医疗隐私计算

星环隐私计算平台
Sophon P²C是一款分布式隐私计算平台,集隐私计算、加密网络通信等多种功能,为多方安全建模提供完整的解决方案。以隐私保护为前提,Sophon P²C解决了跨组织协作时无法安全利用各方数据的困境
隐私计算
Sophon P²C是一款分布式隐私计算平台,集隐私查询、隐私计算、加密通信等多种功能,能够为多方安全建模提供完整的解决方案。其以隐私保护为前提,能够帮助用户解决跨组织协作时无法安全利用各方数据的困境。

医疗隐私计算 更多内容

行业资讯
隐私计算 医疗
隐私计算医疗领域具有至关重要的作用,它能够在保护患者隐私的前提下,充分挖掘医疗数据的价值,促进医疗行业的发展和创新。医疗数据包含了患者极其敏感的个人信息,如身份、健康状况、疾病史、基因数据等。随着医疗信息化的发展,医疗数据的规模和价值不断增长,但数据隐私和安全问题也日益突出。隐私计算技术为解决这一矛盾提供了有效途径,使得医疗数据能够在安全的环境下进行共享和利用。具体应用医疗数据分析与研究疾病研究:不同医疗机构之间可以利用隐私计算技术,在不泄露患者隐私的情况下,共享病例数据进行疾病的发病机制、流行趋势等研究。例如,通过联邦学习技术,各医疗机构在本地训练疾病预测模型,然后将模型参数上传至中需获取具体患者的隐私信息,从而实现对医疗质量的有效监管和评估。药物研发临床数据共享:制药企业在研发新药时,需要大量的临床数据来验证药物的有效性和安全性。隐私计算技术可以使制药企业与多家医疗机构在保护患者更符合试验条件的患者群体,加快临床试验进程。远程医疗与健康管理患者数据共享:在远程医疗会诊中,不同医疗机构的医生可能需要共享患者的病历、检查报告等数据。隐私计算技术可以确保数据在传输和共享过程中的
医疗机构在处理大量敏感的患者数据时,隐私计算技术为其提供了安全、高效的数据处理和共享方案。技术应用联邦学习:不同医疗机构之间可以在不交换患者原始数据的情况下,联合训练机器学习模型。例如,多家医院可以研究中,涉及到多个医疗机构的数据协作。安全多方计算技术可以让各方在不泄露患者隐私的前提下,进行数据的统计分析、关联规则挖掘等操作。同态加密:对于一些需要对加密数据直接进行计算的场景,同态加密技术可以,从而保证数据在整个过程中始终以密文形式存在,保护了患者隐私。应用场景医疗科研协作:不同医疗机构拥有丰富的临床病例数据,通过隐私计算技术,研究人员可以在保护患者隐私的前提下,整合多方数据进行大规模的医学研究。远程医疗医疗数据共享:在远程医疗服务中,医疗机构之间需要共享患者的部分医疗数据以便进行远程会诊和诊断。隐私计算技术可以确保数据在传输和共享过程中的安全性,让不同医疗机构的医生能够在不直接接触患者原始数据的情况下,获取必要的信息进行诊断和治疗建议,提高医疗服务的质量和效率。医疗数据治理与分析:医疗机构内部需要对大量的医疗数据进行治理和分析,以优化医疗资源配置、提高医疗服务质量。隐私计算
医疗隐私计算平台医疗隐私计算平台是解决医疗数据安全共享难题的关键基础设施。这类平台需要具备四大核心能力:多模态数据处理:支持临床记录、影像资料、基因数据等跨机构协作:实现医院、药企、科研机构的安全数据流通高性能计算:优化算法使基因组分析效率提升10倍全流程审计:区块链技术确保数据使用可追溯某国家级医疗大数据中心建设的隐私计算平台已接入50家医疗机构,存储了8PB的脱敏医疗数据。该平台采用的最新混合加密技术,使跨医院科研项目审批时间从3个月缩短至1周。在具体应用中,一个突出的成功案例是:5家顶级医院通过该平台开展肿瘤治疗方案研究,既保护了患者隐私,又将研究周期压缩了60%。平台内置的智能合约系统,还能自动执行数据使用协议,确保所有操作符合《个人信息保护法》要求。
