常见数据仓库方案

数据仓库
星环数据仓库解决方案具备超高性能、高可扩展、极简易用、高性价比等特性。面对高速增长的数据规模,传统的数据仓库负荷严重超出。不扩容会影响性能与稳定性,但是扩容却十分昂贵。星环数据仓库解决方案广泛应用于金融、政企、交通、能源、电信等多个领域,可以满足大数据时代企业构建各类数据仓库的需求。

常见数据仓库方案 更多内容

在选择数据仓库技术时,企业需要考虑多个因素以确保选型符合业务需求和未来发展。以下是一些关键的考虑因素和常见数据仓库技术的概述:选型考虑因素:数据规模:评估企业数据规模的大小,以确定合适的数据仓库技术技术能够与企业现有技术进行集成和协同。常见数据仓库技术:关系型数据库管理系统:适用于大规模的数据仓库应用场景。大数据平台:提供了分布式存储、计算和处理海量数据的能力,适用于处理大规模的半结构化和非工具。成本效益:评估数据仓库技术的成本效益,以确保所选技术的性价比合理。技术支持:评估供应商的技术支持和服务水平,以确保企业能够顺利实施和运维数据仓库。已有技术:评估企业已有的技术和基础设施,以确保所选结构化数据数据仓库系统(DW):集成了关系型数据库、多维OLAP和数据挖掘等功能,适用于复杂的数据仓库应用场景。云数据仓库趋势:随着云计算的普及,云数据仓库因其弹性扩展、按需付费、维护简单等优势而越来越受欢迎。实时数据仓库:企业对实时数据处理的需求不断增加,数据仓库也开始向实时化方向发展。实时数据仓库能够帮助企业及时捕获业务动态,支持即时决策和快速响应。
数据仓库数据归集的基本概念、常见方案以及选择时的考量因素。数据归集的基本概念数据归集,又称数据抽取或数据采集,是指从各个业务系统中收集、提取数据,并将其转移到数据仓库中的过程。这一过程不仅涉及数据的物理的、项目性的,而数据归集则是持续的、系统性的过程。数据归集强调数据的完整性、一致性和时效性,是数据仓库能够持续发挥作用的基础。常见数据归集方案根据数据来源的不同,数据归集方案可以分为几种主要类型。全数据仓库数据归集方案在当今数据驱动的商业环境中,数据仓库作为企业决策支持系统的核心,其数据归集方案的优劣直接影响着数据分析的质量和效率。数据归集是数据仓库建设的起步,也是关键的环节之一。本文将介绍,但对系统资源消耗较大,技术实现也更为复杂。除了抽取方式的选择,数据归集还需要考虑数据转换和清洗的策略。常见的做法是在抽取过程中进行简单的过滤和映射,而将复杂的转换放在加载到数据仓库之前进行,这种架构可靠性。结语数据归集作为数据仓库建设的基础环节,其方案选择直接影响着整个数据系统的效能。随着技术的发展,数据归集方案也在不断演进,出现了更多智能化和自动化的解决方案。企业在规划数据仓库时,应当根据自身实际情况,选择适合的数据归集方案,为数据驱动的决策打下坚实基础。
数据仓库实施方案涉及多个关键步骤和技术考虑,以下是一些核心组成部分和最佳实践:数据集成:数据仓库需要数据集成技术来整合、清洗和转换数据数据集成包括数据清洗、数据转换、数据整合和数据质量检查等多个通过索引优化、分区和分桶、使用缓存、查询简化与重写、聚合优化、并行化和分布式计算以及基于列存储的优化来提高性能。数据模型:数据仓库常见数据模型包括星型模型、雪花模型和星座模型。这些模型各自具有独特的结构、优势和局限性。数据安全与隐私保护:数据仓库的安全性可以通过访问控制、数据加密、审计和监控、备份和恢复、策略和培训等措施来保证。硬件和软件资源优化:增加内存、提升CPU性能、采用高速存储解决方案环节。分层架构设计:数据仓库通常采用分层结构,包括操作数据层、数据明细层、数据中间层和数据服务层。每一层都对数据进行不同程度的加工和优化,上层依赖于下层提供的数据,但不直接访问底层数据源。ETL过程:实施ETL过程,持续从各个业务系统提取数据,将这些数据转化为结构化的信息,并加载到数据仓库中。这一流程确保了数据的一致性与准确性。性能优化:查询优化是性能优化的核心,直接影响数据检索的速度和效率。可以
