知识图谱平台作用有哪些

知识图谱作用包括:语义理解:知识图谱可以帮助机器理解文本和语言,进行语义分析、关系判断、命名实体识别等。智能答:利用知识图谱可以进行智能问答,帮助用户快速获取定制答案。信息检索:通过运用知识图谱数据分析和决策,在产品推荐、市场分析、用户行为分析等方面提供支持。自动化知识管理:知识图谱可以帮助组织和管理大量的知识,将知识进行组织、分类、存储和检索,提高知识的获取和利用效率。知识图谱作用非常广泛,可以辅助人们处理和用大量的知识和信息,提供更智能和便捷的服务。星环知识图谱平台-Sophon星环科技自主研发的知识图谱平台Sophon是一款覆盖知识全生命周期,集知识的采集、建模、融合、存储、计算及应用为一体的知识图谱产品。平台支持低代码图谱构建、智能化知识抽取、多模态知识存储与融合、多形式知识计算和推理以及多维度的图谱分析。除了具备链路完备性,平台还从业务场景出发,沉淀了金融、保险等场景的图数据模型,可以提高搜索结果的质量和准确性,能够帮助用户快速地找到所需信息。推荐系统:知识图谱提供个性化的推荐,从而提升用户体验。自然语言处理:知识图谱将文本和语言变成可以理解的结构数据,实现了机器与人类之间的

知识图谱平台作用有哪些 更多内容

知识图谱作用包括:语义理解:知识图谱可以帮助机器理解文本和语言,进行语义分析、关系判断、命名实体识别等。智能答:利用知识图谱可以进行智能问答,帮助用户快速获取定制答案。信息检索:通过运用知识图谱数据分析和决策,在产品推荐、市场分析、用户行为分析等方面提供支持。自动化知识管理:知识图谱可以帮助组织和管理大量的知识,将知识进行组织、分类、存储和检索,提高知识的获取和利用效率。知识图谱作用非常广泛,可以辅助人们处理和用大量的知识和信息,提供更智能和便捷的服务。星环知识图谱平台-Sophon星环科技自主研发的知识图谱平台Sophon是一款覆盖知识全生命周期,集知识的采集、建模、融合、存储、计算及应用为一体的知识图谱产品。平台支持低代码图谱构建、智能化知识抽取、多模态知识存储与融合、多形式知识计算和推理以及多维度的图谱分析。除了具备链路完备性,平台还从业务场景出发,沉淀了金融、保险等场景的图数据模型,可以提高搜索结果的质量和准确性,能够帮助用户快速地找到所需信息。推荐系统:知识图谱提供个性化的推荐,从而提升用户体验。自然语言处理:知识图谱将文本和语言变成可以理解的结构数据,实现了机器与人类之间的
知识图谱管理平台通常包含数据采集、实体识别、关系抽取、图谱构建、图谱存储和查询等功能,同时提供统一的数据接口和开放的API,方便应用开发人员在基础上进行二次开发和扩展。知识图谱管理平台主要的作用是将分散、金融风险管理、智能出行等领域。知识图谱管理平台与传统的关系型数据库之间很大的区别。传统的关系型数据库是基于表的结构,而知识图谱则是基于图的结构,它更适用于表示实体之间的关系和语义上的相似性。在知识图谱中,每个实体都是一个节点,每个关系则是一个向边,这种图结构的表示方式可以更好地捕捉实体之间的复杂关系和上下文。知识图谱管理平台是一个数据驱动的、语义学导向的工具,可以帮助企业更好地管理和利用分散的知识图谱管理平台是一种用于构建、管理、查询和可视化知识图谱的技术工具。帮助企业和机构将分散的数据、文本和图像信息融合成一个连贯的知识图谱,并利用这个图谱提供智能化的推荐、搜索和自动化决策支持功能数据组织成一个有意义的整体,该整体可以在各种用中复用,包括自然语言处理、数据分析、智能推荐和机器学习等领域。此外,知识图谱管理平台还可以帮助企业构建自己的知识图谱应用系统,例如企业知识管理、电子商务
知识图谱管理平台通常包含数据采集、实体识别、关系抽取、图谱构建、图谱存储和查询等功能,同时提供统一的数据接口和开放的API,方便应用开发人员在基础上进行二次开发和扩展。知识图谱管理平台主要的作用是将分散、金融风险管理、智能出行等领域。知识图谱管理平台与传统的关系型数据库之间很大的区别。传统的关系型数据库是基于表的结构,而知识图谱则是基于图的结构,它更适用于表示实体之间的关系和语义上的相似性。在知识图谱中,每个实体都是一个节点,每个关系则是一个向边,这种图结构的表示方式可以更好地捕捉实体之间的复杂关系和上下文。知识图谱管理平台是一个数据驱动的、语义学导向的工具,可以帮助企业更好地管理和利用分散的知识图谱管理平台是一种用于构建、管理、查询和可视化知识图谱的技术工具。帮助企业和机构将分散的数据、文本和图像信息融合成一个连贯的知识图谱,并利用这个图谱提供智能化的推荐、搜索和自动化决策支持功能数据组织成一个有意义的整体,该整体可以在各种用中复用,包括自然语言处理、数据分析、智能推荐和机器学习等领域。此外,知识图谱管理平台还可以帮助企业构建自己的知识图谱应用系统,例如企业知识管理、电子商务
