金融数据治理公司行业排名
星环科技提供体系完善的整体数据治理解决方案,涵盖数据治理战略、组织制度机制、数据管理活动和技术工具落地四个方面,同时,还为企业提供数据管理成熟度评估(DCMM)指导,在数据战略,数据治理,数据标准、数据架构、数据安全,数据质量,数据应用,数据生存周期 八大项数据管理能力方面结合企业实际需求,帮助客户制定和实施精准有效的解决方案。
金融数据治理公司行业排名 更多内容

行业资讯
数据治理公司排名
治理公司时,应综合考虑其全球能力和本地化服务,以确保治理效果。数据治理公司排名是一个多维度的评估结果,企业在参考排名时应全面考量技术能力、行业经验、客户评价和创新能力等因素。通过谨慎选择,企业可以找到适合自身需求的数据治理合作伙伴,从而在数据驱动的未来中保持竞争优势。数据治理公司排名在当今数字化时代,数据已成为企业宝贵的资产之一。有效的数据治理不仅能够确保数据质量、安全性和合规性,还能提高企业的决策效率和竞争力。因此,数据治理公司的选择变得尤为重要。本文将探讨数据治理公司排名的相关因素,帮助企业在选择合作伙伴时做出明智的决策。数据治理的重要性数据治理是指通过一系列政策、流程和技术手段,确保数据的准确性、一致性、安全性和可用性。良好的数据治理能够帮助企业避免数据孤岛、减少数据错误,并确保符合日益严格的法规要求。此外,数据治理还能提高数据的商业价值,支持企业实现数据驱动的决策。排名的主要考量因素数据治理公司的排名通常基于多个关键因素。首先是技术能力,包括数据质量管理、元数据管理、数据目录等方面的解决方案。其次是行业经验,优秀的数据治理公司通常在不同行业有丰富的实践经验,能够针对特定行业的需求提供定制化服务。第三是客户评价和案例研究,成功的客户案例和

行业资讯
金融行业数据治理
金融行业数据治理是指金融机构通过建立完善的数据治理体系,运用一系列技术、流程和制度,对金融业务活动中产生的海量数据进行有效管理和利用,以提升数据质量、保障数据安全、促进数据共享和发挥数据价值的过程。治理背景与目标背景:金融行业数据具有体量大、类型多、变化快、敏感度高、监管严格等特点,随着金融科技的快速发展和数字化转型的加速推进,数据已成为金融机构的核心资产和竞争力的关键因素。目标:确保数据的准确性、完整性、一致性、及时性和安全性,满足监管要求,支持业务决策,提升客户体验,防范金融风险,促进金融创新。治理内容数据标准管理统一标准制定:制定涵盖客户信息、产品代码、交易数据等方面的统一数据标准。安全技术措施:采用数据加密、访问控制、身份认证、数据脱敏等技术手段,保护金融数据的机密性、完整性和可用性,防止数据泄露和非法篡改。治理技术与工具数据治理平台:提供数据标准管理、数据质量管理、元数据管理等功能的一体化平台,实现数据治理流程的自动化和规范化。数据仓库与ETL工具:用于数据的抽取、转换和加载,将分散的金融数据整合到数据仓库中,为数据分析和决策支持提供统一的数据视图。数据质量监控工具:通过数据

行业资讯
图数据库公司排名
图数据库公司排名:技术与市场格局解析图数据库作为近年来发展迅猛的数据库类型,凭借其处理复杂关系数据的独特优势,在金融、社交网络、推荐系统等领域获得了广泛应用。本文将从技术特点、应用场景和市场表现等成为研究热点;多模型数据库兴起,使得图数据库不再孤立存在;边缘计算场景下的轻量级解决方案开始出现。应用场景与选型建议不同行业对图数据库的需求各有侧重。金融领域注重实时欺诈检测和风险分析能力;医疗行业关注维度,分析当前图数据库领域的主要参与者,为读者提供一个客观的行业格局概览。图数据库的核心价值与技术特点与传统关系型数据库相比,图数据库采用了完全不同的数据组织方式。它以节点、边和属性为基础单元,直接存储实体间的关系,这使得在处理多跳查询和复杂网络分析时,性能可提高数个数量级。这种特性特别适合需要频繁处理关联关系的场景,如社交网络中的好友推荐、金融交易中的反欺诈分析等。现代图数据库通常具备几个关键技术领域,通过将图数据库作为PaaS服务推出,降低了企业使用门槛。新兴创业公司则专注于垂直领域或特定技术创新,如分布式架构优化、多模型数据库集成等,为市场带来了新鲜血液。这些公司虽然规模较小,但在某些技术指标