数据仓库的分层是一种常见的架构设计方法,它将数据仓库中的数据按照不同的处理程度和用途划分为多个层次。这种分层结构有助于组织数据、优化查询性能、简化数据管理,并提高数据的可维护性。以下是数据仓库分层的常见模型:操作数据存储层:这一层是最接近原始数据的,通常包含从业务系统中直接抽取的数据。ODS层的数据通常保持与源系统相同的粒度,用于支持日常操作和短期历史数据的查询。数据仓库层:数据仓库层是ODS原始数据的系统,包括结构化、半结构化和非结构化数据数据湖中的数据通常在需要时才进行处理,支持更广泛的数据分析和探索性分析。在实际的数据仓库设计中,分层可能有所不同,但以下是一些常见的分层方式:维度数据数据的进一步整合和清洗版本。在这一层,数据被转换成适合分析的格式,通常涉及数据的聚合和汇总。数据集市层:数据集市是数据仓库的一个子集,专注于特定的业务领域或主题。它们通常为特定的用户群体或部门提供服务层:包含维度表,这些表描述了业务实体的属性,如时间、地点、产品等。事实数据层:包含事实表,这些表记录了业务事件和度量,如销售额、客户数量等。汇总层:包含预先计算的汇总数据,用于加速常见查询的响应
行业资讯
数据仓库方案
以下是一些数据仓库方案的关键点和技术架构:数据仓库建设方案总体架构:数据仓库架构从层次结构上分为数据采集、数据存储、数据分析、数据服务等几个方面的内容。数据采集:负责从各业务系统中汇集信息数据,支撑常规机器学习算法。数据仓库技术架构数据仓库的技术架构通常包括以下五个主要部分:数据源层:包含企业内外部的各种数据源。ETL层:负责将数据源层的数据进行抽取、转换和加载,确保数据的准确性和时效性。数据存储层:涉及数据的存储技术。数据分析层:支持OLAP分析和机器学习算法。数据应用层:数据仓库的应用层面,如报表生成和数据展示。数据仓库设计OLTP与OLAP:数据仓库主要服务于OLAP场景,而非事务型应用OLTP。数据仓库功能:满足OLAP场景下的数据管理需求,包括数据的统一化存储和规范化处理。数据仓库应用:满足企业中所有数据的统一化存储,通过规范化的数据处理来实现企业的数据分析应用。数据仓库设计步骤需求分析:明确数据仓库的使用场景、用户需求和数据来源。数据建模:选择合适的数据仓库设计模式,进行概念模型、逻辑模型和物理模型的设计。ETL过程:设计并实现ETL过程,将源系统的数据抽取出来,经过清洗
行业资讯
数据仓库分层
数据仓库分层是一种常见的架构设计方法,通过将数据仓库分为多个层次,可以更好地管理和优化数据的存储、处理和分析。以下是数据仓库分层的优点:1.提高数据质量数据清洗和转换:在数据进入数据仓库之前,可以在治理。常见的数仓分层架构ODS(操作数据存储):特点:存储最近一段时间内的详细业务数据数据实时或近实时更新。用途:支持日常业务操作和报表生成,提供实时或近实时的数据支持。DW(数据仓库):特点:存储使用不同的数据模型,适应不同的业务需求和分析场景。易于扩展:每个层次可以独立扩展,不会影响其他层次,支持数据仓库的灵活扩展和维护。3.提高性能优化查询:通过在不同的层次进行数据预处理和聚合,可以优化查询性能,减少查询时间。负载均衡:不同层次可以分布在不同的服务器或集群上,实现负载均衡,提高系统的整体性能。4.提高可维护性模块化设计:分层架构将数据仓库分为多个模块,每个模块负责特定的功能,便于维护和不同的层次进行多次清洗和转换,确保数据的准确性和一致性。数据校验:在每个层次可以设置数据校验规则,及时发现和纠正数据问题,提高数据质量。2.提高灵活性和可扩展性灵活的数据模型:分层架构允许在不同的层次
行业资讯
数据仓库服务
数据仓库服务是一种基于云端的数据仓库解决方案,它提供了一种灵活、可扩展的数据存储和管理方式。以下是数据仓库服务的一些主要功能和特点:数据集成:数据仓库服务能够从多种数据源中提取数据,包括企业内部的更快地查询和检索数据常见的组织方式包括星型模型、雪花模型等,这些模型可以根据数据的层次结构和关系进行设计,以优化数据的查询性能。数据稳定性和安全性:数据仓库服务中的数据主要以只读格式存储,避免了数据被各种业务系统数据、外部的市场数据、客户数据等,通过ETL过程进行数据的清洗、转换和整合,形成一个统一、完整的数据视图。数据清洗和转换:在数据存储之前,数据仓库服务会对原始数据进行清洗和转换,包括去除重复数据、纠正错误数据、填充缺失值、统一数据格式和编码等,以提高数据质量,确保数据的准确性和可靠性。数据汇总与聚合:数据仓库服务会对存储的数据进行汇总和聚合,以满足不同层次和角度的数据分析需求,使得数据所需的数据视图。数据挖掘与预测:数据仓库服务支持数据挖掘和预测分析,通过应用各种数据挖掘算法和模型,发现数据中的隐藏模式和关系,并结合时间序列分析、回归分析等预测方法,预测未来趋势和结果。数据服务与共
