的应用具有重要的意义和价值,可以提供准确的金融分析和预测,为金融决策和风险管理提供有力支持。金融大模型有哪些?星环无涯金融大模型-Infinityhttps://www.transwarp.cn/product/infinity针对智能投研领域特定的业务逻辑,星环科技通过预训、提示、增强、推导范式的构建,实现Financial-Specific-LLM的训练,推出了金融行业的智能投研新范式。星环科技无涯金融大模型,寓意学海无涯,既代表了投资领域终身学习的精神,也蕴含了大模型本身在参数架构方面持续迭代的内涵。可以说无涯是一款面向金融量化领域、超大规模参数量的生成式大语言
行业资讯
金融 大模型
策略因子集合,构建立体的归因解释体系。星环科技长期深耕金融领域,服务大量金融行业客户,积累了上百万金融专业领域的语料;基于星环科技对图数据库、深度图推理算法的技术,形成了大规模高质量的金融类事件训练指令集。二者共同铸就了星环科技开发金融领域大语言模型的坚实底座。模型的二次预训练语料,使得无涯具备对包括基本面、技术面、消息面在内的金融通识领域准确的理解能力,满足行业分析师的需求。星环科技无涯使用了上百特定事件类型和20多万事件实例,完成对大模型的指令微调,从而星环无涯金融大模型-TranswarpInfinity针对智能投研领域特定的业务逻辑,星环科技通过预训、提示、增强、推导范式的构建,实现Financial-Specific-LLM的训练,推出了金融多个维度的智能投研新范式。星环科技无涯金融大模型,寓意学海无涯,既代表了投资领域终身学习的精神,也蕴含了大模型本身在参数架构方面持续迭代的内涵。可以说无涯是一款面向金融量化领域、超大规模参数量的生成式大语言模型。主要通过自监督的增量训练和有监督的指令微调,使用星环科技高性能计算集群训练而成。星环科技无涯使用上百万的高质量的专业金融语料,涵盖了研报、公告、政策、新闻等高质量的自然语言文本,作为基础大
随着医疗科技的不断发展,医疗数据的积累和应用成为了提升医疗质量和效率的重要途径。构建医疗数据中台成为了医疗机构的迫切需求。本文将介绍构建医疗数据中台的关键要素和注意事项,帮助医疗机构顺利实施医疗数据等方面的工作。只有确保这些关键要素的有效实施,医疗机构才能建立起高效可靠的医疗数据中台,为提升医疗质量和效率提供有力支撑。星环数据中台解决方案星环数据中台聚合跨域数据,对数据进行清洗、转换、整合,实现中台建设。一、规划与治理医疗数据中台的构建首先需要明确目标和价值。医疗机构需要明确自身的数据需求,并制定符合医疗行业特点的数据资产规划与治理策略。医疗数据中台应能满足多个部门和业务流程的需求,提供准确、可靠的数据支持。二、数据获取与存储医疗数据中台的搭建需要保证数据的获取和存储能力。医疗机构应确保各个数据源的数据能够及时、准确地被获取,并通过合适的数据存储技术进行安全存储和管理,如数据仓库或者数据湖。此外,医疗机构还应考虑数据传输的安全性和完整性,确保传输过程中数据不被篡改或丢失。三、数据质量与一致性医疗数据的质量和一致性对于医疗数据中台至关重要。医疗机构应进行数据清洗和整合,去除数据中的冗余
行业资讯
金融大模型
策略体系,能够生成策略因子集合,构建立体的归因解释体系。毫无疑问,星环科技长期深耕金融领域,服务大量金融行业客户,积累了上百万金融专业领域的语料;基于星环科技对图数据库、深度图推理算法的技术,形成了大规模高质量的金融类事件训练指令集。二者共同铸就了星环科技开发金融领域大语言模型的坚实底座。,作为基础大模型的二次预训练语料,使得无涯具备对包括基本面、技术面、消息面在内的金融通识领域准确的理解能力,满足行业分析师的需求。其次,星环科技无涯使用了上百特定事件类型和20多万事件实例,完成对大模型的星环无涯金融大模型-TranswarpInfinity针对智能投研领域特定的业务逻辑,星环科技通过预训、提示、增强、推导范式的构建,实现Financial-Specific-LLM的训练,推出了金融多个维度的智能投研新范式。星环科技无涯金融大模型,寓意学海无涯,既代表了投资领域终身学习的精神,也蕴含了大模型本身在参数架构方面持续迭代的内涵。可以说无涯是一款面向金融量化领域、超大规模参数量的生成式大语言模型。主要通过自监督的增量训练和有监督的指令微调,使用星环科技高性能计算集群训练而成。首先,星环科技无涯使用上百万的高质量的专业金融语料,涵盖了研报、公告、政策、新闻等高质量的自然语言文本