行业资讯
银行业数据治理
过程。以下是银行业数据治理的几个关键点:数据治理纳入公司治理范畴:银行业金融机构应将数据治理纳入公司治理,建立自上而下、协调一致的数据治理体系。遵循基本原则:银行业金融机构数据治理应遵循全覆盖原则银行业数据治理是指银行业金融机构通过建立组织架构,明确董事会、监事会、高级管理层及内设部门等职责要求,制定和实施系统化的制度、流程和方法,确保数据统一管理、高效运行,并在经营管理中充分发挥价值的动态、匹配性原则、持续性原则和有效性原则。这意味着数据治理需要覆盖数据的全生命周期,适应业务规模和风险状况,并持续有效地推动数据真实准确客观地反映实际情况,并有效应用于经营管理。监管数据纳入治理:银行业金融机构应将监管数据纳入数据治理,建立工作机制和流程,确保监管数据报送工作有效组织开展,监管数据质量持续提升。法定代表人或主要负责人对监管数据质量承担最终责任。数据治理架构:应建立组织架构健全、职责边界清晰评估机制:建立数据治理自我评估机制,明确评估周期、流程、结果应用、组织保障等要素的相关要求。评估内容应覆盖数据治理架构、数据管理、数据安全、数据质量和数据价值实现等方面,并按年度向银行业监督管理机构报送

行业资讯
数据治理咨询公司
认知偏差,从战略高度审视数据治理的价值。它们带来的不仅是方法论,还有跨行业的实践经验,能够避免客户重蹈前人覆辙。面对快速演变的技术环境和监管要求,内部团队往往难以实时跟进新趋势。咨询公司作为专业第三方数据治理咨询公司:数字化时代的护航者在数字经济蓬勃发展的今天,数据已成为与土地、劳动力、资本和技术并列的第五大生产要素。随着数据价值的日益凸显,如何有效管理和利用这一宝贵资源成为各类组织面临的共同挑战。数据治理咨询公司应运而生,它们如同数字化浪潮中的专业导航员,为企业在数据海洋中指明方向。数据治理咨询公司的核心职能数据治理咨询公司专注于帮助客户建立系统化的数据管理框架,其核心服务涵盖多个维度、价值评估等方法,推动企业将数据从成本中心转变为利润中心。为何需要专业数据治理咨询服务许多企业在数据治理初期常陷入误区,要么认为这只是IT部门的技术问题,要么将其视为一次性项目。专业咨询公司能够纠正这些诊断。顾问团队通过访谈、问卷和系统检查等方式,评估客户数据管理现状,识别痛点与改进机会。基于诊断结果,他们会设计定制化的治理框架,包括组织架构、政策流程、技术工具和文化建设等要素。落地实施阶段,咨询公司

行业资讯
金融行业实时数仓解决方案
随着金融行业的发展,数据量不断增加,金融公司面临着更多的数据处理和管理挑战。而实时数仓解决方案可以帮助金融机构更好地处理和分析大量的数据,提高数据的价值。实时数仓是一种保留实时更新数据的数据,并支持不同部门之间的良好合作。数据分析:实时数仓解决方案可以帮助金融公司实时分析数据,包括预测市场趋势和行业变化等。数据分析可以帮助金融公司更好地发现商业机会、优化运营流程和提高客户关系。风险控制具有重要意义。实时数据采集和处理:实时数仓解决方案可以帮助金融公司实时获取并处理市场数据、客户行为数据、运营数据和风险数据等多种数据。实时数据采集和处理可以帮助金融机构及时响应市场变化,并快速做出决策,从而提高公司的竞争力。数据集成:实时数仓解决方案可以将所有数据集成到一个单一的数据存储库中,包括内部数据和外部数据,比如公开市场数据和人工智能数据等。数据集成可以帮助金融公司更好地发现关键业务信息:实时数仓解决方案可以帮助金融公司实时监测市场风险和业务风险,以及通过实时数据分析更好地控制风险。风险控制可以帮助金融公司保护利益和防止潜在损失。实时数仓解决方案是金融公司在数字化时代的合适选择。可以提高