行业资讯
知识图谱公司
白皮书和知识图谱选型与实施指南。这些标准的制定对于行业的规范发展起到了积极的推动作用。星环知识图谱平台Sophon为企业和机构在知识处理、智能决策等方面提供了强有力的支持。未来,星环科技将继续致力于知识图谱技术的创新和应用,为各行业提供更加智能化和个性化的解决方案,推动人工智能领域的进一步发展。知识图谱是近年来人工智能领域的热门技术之一,对于构建智能化系统和解决复杂问题具有重要意义。在众多知识图谱公司中,星环科技凭借自主研发的知识图谱平台Sophon,成为该领域的领先企业。Sophon覆盖知识全生命周期,集知识的采集、建模、融合、存储、计算和应用为一体,为用户提供全面的知识图谱解决方案。Sophon平台支持低代码图谱构建,使得用户能够以更快速、高效的方式构建知识图谱。同时,平台还具、一致的知识图谱平台还提供多形式知识计算和推理功能,通过对知识图谱中的数据进行分析和推理,帮助用户发现隐藏的模式和规律。除了具备技术上的优势,Sophon平台还从业务场景出发,积极沉淀金融、保险等营销、保险知识智能问答等场景中有着广泛的应用。在推动知识图谱技术创新和成功落地的过程中,星环科技也受到了行业的肯定。公司入选Gartner
行业资讯
领域知识图谱
领域知识图谱是面向某一特定领域的知识图谱,强调知识的深度,通常需要基于该行业的数据库进行构建。领域知识图谱可以帮助人们更好地理解某一特定领域的知识结构和内在联系,支持推理和分析,为研究和应用提供互联互通,通过统一的语义模型,能够更好地实现不同设备之间的信息交互。星环知识图谱平台-Sophon星环科技自主研发的知识图谱平台Sophon是一款覆盖知识全生命周期,集知识的采集、建模、融合、存储、计算及应用为一体的知识图谱产品。平台支持低代码图谱构建、智能化知识抽取、多模态知识存储与融合、多形式知识计算和推理以及多维度的图谱分析。除了具备链路完备性,平台还从业务场景出发,沉淀了金融、保险等场景的图价值的参考。领域知识图谱的应用范围非常广泛,如:辅助搜索:知识图谱可以提供更精准的语义搜索,通过关键词扩展和实体链接,能够搜索到更全面的信息。辅助问答:知识图谱可以用于问答系统,通过对问题的语义解析,匹配问句实体,能够提供更准确的答案。辅助大数据分析:在数据分析与决策过程中,知识图谱可以帮助理清各个因素之间的内在联系,提供更准确的决策支持。推荐计算:知识图谱可以用于推荐系统,通过概念层匹配,对用户
行业资讯
知识图谱公司
白皮书和知识图谱选型与实施指南。这些标准的制定对于行业的规范发展起到了积极的推动作用。星环知识图谱平台Sophon为企业和机构在知识处理、智能决策等方面提供了强有力的支持。未来,星环科技将继续致力于知识图谱技术的创新和应用,为各行业提供更加智能化和个性化的解决方案,推动人工智能领域的进一步发展。知识图谱是近年来人工智能领域的热门技术之一,对于构建智能化系统和解决复杂问题具有重要意义。在众多知识图谱公司中,星环科技凭借自主研发的知识图谱平台Sophon,成为该领域的领先企业。Sophon覆盖知识全生命周期,集知识的采集、建模、融合、存储、计算和应用为一体,为用户提供全面的知识图谱解决方案。Sophon平台支持低代码图谱构建,使得用户能够以更快速、高效的方式构建知识图谱。同时,平台还具、一致的知识图谱平台还提供多形式知识计算和推理功能,通过对知识图谱中的数据进行分析和推理,帮助用户发现隐藏的模式和规律。除了具备技术上的优势,Sophon平台还从业务场景出发,积极沉淀金融、保险等营销、保险知识智能问答等场景中有着广泛的应用。在推动知识图谱技术创新和成功落地的过程中,星环科技也受到了行业的肯定。公司入选Gartner