、交通状况、人文特征等市场环境数据,打造闭环消费生态,推进直播电商、即时零售、反向定制等发展。金融服务:银行利用数据要素提升金融服务水平,通过融合科技、环保、工商、税务、气象、消费、医疗数据,加强主体识别,优化信贷业务管理和保险产品设计。科技创新:数据要素在科技创新领域应用广泛,包括数字广告、图像识别、语言识别、数字信贷、无人驾驶、人脸识别、机器翻译、医学图像处理等。医疗健康:在医疗行业,数据要素数据要素的应用场景非常广泛,涉及多个行业和领域。以下是一些具体的应用场景:智能制造:在汽车制造企业中,数据要素被用来提升智能制造水平。通过融合设计、仿真、实验验证数据,培育数据驱动型产品研发新模式,提升企业创新能力。智慧农业:智慧农业通过融合气象、土壤、农事作业、病虫害等数据,实现精准种植、精准养殖,提高农业生产效率。商贸流通:电商平台利用数据要素提升商贸流通效率,通过融合客流数据、消费行为用于收集患者的病历、生理指标等数据,帮助医生做出更准确的诊断和治疗方案。交通运输:数据要素用于优化交通流量、减少拥堵等,通过对道路车辆的流量、速度等数据要素进行分析,可以调整信号灯的时间间隔,提高道路
金融领域,服务大量金融行业客户,积累了上百万金融专业领域的语料;基于星环科技对图数据库、深度图推理算法的技术,形成了大规模高质量的金融类事件训练指令集。二者共同铸就了星环科技开发金融领域大语言模型的坚实底座。金融领域的大模型是指应用于金融领域的大规模机器学习或深度学习模型,用于解决金融市场和金机构所面临的复杂问题。这些模型通常具有较大的数据规模和参数数量,并能够从大量历史数据中学习并提供预测、风险评估、消息面在内的金融通识领域准确的理解能力,满足行业分析师的需求。星环科技无涯使用了上百特定事件类型和20多万事件实例,完成对大模型的指令微调,从而使得无涯能够对齐专业研究员的分析推理能力,更加智能和可靠。在此基础上,星环科技无涯构建了包括政策、舆情、ESG、风险、量价、产业链等六大模型基础因子集,所构建的复合因子体系满足投资经理的需求。从应用上看,无涯金融大模型强化以下几个能力:第一,针对金融、投资决策等功能。金融领域的大模型可以应用于很多不同的方面,包括股票市场预测、期货交易策略、贷款违约风险评估、信用评级、金融欺诈检测、证券交易监管等。星环无涯金融大模型
垂直领域知识图谱产品主要用于面向特定领域知识应用需求,通过构建和应用知识图谱解决对应领域的专业问题。目前,知识图谱在智慧医疗与智慧金融领域已取得了一系列成功实践,被应用于辅助医生、药物发现、临床科研、风险防控、内部监管、投资研究、保险理赔等众多实际业务场景,并涌现出了一批知识图谱产品或服务平台。星环科技自主研发的知识图谱平台Sophon正是一款覆盖知识全生命周期,集知识的采集、建模、融合、存储、计算及应用为一体的知识图谱产品。平台支持低代码图谱构建、智能化知识抽取、多模态知识存储与融合、多形式知识计算和推理以及多维度的图谱分析。除了具备链路完备性,平台还从业务场景出发,沉淀了金融、保险等场景的图数据模型、规则模型和算法模型,可以帮助用户快速解决不同场景下的业务问题。目前,星环科技Sophon已经在金融等多个行业成功落地,在反洗钱、反欺诈、疫情防控、公共安全、企业级营销、保险知识智能问答等场景有着广泛的应用。同时星环科技在推动知识图谱技术创新和成功落地的过程中,也获得了多项荣誉和权威认可:入选Gartner《MarketGuideforArtificialIntelligenceStar...