行业资讯
数据中台企业排名
提供商、行业解决方案商和技术咨询公司。这种生态能力使客户能够获得更完整的数字化转型支持,而非孤立的数据中台产品。行业影响力与思想领导力同样重要。排名靠前的企业往往积极参与行业标准制定,发布权威研究报告数据中台企业排名:如何评估行业领先者在当今数字化转型的浪潮中,数据中台已成为企业实现数据驱动决策的核心基础设施。数据中台通过整合企业内外部数据资源,提供统一的数据服务能力,帮助企业打破数据孤岛,释放数据价值。随着这一概念的普及,市场上涌现出众多提供数据中台解决方案的企业,如何评估这些企业的行业地位成为许多组织关注的问题。评估数据中台企业的行业排名并非易事,因为这一领域涉及多个维度的考量。首先需要。市场份额和客户基础是另一个重要指标。领先的数据中台企业往往服务于多个行业的头部客户,包括金融、零售、制造和互联网等领域。这些企业的解决方案经过大规模实际场景验证,能够适应不同行业的特定需求。客户留存率和增购率也能反映解决方案的实际价值和企业满意度。产品创新能力在快速演进的数据中台领域尤为关键。排名靠前的企业通常持续投入研发,在人工智能集成、自动化数据治理、低代码数据应用开发等方面保持技术领先。他们不仅

行业资讯
金融行业大模型
金融行业大模型是指专门针对金融领域的特点和需求,基于大量的金融数据训练而成的大语言模型。金融大模型特点金融专业性强:金融行业大模型具备深厚的金融专业知识,能够准确理解和处理各种金融术语、概念、市场动态等信息,例如东方财富的妙想金融大模型,可在投研、投顾、投教、投资等金融垂直场景发挥专业价值。数据质量要求高:金融数据的准确性和可靠性至关重要,因此金融行业大模型在训练和优化过程中,对数据的质量把控更为严格,以确保生成的结果符合金融业务的严谨性要求。风险控制能力突出:金融行业大模型能够协助金融机构更好地进行风险评估和控制,通过对海量数据的分析和挖掘,预测市场趋势、识别潜在风险因素,为风险管理提供有力支持。合规性要求严格:金融行业受到严格的监管,大模型的应用必须符合相关法规和合规要求,包括数据隐私保护、信息安全、反洗钱等方面的规定,以确保金融业务的合法合规运营。金融大模型应用场景智能投研:帮助分析师快速收集、整理和分析大量的金融市场数据、公司财报等信息,挖掘有价值的投资线索,生成投资报告和研究观点,提高投研效率和准确性。智能投顾:根据用户的风险偏好、投资目标和财务状况,为个人投资者提供个性化
猜你喜欢

行业资讯
国产数据库有哪些?
在国产数据库产品方面,星环科技坚持自主研发与技术创新,打造了自主可控的高性能分布式数据库ArgoDB和分布式交易型数据库KunDB,以及分布式图数据库StellarDB等产品。KunDB具备较强的SQL兼容性,同时具备高可用、高并发、在线扩缩容、数据强一致性等能力,适用于操作型业务、高并发业务等场景。ArgoDB具备完整的SQL兼容性,同时具备高扩展、高可靠、多模型、存算解耦等能力,一站式满足数据仓库、实时数据仓库、数据集市、OLAP、联邦计算等场景。通过不断的打磨和对业务场景不断的落地实践,ArgoDB和KunDB已成为具有完全自主知识产权的成熟的国产数据库,能够为更多的客户提供高性能、高可靠、成熟的数据库产品服务,帮助用户应对智能数据时代海量数据的分析与探索。分布式图数据库StellarDB兼容openCypher查询语言,提供海量图数据的存储和分析能力,支持原生图存储结构,支持万亿边PB级数据存储。同时,StellarDB具备毫秒级点边查询能力,10+层的深度链路分析能力,提供近40种的图分析算法,具备数据2D和3D展示能力。星环科技StellarDB在金融、政府和社交网络等领域...