行业资讯
隐私计算场景
隐私计算技术的应用场景非常广泛,涵盖了金融、政务、医疗、通信、互联网等多个行业。以下是一些具体的应用场景:金融行业:风控与营销:隐私计算技术可以用于金融行业的获客和风控,例如在不泄露客户个人信息的租房识别系统:南京市应用隐私计算技术建立了群租房识别系统。政府数据开放共享渠道:中山市应用隐私计算打造了政府数据开放共享的统一渠道。医疗行业:数据共享流通:隐私计算医疗行业的应用包括跨医疗机构之间的数据共享流通,以及医疗开放数据与政企等单位数据的融合应用。基因组学分析、群体遗传学分析:隐私计算技术在医疗领域主要用于基因组学分析、群体遗传学分析等医学研究、药物研发、辅助诊疗和疫情防控等方面。通信行业前提下进行联合画像和产品推荐,以及在不泄露客户已有贷款数额、黑名单等信息的前提下评估客户信用情况,降低违约风险。联合反洗钱:隐私计算技术可以帮助金融机构在不共享客户数据的情况下进行反洗钱合作。智能营销、智能风控、智能管理:隐私计算在金融领域还涉及到智能营销、智能风控、智能管理等多个方面。政务行业:数据共享与开放:隐私计算在政务领域的应用包括政务数据共享和数据开放,如使用公共数据平台进行数据共享。群
隐私计算领域应用现状金融、医疗和政务构成隐私计算应用的"黄金三角"。在金融领域,应用已从反欺诈扩展到全面风险管理,某信用卡中心通过联邦学习将套现识别准确率提升25%。医疗行业突破最大,国内首个跨省医疗隐私计算平台连接了8省30家三甲医院,在保护患者隐私前提下,将罕见病研究效率提升3倍。政务应用中,某省级平台实现社保、税务等15类数据的安全融合,小微企业贷款审批通过率提高18%。新兴领域正在快速崛起。工业互联网场景中,某车企联盟通过隐私计算共享生产数据,优化供应链使库存成本降低12%。广告营销领域,某电商平台采用联邦学习进行用户画像,在满足CCPA要求同时将转化率提升15%。值得关注的是,边缘计算隐私计算的结合,使智能家居等场景的数据"就地处理"成为可能。
随着数字技术的快速发展,隐私计算作为一种新兴技术,正日益受到广泛关注。能够在保护个人隐私的前提下,实现数据的安全共享和高效利用。隐私计算的应用场景十分广泛,涵盖了政务、金融、医疗、广告等多个领域。在可以在保护客户隐私的同时,利用多方数据进行风险评估和欺诈检测,提高金融业务的安全性和效率。此外,在征信和保险定价方面,隐私计算也有助于实现更加精准的风险评估和定价策略。在医疗领域,隐私计算的应用同样具有重要意义。联合诊断、智能问诊、辅助医疗、病理分析、药物研发等方面都需要大量的医疗数据支持。然而,由于医疗数据涉及个人隐私和伦理问题,数据的共享和利用一直受到限制。隐私计算技术的出现,为医疗数据的安全共享和高效利用提供了可能。通过隐私计算医疗机构可以在保护患者隐私的前提下,实现数据的共享和协同研究,推动医疗技术的进步和创新。广告领域也是隐私计算的重要应用场景之一。在精准营销和客户画像方面,隐私政务领域,隐私计算的应用主要体现在政务数据开放共享、智慧城市、联合安防、应急管理及响应等方面。通过隐私计算技术,政府部门可以在不泄露个人隐私信息的前提下,实现数据的跨部门共享和协同办公,提升政府服务
行业资讯
联邦隐私计算