星环科技致力于打造企业级大数据基础软件,基于在大数据、分布式数据库、隐私计算、数据安全流通领域有着多年积累,研发了数据要素流通全过程的一系列工具,在各方数据不出域的前提下,为数据资源方和数据消费方提供数据交付服务。2022年9月星环科技曾受邀出席“深数交”数据合规活动,分享数据安全出境解决方案。2021年星环科技成为上海数据交易所首批签约数商。2022年12月星环科技与中国东信旗下北部湾大数据交易中心达成了战略合作。伴随数字经济蓬勃发展,融入全球数据跨境流动的趋势不可避免。数据出境安全治理受到广泛重视,为进一步规范数据出境活动,保护个人信息权益,维护国家安全和社会公共利益,促进数据跨境安全,国家互联网信息办公室发布了《数据出境安全评估办法》。国内运营的外企(尤其是零售、化工等)、新能源汽车以及生态企业(含自动驾驶等)、国际化企业与出海企业、跨境电商和物流、有融资需求的基于数字化做业务创新的创业公司等是国内迫切需要落实数据安全出境的企业。然而企业在落地数据出境安全方面存在一些实际困难,主要体现在:错综复杂的数据如何分类分级,如何识别重要数据;重要数据如何存储和管理,才能达到相关法律法规的...
星环科技图数据库StellarDB是国产高性能图数据库,采用分布式架构和原生图计算引擎,支持超大规模数据管理和高效的图计算。TranswarpStellarDB具有以下特点:原生图存储:StellarDB为数据存储设计了专有的图存储结构,优化查询性能,通过高效的压缩算法减少磁盘和内存的使用量。根据分区策略,图数据均匀分布于集群各节点。优越的性能:存储引擎和计算引擎结合,使计算引擎可以利用数据locality提升计算性能,拥有卓越的数据读写能力,支持大规模并行处理,毫秒级的查询响应。高扩展性:完全的分布式架构,具有良好的可扩展性,支持在线扩容和升级。拥有万亿级图数据处理能力,支持数据多副本,提供集群高可用和高可靠。灵活的查询方式:计算引擎支持灵活易懂的图查询语言TranswarpExtended-OpenCypher,拥有丰富的图操作语法。同时提供SQL支持,多模场景灵活切换。深度分析能力:支持10层及以上的图深度遍历和复杂分析。丰富的算法库:内置丰富的算法库,几十种图算法开箱即用,优化的分布式并行图算法,千万级子图计算效率达到行业先进水平。企业级功能:支持用户权限认证、集群状态监控、日...
图数据库有许多适用场景,常见的应用场景有:社交媒体:社交媒体中的用户和关系可以建模为图结构。用图数据库来管理和查询这些社交数据,可以实现更精确的社交关系分析。金融:在金融领域中,图数据库可以用于合规风控、反欺诈、投资和信贷决策等众多场景。例如,通过在图中存储和分析不同实体(如银行账户、信用卡、电话、邮箱、运单等)之间的关系,可以准确识别欺诈降低风险。物流和运输:物流和运输领域也是图数据库的应用场景之一。例如,通过在图中存储城市、仓库、货物、运输路线等信息,可以进行物流管理、运输计划优化、货物追踪等任务。生命科学:在生命科学领域,图数据库可以用于存储和分析复杂的基因、蛋白质、代谢物等数据,帮助科学家发现新的治疗方法和疾病机制。游戏:游戏开发者可以使用图数据库来管理玩家角色、各种装备、地图、任务等复杂的游戏数据,实现更好的游戏体验。图数据库的灵活性和高效性使其在多个领域都有着广泛的应用。星环分布式图数据库StellarDB星环科技致力于打造企业级大数据基础软件,围绕数据的集成、存储、治理、建模、分析、挖掘和流通等数据全生命周期提供基础软件与服务,在图计算领域深耕多年,自主研发了分布式图数据...