行业资讯
图计算平台代表厂商
星环科技作为一家企业级大数据基础软件开发商,在图计算领域深耕多年,有着深厚的技术积淀和丰富的实践经验。星环科技自主研发的分布式图数据库StellarDB,兼容openCypher查询语言,提供海量图数据的存储和分析能力,支持原生图存储结构,支持万亿边PB级数据存储。同时,StellarDB具备毫秒级点边查询能力,10+层的深度链路分析能力,提供近40种的图分析算法,具备数据2D和3D展示能力。StellarDB克服了海量关联图数据存储的难题,通过集群化存储和丰富算法,实现了传统数据库无法提供的低延时多层关系查询,目前已经用于金融、政府、交通等众多行业,用于反洗钱、风险控制、营销等多种场景。同时StellarDB还获得了多项行业权威认可:入选信通院2022大数据十大关键词“图计算平台”代表厂商;通过了中国信通院图数据库和图计算平台基础能力两项专项测评;入选著名咨询机构Gartner《中国数据库市场指南》、《工具:中国数据库管理系统供应商甄选》报告等,彰显了其产品技术领先性。如今,5G、物联网、AI等技术的发展应用让数据呈指数倍增长,为图数据库发展提供了更广阔的应用空间。顺势而为,乘势而上...

行业资讯
什么是分布式时空数据库?
时空数据库时空数据库是一种针对时空数据处理的数据库系统。它以时间和空间为基础,整合了空间信息和时间信息,能够对时空数据进行存储、查询和分析。时空数据库广泛应用于交通运输、城市规划、GIS等领域。分布式时空数据库分布式时空数据库是一种对时空数据进行存储和处理的数据库系统,通过分布式存储和分布式计算等技术,可以实现对大规模时空数据的高效处理和分析。与传统的集中式数据库系统不同,分布式时空数据库将数据存储在多个存储节点上,并将计算任务分配给多个计算节点来完成,从而极大地提高了时空数据的处理能力和可靠性。分布式时空数据库的出现,使得处理大规模时空数据成为了可能,也更好地满足了各个领域对时空数据深度分析的需求。星环分布式时空数据库-TranswarpSpactureSpacture是星环科技自主研发的一款面向空间、时空数据的存储与管理,集计算与存储为一体的分布式数据库产品,支持大规模矢量数据、时空轨迹数据的存储与计算,具有完备的数据查询、分析和挖掘能力,可用于时空查询分析、时空模式挖掘、时空轨迹聚类等时空轨迹数据分析场景,广泛应用于交通物流、城市管理、位置服务等场景。

行业资讯
企业级AI能力运营平台
为解决AI落地难的问题,星环科技从用户需求端出发,研发了一款基于云原生架构的企业级AI能力运营平台SophonMLOps,助推AI模型落地。SophonMLOps是基于云原生架构构建的企业级AI能力运营平台,聚焦于机器学习模型全生命周期中的模型管理、模型部署、模型监控预警、模型评估和模型迭代等关键环节。通过统一纳管、统一运维、统一应用、统一监控、统一评估、统一解释,赋予企业客户易用、高效且安全可靠的AI能力运营服务,协助客户规模化管理日益增长的机器学习模型,提升模型使用效率,降低模型集成管理成本,控制模型生产环境风险。SophonMLOps针对企业AI运营的痛点,围绕企业AI模型接入、运营管理、持续训练的全生命周期,分别提供规模化集成管理、高效模型推理、模型监控预警、模型性能评估、隐私安全保障等功能,为企业的AI日常运营插上翅膀。SophonMLOps打通了AI的全生命周期,为企业的各类用户角色搭建了统一的AI协作平台。对于企业而言,MLOps规模化集成管理了多源异构的机器学习模型,并提供高效且保障隐私安全的模型推理、监控预警及性能评估服务;对用户而言,能感受到操作上的快捷,AI应用与...