数据仓库的分层设计是一种常见数据架构方法,它将数据仓库环境划分为不同的层次,每个层次都有特定的职责和功能。分层设计有助于提高数据仓库的可管理性、可维护性和扩展性。以下是数据仓库分层设计的常见层次或者导出操作。数据清洗和转换层:也称为ETL层或暂存区,在这一层,数据经过清洗、转换、整合,以准备加载到数据仓库中。这包括数据的去重、格式统一、编码转换等操作。数据仓库层:这是数据仓库的核心层,存储着经过清洗和转换的、集成的数据。这一层的数据是面向主题的、非易失的,并且通常以多维数据模型的形式组织,如星型模型或雪花模型。数据集市层:数据集市是数据仓库的子集,专注于特定的业务领域或主题。它们通常是为特定的部门或用户群体定制的,以提供更快的查询性能和更具体的业务洞察。呈现层:这一层包括各种数据访问和报告工具,如报表、仪表板、数据可视化工具等。用户通过这些工具访问数据仓库中的数据,进行分析和决策。访问层:这一层涉及到用户如何与数据仓库交互,包括安全控制、权限管理、查询优化等。它确保数据的安全性和用户访问的便捷性。应用层:在最顶层,应用层包括各种应用程序,它们使用数据仓库中的数据来提供业务价值。
数据仓库的分层架构是一种常见的设计方法,它将数据仓库的环境划分为不同的层次,每个层次都有特定的职责和功能。这种分层的设计有助于提高数据仓库的灵活性、可维护性和扩展性。以下是数据仓库分层架构的常见层次或者导出操作。数据清洗和转换层:也称为ETL层或暂存区,在这一层,数据经过清洗、转换、整合,以准备加载到数据仓库中。这包括数据的去重、格式统一、编码转换等操作。数据仓库层:这是数据仓库的核心层,存储着经过清洗和转换的、集成的数据。这一层的数据是面向主题的、非易失的,并且通常以多维数据模型的形式组织,如星型模型或雪花模型。数据集市层:数据集市是数据仓库的子集,专注于特定的业务领域或主题。它们通常是为特定的部门或用户群体定制的,以提供更快的查询性能和更具体的业务洞察。呈现层:这一层包括各种数据访问和报告工具,如报表、仪表板、数据可视化工具等。用户通过这些工具访问数据仓库中的数据,进行分析和决策。访问层:这一层涉及到用户如何与数据仓库交互,包括安全控制、权限管理、查询优化等。它确保数据的安全性和用户访问的便捷性。应用层:在最顶层,应用层包括各种应用程序,它们使用数据仓库中的数据来提供业务价值。
行业资讯
数据中台建设
随着行业和技术领域的变化日新月异,从数据仓库、动态数仓,到数据湖,从新一代湖仓一体技术到可插拔数据库,概念的引入虽然简单,但如何做到更有效,更复杂的数据资产管理就考验着对生产能力和工艺过程的管理能力。星环科技认为数据中台是一种能力、是一种组织上的策略而不仅仅是一种技术架构,它是在信息化基础上建立的可编织和可复用的数据可分析能力,从而支撑企业数字化转型。星环科技的数据中台三中心、六能力、两个体系星环科技很早就在数据中台领域布局,结合星环科技全系产品的相关组件实现数据中台能力建设。星环科技把数据中台建设归纳为三中心、六能力、两个体系,这当中都会有星环科技产品作为支撑,从而保证企业能够快速实现,并搭建起数据中台,满足企业未来发展变化。数据存储、分析探索、业务赋能三中心第一,帮助企业构建存储中心,提升数据的汇聚和整合能力;第二,构建数据分析探索中心,专注于智能分析能力和实时计算能力的提升,推动智能推荐能力和全链路实时监测和保障能力;第三,构建业务赋能中心,提供统一的访问能力实现跨平台联邦,统一的访问层控制,确保数据安全可用,同时搭建统一的服务能力,面向多场景的服务应用支撑。安全和运维、数据和分...