可以利用联邦隐私计算技术,在保护患者隐私的情况下,联合进行疾病诊断模型的训练、药物研发等工作,促进医疗数据的共享和利用。工业领域:在供应链上下游企业之间,可通过联邦隐私计算实现数据共享和协同分析,如需求预测、质量控制、生产优化等,提高产业链的协同效率和竞争力。联邦隐私计算通常指联邦学习与隐私计算技术相结合。基本原理数据不出本地:参与方在本地拥有各自的数据,在联合训练模型或进行数据处理时,数据始终不离开本地设备或数据中心,避免了数据的直接共享。加密参数交互正确的计算结果,防止单点数据泄露。差分隐私:通过在数据处理或模型训练过程中添加适量的随机噪声,使得处理后的结果对于数据集中任何单个记录的存在或缺失不敏感,在保护个体隐私的同时提供有价值的统计信息。应用场景金融领域:银行、证券、保险等机构可在不共享客户敏感信息的前提下,联合进行风险评估、反欺诈检测、精准营销等模型的训练和优化,提升金融服务的质量和效率,同时保护客户隐私医疗健康领域:不同医疗机构之间:通过加密技术对模型参数进行加密处理后在参与方之间进行传输和交换。各方利用本地数据对加密后的参数进行计算和更新,并将更新后的加密参数再返回给其他参与方。主要技术同态加密:允许在密文上直接进行特定类型的
,得到联合训练后的模型。联邦计算应用于数据大规模分布式场景,例如金融风控、医疗诊疗、智慧城市等多个领域。隐私计算则是一种在不将原始数据暴露的前提下,基于加密计算实现对数据的计算、查询或分析。隐私计算中的联邦计算隐私计算都是在保护数据隐私的前提下进行数据计算或模型训练的技术手段。联邦计算指的是在不泄露原始数据隐私的前提下,将各方的数据集合并在一起进行计算或模型训练。与传统的数据集中式计算方案相比,联邦计算更加注重数据隐私保护和数据的去中心。联邦计算的基本流程是:通过密码学手段保证各方之间的数据隐私;将各个参与方提供的数据在本地预处理,提取特征,然后在各方之间进行模型参数更新;后汇总模型参数数据能够在加密状态下保存、传输、计算和输出,用户在享受计算结果的同时,也可以享受到数据隐私保护。在隐私计算中,数据拥有者将原始数据进行加密,形成密文。在密文的基础上,进行加密计算,得到密文结果。之后,密文结果才被解密,得到终的结果。通过加密计算,私计算实现了用户数据的隐私保护和数据共享的矛盾的平衡。联邦计算更加注重在各方之间进行数据合并时对数据隐私的保护,强调去中心化,在各方的数据安全和隐私保护保证
行业资讯
图数据库技术
图数据库技术是一种应对处理网络、社交网络、金融、物流、人力资源等领域大规模图数据的数据库技术。它的核心思想是将数据以节点和边(或关系)的形式表示为图结构,并且使用图论算法来处理和分析图数据。与传统关系型数据库相比,图数据库具有以下独有的优势:高效处理复杂关系:图数据库能够更加高效和便利地处理网络关系的复杂性,而关系型数据库则需要多表关联,从而开销比较大。更加贴合业务需求:图数据库建立的业务图模型更能够贴合实际业务需求,更好的反映业务中的关系复杂性,同时也更加容易维护和解决问题。易于拓展:作为新型数据库,图数据库基于跨平台开源软件,并且基于标准语言,可以并行处理,易于拓展。更好的查询性能:图数据库采用以图形方式存储的数据,查询性能快,即使在数据量较大时,图查询语言效果也良好。更好的原型应用程序:图数据库的特性,同时也增加了更多的应用程序,这些程序在传统关系型数据库中往往比较困难。图数据库技术在社交网络分析、推荐系统、物流、金融、人工智能等领域有广泛的应用前景。星环分布式图数据库StellarDB星环科技致力于打造企业级大数据基础软件,围绕数据的集成、存储、治理、建模、分析、挖掘和流通等数...