行业资讯
电力行业数字化转型服务商
星环科技致力于打造企业级大数据基础软件,具备大数据与云基础平台、分布式关系型数据库、数据开发与智能分析工具的软件产品矩阵,多年来深耕电力领域,覆盖电力产业“发-输-变-配-用”五大环节,为推动电力行业数字化转型做出了重要贡献。在国网上海电力智能配用电大数据应用系统建设项目中,基于星环科技大数据基础平台TDH构建的智能配用电大数据应用系统汇集了浦东1210平方千米的236万户的用电数据,高负荷738万千瓦,年用电量329亿度,占上海全网四分之一。集成的内外部数据源有10个,整个数据量到现在已经接近8个T了,台账的数据总量有29.14万条。在多元数据集成及大数据平台基础之上,应用系统实现了用电查询,电力地图等基础功能及用户用电行为分析,节电用电预测网架优化和错峰调度等业务应用。基于多源异构数据的关联解析,和海量用电负荷实际数据存储、索引,实现了用电查询的基础应用,包括230万用户,26000个台区,4000余中压馈线的基本台账及用电数据的快速查询,并可以进行用户用电画像、地图定位、供电范围等数据的查询,服务响应时间在三秒以内。此前,星环科技还曾凭借《星环科技电力智慧供应链智能决策平台建设方...

行业资讯
数据中台推荐供应商
作为一家企业级大数据基础软件开发商,星环科技很早就在数据中台领域布局,结合星环科技全系产品的相关组件实现数据中台能力建设。星环科技把数据中台建设归纳为三中心、六能力、两个体系,这当中都会有星环科技产品作为支撑,从而保证企业能够快速实现,并搭建起数据中台,满足企业未来发展变化。其中,三中心分别是存储中心、分析探索中心、业务赋能中心;六能力包括数据汇聚能力、数据整合能力、智能分析能力、实时计算能力、统一访问能力、统一服务能力;两个体系则是安全和运维保障体系与数据和分析支撑体系。三中心、六能力、两个保障体系都构建在一个云底座之上,满足企业私有化或者混合云多云的部署形态,同时灵活组件式的可插拔式部署形态,能够帮助企业更迅速的起步,按规划分步完善数据中台建设。除了提供基础组件和相应的工具帮助客户快速构建数据中台之外,星环科技还提供咨询实施服务,可以为企业提供量身定制的“数据云基础设施+咨询服务的端到端产品+服务”的综合解决方案。在星环科技的咨询服务产品体系中,包括为企业构建中台的架构规划、应用规划,以及帮助企业实施建设数据底座、数据中台、数据仓库,以及数据治理服务,也包括了数据的分析、业务分析、...

行业资讯
图数据库的应用场景
图数据库的应用场景非常广泛,可以应用于各个行业。以下是一些常见的应用场景:金融:在金融领域,图数据库可以帮助银行、保险公司等企业处理复杂的数据结构,支持欺诈检测、交易路由、投资组合分析等操作。社交网络:图数据库可以存储和处理社交网络中的复杂关系图谱和大量用户数据,支持好友推荐、社区发现、个性化内容推荐等操作。物流:在物流领域,图数据库可以帮助企业优化路径规划、物流运输等操作,加速发货、配送时间并提高效率。制造业:图数据库可以支持企业处理复杂的设备关系结构图,进行维修保养、设备性能分析、生产计划优化等操作。能源行业:在能源领域,图数据库可以处理复杂的电网、管道等结构图谱,并支持多种能源趋势分析和紧急事件监测等操作。电商:图数据库可以应用于电商业务中,存储和处理复杂的商品与用户之间的关系,支持个性化推荐、购物车分析、用户行为预测等操作。图数据库可以在各个领域中应用,并且在处理复杂的数据结构和大量的数据时比传统数据库具有更高的性能和效率。星环分布式图数据库StellarDB星环科技致力于打造企业级大数据基础软件,围绕数据的集成、存储、治理、建模、分析、挖掘和流通等数据全生命周期提供基础软件与...