行业资讯
知识图谱公司
白皮书和知识图谱选型与实施指南。这些标准的制定对于行业的规范发展起到了积极的推动作用。星环知识图谱平台Sophon为企业和机构在知识处理、智能决策等方面提供了强有力的支持。未来,星环科技将继续致力于知识图谱技术的创新和应用,为各行业提供更加智能化和个性化的解决方案,推动人工智能领域的进一步发展。知识图谱是近年来人工智能领域的热门技术之一,对于构建智能化系统和解决复杂问题具有重要意义。在众多知识图谱公司中,星环科技凭借自主研发的知识图谱平台Sophon,成为该领域的领先企业。Sophon覆盖知识全生命周期,集知识的采集、建模、融合、存储、计算和应用为一体,为用户提供全面的知识图谱解决方案。Sophon平台支持低代码图谱构建,使得用户能够以更快速、高效的方式构建知识图谱。同时,平台还具、一致的知识图谱平台还提供多形式知识计算和推理功能,通过对知识图谱中的数据进行分析和推理,帮助用户发现隐藏的模式和规律。除了具备技术上的优势,Sophon平台还从业务场景出发,积极沉淀金融、保险等营销、保险知识智能问答等场景中有着广泛的应用。在推动知识图谱技术创新和成功落地的过程中,星环科技也受到了行业的肯定。公司入选Gartner
行业资讯
领域知识图谱
领域知识图谱是面向某一特定领域的知识图谱,强调知识的深度,通常需要基于该行业的数据库进行构建。领域知识图谱可以帮助人们更好地理解某一特定领域的知识结构和内在联系,支持推理和分析,为研究和应用提供互联互通,通过统一的语义模型,能够更好地实现不同设备之间的信息交互。星环知识图谱平台-Sophon星环科技自主研发的知识图谱平台Sophon是一款覆盖知识全生命周期,集知识的采集、建模、融合、存储、计算及应用为一体的知识图谱产品。平台支持低代码图谱构建、智能化知识抽取、多模态知识存储与融合、多形式知识计算和推理以及多维度的图谱分析。除了具备链路完备性,平台还从业务场景出发,沉淀了金融、保险等场景的图价值的参考。领域知识图谱的应用范围非常广泛,如:辅助搜索:知识图谱可以提供更精准的语义搜索,通过关键词扩展和实体链接,能够搜索到更全面的信息。辅助问答:知识图谱可以用于问答系统,通过对问题的语义解析,匹配问句实体,能够提供更准确的答案。辅助大数据分析:在数据分析与决策过程中,知识图谱可以帮助理清各个因素之间的内在联系,提供更准确的决策支持。推荐计算:知识图谱可以用于推荐系统,通过概念层匹配,对用户
行业资讯
知识图谱工具
智能机器人,知识图谱工具都发挥了重要的作用。随着大数据和人工智能的快速发展,相信知识图谱工具将会越来越多地应用于各个领域,并为人们带来更好的智能化体验。星环知识图谱平台-Sophon星环科技自主研发的知识图谱平台Sophon是一款覆盖知识全生命周期,集知识的采集、建模、融合、存储、计算及应用为一体的知识图谱产品。平台支持低代码图谱构建、智能化知识抽取、多模态知识存储与融合、多形式知识计算和推理以及知识图谱工具是一种帮助人们构建、存储和查询知识图谱的工具。知识图谱是一种以图形表示知识之间关联关系的数据结构,可以更好地组织和理解大量的复杂知识知识图谱工具的应用范围十分广泛,下面具体介绍几个应用场景:1、搜索引擎:在人们使用搜索引擎查找信息时,常常会出现主题不明确、关键词不准确、结果过于冗杂等情况。而利用知识图谱工具可以帮助搜索引擎更加准确地识别和理解用户的意图,并给出更加精确、符合用户需求的搜索结果。2、智能推荐系统:在智能推荐系统中,利用知识图谱工具可以更加精确地建立用户的兴趣模型,推荐符合用户兴趣的内容。3、智能客服:在智能客服系统中,知识图谱工具可以结合自然语言处理技术,为用户
产品文档
5.10 任务相关