数字经济时代,边缘计算作为行业数字转型的核心能力底座,正在快速崛起。星环科技也在边缘计算领域进行了诸多探索,研发了边缘计算平台Sophon。Sophon是解决多模态数据集成和治理过程中的边缘化、智能化的云端-边缘端融合计算平台,支持标准的视频和物联网协议接入,低代码的业务流程构建,高性能的数据处理和分析,企业级的云-边数据、服务治理,以及针对边缘嵌入式和云端服务器等异构硬件的适配。星环科技Sophon平台包括设备数据管理、模型训练迭代、边缘模型部署、应用构建分发、数据治理能力、边缘自治能力、云边协同能力七大能力。Sophon可以从两个层面实现效益价值:降低长尾应用的实施人力,降低从数据到模型,模型到应用的构建成本;改变长尾应用的落地模式,从粗放的一次性模型交付到精细化的模型持续运营。其主要技术创新包括:边缘可视化流处理构建、边缘数据采样驱动模型迭代、边缘实时数据可视化、边缘深度推理引擎。设备数据管理:平台支持超过20种标准的设备协议,用户只需要进行简单配置便可快速将物联网设备或视频设备接入平台,并进行设备数据实时预览和统一管理。边缘模型部署:平台支持多种框架训练的深度学习模型的上架,通...
星环科技自主研发的数据安全管理平台TranswarpDefensor,基于Defensor的五大核心能力和星环科技全局数据安全策略,可以帮助企业建设以数据为中心的数据安全防护。Defensor能够帮助企业了解内部数据敏感信息的资产地图,发现潜在风险,并监控企业重要数据的合规使用;同时,也能对企业敏感数据进行分类分级,通过数据脱敏、水印等方式对数据进行事前事后的保护,防止数据泄露或能够在数据泄露后做到可以溯源追踪。五大核心能力:分类分级、数据脱敏、操作监测、操作审计、个人信息去标识第一,敏感数据识别与分类分级,帮助企业全面梳理敏感资产,并绘制分类分级资产地图。Defensor内置的分类分级标准参照,涵盖了多个行业法律法规,并与律师深度合作探讨,共同落实了大量规则;基于正则表达式、关键字内容、算法匹配、字典匹配等方式,自动扫描全局敏感数据,提供定时敏感识别扫描任务。第二,提供数据脱敏和水印等能力,让敏感数据可以脱敏后服务业务,并在发生泄露后可以追踪溯源。平台预置多种脱敏算法,开箱即用,满足不同场景,不同安全等级的脱敏要求。当敏感数据需要对外流通时,支持在数据集中嵌入水印,当数据发生泄漏后,...
星环科技凭借自身在大数据、人工智能等领域多年来积累的技术优势和实践经验,能够为水电行业打造基于国产基础软件的新一代数据底座,实现海量数据实时接入及应用。在方案中,所有时序数据通过实时接口统一接入星环科技分布式时序数据库TranswarpTimelyre,关系型数据接入关系型分析引擎TranswarpInceptor关系库,非结构化数据接入对象存储平台。然后对时序数据、关系数据进行主题建模和维度建模,将建模结果直接写星环科技分布式数据库入ArgoDB中,形成DWD和DWS层。并在ArogDB中,面向应用分析,构建数据指标宽表、应用主题数据等数据集市层。这里有几个很关键的联合分析技术,一个是“序关分析”,举个例子,我们在做故障预警算法开发的过程中,需要提取故障特征,通过历史设备台账数据(一般存在关系型数据库),把所有设备的故障开始时间、故障结束时间,故障类型等拿出来,关联时序数据库找到设备故障时刻的测点值,这些值要提取出来,作为样本进行AI模型训练。另外一个是流上机器学习与流批一体,按照上面的例子,训练完模型后,需要部署在实时计算引擎上,与离线库中的档案数据表等,构建实时故障预警模型,对同...