行业资讯
数据中台建设
随着行业和技术领域的变化日新月异,从数据仓库、动态数仓,到数据湖,从新一代湖仓一体技术到可插拔数据库,概念的引入虽然简单,但如何做到更有效,更复杂的数据资产管理就考验着对生产能力和工艺过程的管理能力。星环科技认为数据中台是一种能力、是一种组织上的策略而不仅仅是一种技术架构,它是在信息化基础上建立的可编织和可复用的数据可分析能力,从而支撑企业数字化转型。星环科技的数据中台三中心、六能力、两个体系星环科技很早就在数据中台领域布局,结合星环科技全系产品的相关组件实现数据中台能力建设。星环科技把数据中台建设归纳为三中心、六能力、两个体系,这当中都会有星环科技产品作为支撑,从而保证企业能够快速实现,并搭建起数据中台,满足企业未来发展变化。数据存储、分析探索、业务赋能三中心第一,帮助企业构建存储中心,提升数据的汇聚和整合能力;第二,构建数据分析探索中心,专注于智能分析能力和实时计算能力的提升,推动智能推荐能力和全链路实时监测和保障能力;第三,构建业务赋能中心,提供统一的访问能力实现跨平台联邦,统一的访问层控制,确保数据安全可用,同时搭建统一的服务能力,面向多场景的服务应用支撑。安全和运维、数据和分...

行业资讯
数据安全实践案例
近年来,企业数据安全问题的重要性被提上了前所未有的高度。星环科技提供了从云基础设施、数据平台、数据资源、数据应用的数据安全能力。覆盖数据生命周期的各个阶段,涉及数据的收集、存储、使用、加工以及开放流通。全方位保障企业的数据安全,支撑业务合法合规的开展。星环科技凭借全面的数据安全能力助力某支付机构构建安全防线的落地实践。该支付机构拥有大量数据资产,目前机构面临着较大的挑战,需要加强数据安全管理,为此,机构决定与星环科技合作,利用星环科技的技术来提升数据安全管理能力,共同打造一个基于隐私计算的数据服务平台DaaS。根据客户需求,星环科技在基础设施层提供了基于容器的云原生操作系统TCOS,可以为用户提供独立的数据与计算环境,减少数据对外暴露的风险。在数据平台层,星环科技大数据基础平台TDH新版本增强了安全技术,支持行列级权限控制、动态脱敏等。在数据资产层,星环科技借助两款新产品:数据安全管理平台Defensor帮助企业构建整个数据安全管理域及数据流通平台Navier:包含隐私计算平台SophonP²C和数据交易门户datamall,提供包括联邦学习和差分隐私等技术能力。该支付机构的数据管理平...

行业资讯
省市级碳排放监测服务平台建设方案
双碳目标下,全国碳排放监测服务平台启动建设力争2030年前实现碳达峰、2060年前实现碳中和,我国明确提出“双碳”目标,充分彰显了在构建人类命运共同体进程中的大国担当。国家电网公司主动担当重要使命,提出“实现双碳目标,能源是主战场,电力是主力军,电网是排头兵”的战略部署,率先行动,发布《全国碳排放监测服务平台建设工作方案》。“双碳”目标的实现离不开科技支撑。《全国碳排放监测服务平台建设工作方案》指出,全国碳排放监测服务平台建设的总体目标是以电网数字化赋能和助力国家碳达峰碳中和,实现“电力看双碳”,“双碳看经济”,为国家碳排放统计核算体系建设、宏观调控政策制定、经济社会全面绿色转型发展等工作提供决策支持。平台建设需要解决以下问题:以数字化平台技术解决各省的地市、区县、重点行业碳排放数据维度不全面、核算方法不完善、碳核算体系不统一等方面的问题;强化数据应用,发挥好决策支撑作用,深挖电力大数据价值,开展“电力看环保”“电力看经济”等大数据应用。积极响应号召,星环科技打造碳排放监测服务平台解决方案星环科技作为大数据基础软件领域的代表性企业,有着高度的责任感和使命感,为响应“全国碳排放监测服务平...