在Hippo中,比较耗时的操作如激活、加载向量索引实际上是一个分布式任务,用户可以通过任务相关接口查看、删除任务。查看任务curl-ushiva:shiva-XGET"localhost:8902/hippo/v1/_jobs?pretty"-H'Content-Type:application/json'-d'{"job_ids":["fc6feff4f303455a9347f9aab323dfc8"],"action_patterns":["hippo*"]}';返回结果:{"jobs":[{"job_id":"810935a1d91a46b7af2ec35013454fed","job_status":"SHIVA_JOB_SUCCESS","embedding_number":100,"task_results":[{"id":"54ab52493dfb4bab9fb7742d850c64c4","status":"TASK_SUCCESS","server":"172.29.40.26:27841","embedding_number":100,"execute_time":...
查看Master节点通过以下命令,查看集群Master节点信息:curl-ushiva:shiva-XGET'localhost:8902/hippo/v1/_cat/master?v'返回结果:epochtimestampactive.master.hostactive.master.portmaster.group169079683909:47:19172.29.203.18926841172.29.203.189:26841,172.29.203.189:26851,172.29.203.189:26861查看数据节点curl-ushiva:shiva-XGET'localhost:8902/hippo/v1/_cat/nodes?v'//查看所有节点curl-ushiva:shiva-XGET'localhost:8902/hippo/v1/_cat/nodes/{node}?v'//{node}表示待匹配的节点地址,支持以*通配,支持指定多个pattern,多个pattern以逗号分割返回结果:
产品文档
3.3 Cluster
OverviewAclusterisaHippoCloudinstanceassociatedwithspecificcomputingresources.Youcancreaterelatedtables,insertcorrespondingdata,andcompleteproductexperiencewithinacluster.Beforeyouusethedemoenvironment,youneedtocreateacluster.CreateClusterYouneedtogotothespecificproject.Iftherearenoclustersunderthecurrentproject,youcanclickthe'Createcluster'buttonbelowtheclustercreationguidancepagetoentertheclustercreation.Ifthereareclustersunderthecurrentproject,youcanclickthe'+Cluster'buttonabovetheclusterlist...
产品文档
2 Quick Start
ThistutorialwillguideyouthroughthefollowingtaskswithinHippoCloud:EstablishingatablePerusingthetableIncorporatingdataExecutingsearchoperationsEliminatingrowsDissolvingthetableBeforeyoustartInthisguide,wewillbeutilizingthePythonAPI.Priortocommencement,ensurethatyouhave:RegisteredforaHippoCloudaccount.SubscribedtothecomplimentaryplanandestablishedatrialclusterwithinHippoCloud,orsubscribedtothestandard/enterpriseplansandconstructedadedicatedcluster.IfyouanticipateemployingPythonfordevelopment,ascert...