近年来,图数据库的价值逐渐得到了大家的关注。作为一家专注于图数据库研发的企业,星环科技成为了行业内备受关注的图数据库公司之一。星环科技致力于打造企业级大数据基础软件,旨在为用户提供数据的集成、存储、治理、建模、分析、挖掘和流通等全生命周期的基础软件和服务。同时,作为一家深入图计算领域多年的公司,星环科技自主研发了分布式图数据库StellarDB,StellarDB兼容openCypher查询语言,提供海量图数据的存储和分析能力,支持原生图存储结构,支持万亿边PB级数据存储。另外,StellarDB还具备毫秒级的点边查询能力、10+层深度链路分析能力和近40种的图分析算法,同时还可提供数据2D和3D展示能力。星环科技进一步推出的StellarDB4.0版本,在数据导入、多跳查询和图算法性能方面实现了数倍升级,同时在易用性、安全性、运维管理和开放性方面也全面升级。这些升级内容均有利于帮助企业用户更高效地挖掘海量数据互联价值。星环科技已经成功克服了海量关联图数据存储的难题,通过集群化存储和丰富算法,实现了传统数据库无法提供的低延时多层关系查询。广泛应用于金融、政府、交通等多个行业的反洗钱、风...
AquilaInsight是星环科技推出的一款多模数据平台监控软件,为企业运维团队提供了一套统一、完整、便捷的智能化运维解决方案。通过丰富的仪表盘管理、告警与通知管理、实时和历史查询语句运行分析、计算和存储引擎的统一监控、完整的日志收集过滤与检索等功能,实现高效智能运维的目标,充分保证集群稳定高效的运作。业务痛点企业在应对业务部门的扩张以及数据融合创新时,通常会针对不同的项目场景引入不同的数据模型以及大数据产品。这些产品和模型为企业解决了海量多源异构数据的存储管理难题,但与此同时,产品服务的可靠性问题也为企业带来了挑战。服务需要持续高效、稳定、可靠的运作,对于企业运维团队来说需要做到有问题及时发现,资源不够及时扩容,出现故障迅速修复,以防止出现服务器长时间宕机、业务长时间中断、数据丢失等问题。企业如果采用了大量分布式架构的大数据组件,那么运维人员需要掌握每一款大数据产品的相关知识,极大的增加了企业的运维成本以及运维人员的学习成本。并且由于缺乏统一的运维入口,传统的查询运维难以完成指标数据的可视化,极易缺乏或遗漏关键监测指标。在数据碎片化、监控对象粒度庞大的情况下,自动化监控难以实现,无...
分布式图数据库是一种用于存储、管理和查询图数据的数据库,适用于处理海量复杂数据、实现多跳关系查询和图算法计算。通过分布式存储和计算,实现对大规模图数据的高效管理和查询。分布式图数据库使用图结构存储数据,节点和边可以拥有自定义的属性,支持多种查询语言和图算法。它通常由多个节点组成,每个节点负责存储和处理一部分数据,互相协作完成任务。分布式图数据库适用于金融、社交媒体、医疗等领域的数据分析和挖掘。TranswarpStellarDB是由星环科技自主研发的一款分布式图数据库,兼容开放Cypher查询语言。它支持原生图存储结构,提供PB级别的海量图数据的存储和分析能力。同时,在易用性、安全性、运维管理以及开放性方面也有着不错的表现。TranswarpStellarDB4.0性能在多跳查询和图算法方面实现了数倍升级,并且在易用性、安全性、运维管理和开放性等方面都进行了全面升级,可以帮助企业用户更快、更高效地挖掘海量数据互联的价值。通过采用分布式集群存储的方式,TranswarpStellarDB克服了海量关联图数据存储的难题,并通过集群化存储和丰富的算法来实现低延迟的多层关系查询。已经在金融、政...