星环科技分布式隐私计算平台SophonP²C集多方安全计算、联邦学习等多种功能,为隐私计算提供完整的解决方案,以隐私保护为前提,解决了跨组织协作时无法安全利用各方数据的困境。平台支持联邦学习、多方安全计算、匿踪查询等功能;性能方面,联邦学习与多方安全计算可达亿级数据量,助力数据要素安全流通和价值迸发,实现数字经济时代下的跨企业和行业的AI协作。星环科技的隐私计算技术已落地如数据流通、政务民生、金融营销等垂直业务场景,为跨企业数据协作提供安全可信的平台支持。在政务民生场景,SophonP²C通过纵向联邦学习联合居民用电数据与用水数据,生成群租房预测名单。在联合建模过程中,全程明文数据不出,有效保护了居民用水用电的数据隐私信息。联合训练模型比本地单独用电数据训练的模型AUC提升20%以上,赋能政务决策高效的处理分析能力,为政府有效排查群租房,消除群租房造成的消防、安全隐患,打造和谐、安全、美丽的生活环境作出了突出贡献,为政务决策、民生建设发挥信息化支撑保障作用。在精准营销场景,通过纵向联邦学习,车企安全引入了多方数据,丰富用户特征维度,对用户行为进行统计分析。在联合建模过程中,全程明文数据...
数据要素是数字经济发展的关键生产要素,是数字经济发展的基础。加快培育数据要素市场是全面建设社会主义现代化国家的一项基础性工作,对推动经济高质量发展、建设数字中国和数字强省、促进经济社会数字化转型具有重要意义。星环科技致力于打造企业级大数据基础软件,围绕数据全生命周期提供基础软件与服务。基于在大数据、分布式数据库、隐私计算、数据安全流通领域的多年积累,星环科技研发了数据要素流通全过程的一系列工具,在各方数据不出域的前提下,为数据资源方和数据消费方提供数据交付服务。2021年星环科技成为上海数据交易所首批签约数商。2022年9月星环科技曾受邀出席“深数交”数据合规活动,分享数据安全出境解决方案。2022年12月星环科技与中国东信旗下北部湾大数据交易中心达成了战略合作。星环科技在产品的各层级上都完善了安全技术,从而可以给用户提供体系化的数据安全防护能力,助力企业高效、合规的开展数据流通业务。在基础设施层,星环科技提供基于容器的云原生操作系统TCOS,它不仅能够提供容器隔离和镜像扫描,还新增了漏洞检测以及面向业务的微隔离安全技术,从而可以为用户开辟一个独立的数据与计算环境,外部的服务未经授权无...
新时代需要新技术,企业应抓住机遇实现旧平台的改造升级数据库技术经过不断的发展,已经从以Oracle、IBM为代表的集中式数据库,演进到分布式、多模型、云原生的形态,并在很多场景应用落地,带来了真实的业务价值。当前得益于国家政策的大力扶持以及国内市场环境的快速发展,国产软件加速发展,国产化替代进程正在不断加速。自主可控是国产化替代的核心,同时也是一个阶段性的目标。我们不应该满足于此,应该抓住国产化改造的机遇,用新技术去替代老技术,实现自主可控的同时,完成旧系统的改造升级,这也是信创的主旨。星环科技致力于打造企业级大数据基础软件,围绕数据全生命周期提供基础软件与服务,在分布式技术、多模型技术、数据云技术等方面有很多技术突破。比如大数据基础平台TDH是全球首个通过TPC-DS基准测试的产品;提出了创新的多模型统一技术架构,支持业内主流的10种数据模型,Gartner®发布的中国数据库技术发展趋势报告引用星环科技多模型联合分析用例,论证了多模型融合分析的趋势和价值。基于多年积累的分布式技术、多模型统一技术、数据云技术等,星环科技打造了分布式数据库ArgoDB、分布式交易型数据库KunDB、分布...