产品文档
5.18 全文检索
Hippo在1.2版本提供了全文索引能力,兼容ElasticSearch6.7.2语法,在底层架构上复用了公司产品TranswarpScope的一部分特性,支持以Java/HTTPRestful的形式通过Hippo的HTTPServer接口进行全文索引的创建、查询、使用等各类需求,通过该能力的支持,可以更好的实现向量与全文的混合检索。通过将向量检索加全文检索的联合召回,可以降低漏检和误检的概率,能够实现比单独使用向量或全文更高的精度。同时,一套数据库系统可避免部署多套系统带来的架构复杂、开发运维成本高等问题。具体的使用方法除了访问端口需要将端口从8902调整为9200外,均可参考《TranswarpScope手册》4.TranswarpScopeAPI介绍。
产品文档
5.7 查询类操作
过滤条件表达式Hippo当前支持如下表达式,可用于标量或向量查询。表46.过滤条件表达式表达式描述and当前版本支持and,不支持or/not==等值<小于⇐小于等于>大于>=大于等于inin[1,2,3]notinnot_in[1,2,3]like'_'表示匹配任一字符,'%'表示匹配任意字符,'\'为转义符向量相似性检索本节描述如何进行向量相似度搜索。Hippo中的向量相似性搜索计算查询向量与表中向量的距离,返回最相似的结果集。通过指定标量过滤条件,用户可以进行向量与标量的混合搜索。curl-ushiva:shiva-XGET'localhost:8902/hippo/v1/{table}/_search?pretty'-H'Content-Type:application/json'-d'{"output_fields":["book_id"],"search_params":{"anns_field":"book_intro","topk":2,"params":{"nprobe":10},"embedding_index":"ivf_flat_index"}...
产品文档
8 性能分析
本节测试主要描述了Hippo1.0在关键测试上的一些性能表现,该份测试同样也是Hippo的基准测试,后续版本发布也会在不同版本上进行该测试进行对比分析。术语表142.Hippo性能测试术语TermDescriptionnq一次搜索请求中搜索的向量个数topk一次请求中对于要检索的每个向量(依赖nq),所能检索到最近距离的向量个数RT一次请求从发起到接受响应的时间]QPS请求在每秒内成功执行的次数dataset测试所用数据集,不同数据集表示不同的业务场景测试集群配置硬件配置表143.性能测试硬件配置硬件规范Nodes3CPUIntel®Xeon®Gold5218RCPU@2.10GHzMemory16*\16GBRDIMM,3200MT/sDISKNVMeSSD2T*4GPUNONE软件配置表144.性能测试软件配置软件版本Hippov1.2TranswarpManagerTDH9.3.0测试集表145.性能测试数据集数据集名称数据集介绍向量维度向量总数查询数量数据总量距离类型Sift-128-euclidean该数据集是基于Texmex的数据集整理,使用SIFT算法得到的图片特征向量。...
产品文档
5.3 写入类操作
本节介绍Hippo表写入相关操作。Hippo会返回写入成功数据的下标以及总共写入成功的数据条数,如果出现行级错误(比如主键冲突),Hippo会返回具体的行级错误。插入本节介绍如何向Hippo中插入数据。curl-ushiva:shiva-XPUT'localhost:8902/hippo/v1/{table}/_bulk?database_name={database_name}&pretty'-H'Content-Type:application/json'-d'{"fields_data":[{"field_name":"book_id","field":[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74...
产品文档
10 Hippo 运维
运维管理界面WebserverWebserver是Hippo提供运维监控的界面。默认访问地址为:4567"class="bare">http://<webserver_ip>:4567。或者在Manager管理界面我们可以通过下图所示的查看链接这里进行跳转。图15.登录HippoWebserverWebserver主要由下面几个部分构成。概况图16.概况该页面展示了Hippo集群的基本信息,包括:Masterstatus:当前的ActiveMaster,MasterGroup,MasterAddress,Master的健康状态TabletServerStatus:TabletServerAddress,健康状态,逻辑机架和数据中心信息,容量使用以及Tablet个数TabletNum:当前集群表的个数Version:Hippo版本信息库表图17.库表页面以库和表的概念集群存储的各类数据信息。库信息:库名库创建时间库内各类表的信息:点击某个库,可以看到库下所有表的信息,主要包括:••表的ID••表的名字••表的状态••表的Tablet数量••表的Engine类型••表的副本数•...
产品文档
1 Introduction
OverviewUnstructureddatamanagementismoreimportantthaneverduetotheriseofbigdata.Managingandgleaningbusinessvaluefromunstructureddataisofutmostimportancetoenterprisestoday.Advancementsinmachinelearning,aswellasdeeplearning,technologiesnowenableorganizationstoefficientlyaddressunstructureddataandimprovequalityassuranceefforts.Inthefieldofartificialintelligenceormachinelearning,embeddingsandvectordatabaseshavebecomeincreasinglyimportantfortacklingawiderangeofproblems.Thesetechniquesareusedtorepresen...