图数据库是一种特殊的数据库管理系统,可以高效地存储和查询各种复杂数据间的关系。一般而言,图数据库是基于图形理论和图形模型而建立的,相比于传统的关系数据库(RDBMS),图数据库能够很好的解决复杂数据之间的连接问题,有着优越的效率和性能。图数据库可以看作一个由节点(节点表示具体的数据)和边(边表示节点之间的生物关系)组成的图,这种图称为图形数据。这些节点和边都具有特定的属性,这些属性包含了数据的详细信息,比如名称,性别,地址等内容。这种数据呈现了一个更加真实和可视的方式,具有更加完整的信息和语义,可以用于多种领域,如社交网络,交通规划,生物医学等,因此有着极其广泛的应用前景。相比于其他数据库系统,图数据库拥有以下优点:应对复杂性:图数据库可以轻松处理各种形式的复杂数据,可以通过在图形结构中表示数据之间的联系,从而实现更好的查询和可视化。相比于传统的关系型数据库,图形数据的可视化更加清晰有条理,能够更加方便的进行复杂数据的关系分析。高效性:图数据库能够高效地处理大量的数据连接操作,而且查询时不需要太多的连接,所以具有更高的查询效率。例如,在社交网络中,图数据库能够高效的搜索出用户之间的关系...
图数据库相对于其他传统的数据库有很多优势,以下是几点常见的优势:灵活的数据模型:图数据库支持灵活的数据模型,可以存储复杂的实体类型和其之间的关系,如社交网络、地图路线等复杂模型。强大的关系查询能力:图数据库通过树状遍历方式遍历关系,使用广度优先搜索和深度优先搜索算法,提供更快速、更精确的关系查询和分析。高效的数据处理能力:图数据库处理大规模图数据的效率更高,能够对图数据进行快速存储、索引和查询,降低了大数据量和高并发访问时的数据处理成本和时间成本。聚焦场景:图数据库适用于需要对关系进行建模和分析的应用场景,更加专注于应用场景的需求,为用户提供更好的数据处理能力和建模分析能力。多语言支持:图数据库支持多种语言,为多类开发者和企业提供了更便利的操作性和接口。图数据库具有灵活性高、查询性能强、数据处理能力优异、聚焦场景和多语言支持等优势。这些优势使得图数据库在现代大数据场景下的应用越来越广泛化。星环分布式图数据库StellarDB星环科技致力于打造企业级大数据基础软件,围绕数据的集成、存储、治理、建模、分析、挖掘和流通等数据全生命周期提供基础软件与服务,在图计算领域深耕多年,自主研发了分布式...
TranswarpDataStudio(简称TDS)是星环科技自研的一站式大数据开发工具,提供数据集成、存储、治理、服务和共享等数据处理全生命周期的企业级管理能力。结合星环科技大数据基础平台TranswarpDataHub简称TDH)业界创新的多模态的大数据处理能力,能够提升企业构建数据中台、数据仓库、数据湖等系统的效率,更高效地实现数据资产化和数据业务化数据开发套件,助力企业完成数据统一化数据开发套件包含了大数据整合工具Transporter、数据库在线开发与协同工具SQLBook和任务调度软件Workflow,该套件作为星环科技大数据基础平台TranswarpDataHub的生态开发应用工具,针对数据开发场景,提供数据集成、SQL开发和任务调度的能力,帮助企业将数据归集到数据湖仓,完成数据统一化的过程。数据开发套件的三大核心优势:分布式架构设计,可支持PB级别的数据平台建设,支持日均十万级任务调度,性能可扩展;支持SQL关键词和SQL片段推荐,数据开发知识积累,智能化持续优化开发体验和开发效率;基于大数据平台计算能力提供数据转换能力,避免传统ETL工具本身的计算瓶颈。数据治理套件,...