时空数据库(Spacial-temporaldatabase)是一种专门用于存储和管理时空数据的数据库管理系统,它是传统关系型数据库的一个扩展,可以实现对时空数据进行有效管理和处理。时空数据是指带有时空坐标或时间戳的数据,例如地图、气象数据、交通、城市规划等。因此,时空数据库可以用于多种应用程序,如地理信息系统、航空航天、气象预报、GPS导航等。时空数据库与传统数据库不同的是,它提供了额外的功能和数据类型,例如点、线、面等空间对象和时间序列数据类型。此外,时空数据库还支持空间查询和时空查询,例如常见的缓冲区查询,使得用户可以在时空范围内进行查询和分析。这种数据库可以对时空数据进行高效的存储、查询、更新和分析,并通过插件技术集成其他地理信息数据源。星环分布式时空数据库-SpactureSpacture是星环科技自主研发的一款面向空间、时空数据的存储与管理,集计算与存储为一体的分布式数据库产品,支持大规模矢量数据、时空轨迹数据的存储与计算,具有完备的数据查询、分析和挖掘能力,可用于时空查询分析、时空模式挖掘、时空轨迹聚类等时空轨迹数据分析场景,广泛应用于交通物流、城市管理、位置服务等场景。
图数据库是现代数据库系统中的一种,它主要的特点就是使用了图论的概念来进行数据管理。传统的关系型数据库通常是基于表和列的结构进行数据管理,而图数据库则是构建了节点和边的图形结构,可以更好的表示现实世界中的复杂关系。下面是图数据库的几个主要特点:1.基于图形结构:图数据库是基于图形结构来进行数据管理的。它通过节点和边来构建数据的表示形式,使得数据之间的关系和结构更加直观和清晰。这对于处理关联复杂、数据关系复杂的场景具有重要意义。2.高效地关系查询和分析:图数据库具有高效的关系查询和分析能力。对于一个大规模的图,传统的SQL查询方式显然不能满足查询时间的要求。而图数据库则可以通过图数据库内部的算法来进行实时的查询和分析。尤其是针对一些复杂的图分析算法,图数据库更能够快速地获得结果,提高查询速度。3.可扩展性:由于采用了分布式的技术设计,使图数据库的可扩展性极佳。当需要管理的数据量增加时,图数据库可以通过简单的集群扩展方式来实现性能的提升。而且,图数据库的分布式能力也可以让其在多个节点上进行操作,提高了系统的容错能力和加载能力。4.元素和关系度量:图数据库具有丰富的元素数据和关系数据量度方式。...
银行图数据库的应用场景:反洗钱:图数据库可以将可疑交易数据存储于其中,帮助银行更快速地提取、分析与关系,识别出潜在的洗钱行为。客户关系管理:银行图数据库可以将客户的不同信息(如交易记录、信用评级、客户所在地和行业等)进行整合,并将这些信息在一个数据仓库中呈现出来。这使得银行能够更加精准地分析客户需求,提供更加符合客户需求、更加优质的服务。风险管理:银行是一个与风险息息相关的行业。图数据库可以帮助银行对相关风险进行整合和分析。通过解析大量的金融数据,图数据库可以找出潜在的风险点,提前控制风险。数字化转型:图数据库能够将社交网络、收集的数据等信息关联起来,并创造性地开拓新业务模式。除了与客户密切相关的业务领域,图数据库还能够在支持业务流程优化方面发挥重要作用。营销:银行可以使用图数据库来收集客户数据、行为数据等,这样可以更加精确地预测客户习惯,对客户进行更加细致的营销和服务。银行图数据库有着广泛的应用场景,可以在多个角度上支持银行的业务发展,提高服务的质量和效率。星环分布式图数据库StellarDB星环科技致力于打造企业级大数据基础软件,围绕数据的集成、存储、治理、建模、分析、挖掘和流通等...