时空数据库时空数据库是一种针对时空数据处理的数据库系统。它以时间和空间为基础,整合了空间信息和时间信息,能够对时空数据进行存储、查询和分析。时空数据库广泛应用于交通运输、城市规划、GIS等领域。分布式时空数据库分布式时空数据库是一种对时空数据进行存储和处理的数据库系统,通过分布式存储和分布式计算等技术,可以实现对大规模时空数据的高效处理和分析。与传统的集中式数据库系统不同,分布式时空数据库将数据存储在多个存储节点上,并将计算任务分配给多个计算节点来完成,从而极大地提高了时空数据的处理能力和可靠性。分布式时空数据库的出现,使得处理大规模时空数据成为了可能,也更好地满足了各个领域对时空数据深度分析的需求。星环分布式时空数据库-TranswarpSpactureSpacture是星环科技自主研发的一款面向空间、时空数据的存储与管理,集计算与存储为一体的分布式数据库产品,支持大规模矢量数据、时空轨迹数据的存储与计算,具有完备的数据查询、分析和挖掘能力,可用于时空查询分析、时空模式挖掘、时空轨迹聚类等时空轨迹数据分析场景,广泛应用于交通物流、城市管理、位置服务等场景。
近年来,企业数据安全问题的重要性被提上了前所未有的高度。星环科技提供了从云基础设施、数据平台、数据资源、数据应用的数据安全能力。覆盖数据生命周期的各个阶段,涉及数据的收集、存储、使用、加工以及开放流通。全方位保障企业的数据安全,支撑业务合法合规的开展。星环科技凭借全面的数据安全能力助力某支付机构构建安全防线的落地实践。该支付机构拥有大量数据资产,目前机构面临着较大的挑战,需要加强数据安全管理,为此,机构决定与星环科技合作,利用星环科技的技术来提升数据安全管理能力,共同打造一个基于隐私计算的数据服务平台DaaS。根据客户需求,星环科技在基础设施层提供了基于容器的云原生操作系统TCOS,可以为用户提供独立的数据与计算环境,减少数据对外暴露的风险。在数据平台层,星环科技大数据基础平台TDH新版本增强了安全技术,支持行列级权限控制、动态脱敏等。在数据资产层,星环科技借助两款新产品:数据安全管理平台Defensor帮助企业构建整个数据安全管理域及数据流通平台Navier:包含隐私计算平台SophonP²C和数据交易门户datamall,提供包括联邦学习和差分隐私等技术能力。该支付机构的数据管理平...
作为一家企业级大数据基础软件开发商,星环科技很早就在数据中台领域布局,结合星环科技全系产品的相关组件实现数据中台能力建设。星环科技把数据中台建设归纳为三中心、六能力、两个体系,这当中都会有星环科技产品作为支撑,从而保证企业能够快速实现,并搭建起数据中台,满足企业未来发展变化。其中,三中心分别是存储中心、分析探索中心、业务赋能中心;六能力包括数据汇聚能力、数据整合能力、智能分析能力、实时计算能力、统一访问能力、统一服务能力;两个体系则是安全和运维保障体系与数据和分析支撑体系。三中心、六能力、两个保障体系都构建在一个云底座之上,满足企业私有化或者混合云多云的部署形态,同时灵活组件式的可插拔式部署形态,能够帮助企业更迅速的起步,按规划分步完善数据中台建设。除了提供基础组件和相应的工具帮助客户快速构建数据中台之外,星环科技还提供咨询实施服务,可以为企业提供量身定制的“数据云基础设施+咨询服务的端到端产品+服务”的综合解决方案。在星环科技的咨询服务产品体系中,包括为企业构建中台的架构规划、应用规划,以及帮助企业实施建设数据底座、数据中台、数据仓库,以及数据治理服务,也包括了数据的分析、业务分析、...
星环科技作为一家企业级大数据基础软件开发商,在图计算领域深耕多年,有着深厚的技术积淀和丰富的实践经验。星环科技自主研发的分布式图数据库StellarDB,兼容openCypher查询语言,提供海量图数据的存储和分析能力,支持原生图存储结构,支持万亿边PB级数据存储。同时,StellarDB具备毫秒级点边查询能力,10+层的深度链路分析能力,提供近40种的图分析算法,具备数据2D和3D展示能力。StellarDB克服了海量关联图数据存储的难题,通过集群化存储和丰富算法,实现了传统数据库无法提供的低延时多层关系查询,目前已经用于金融、政府、交通等众多行业,用于反洗钱、风险控制、营销等多种场景。同时StellarDB还获得了多项行业权威认可:入选信通院2022大数据十大关键词“图计算平台”代表厂商;通过了中国信通院图数据库和图计算平台基础能力两项专项测评;入选著名咨询机构Gartner《中国数据库市场指南》、《工具:中国数据库管理系统供应商甄选》报告等,彰显了其产品技术领先性。如今,5G、物联网、AI等技术的发展应用让数据呈指数倍增长,为图数据库发展提供了更广阔的应用空间。顺势而为,乘势而上...
为解决AI落地难的问题,星环科技从用户需求端出发,研发了一款基于云原生架构的企业级AI能力运营平台SophonMLOps,助推AI模型落地。SophonMLOps是基于云原生架构构建的企业级AI能力运营平台,聚焦于机器学习模型全生命周期中的模型管理、模型部署、模型监控预警、模型评估和模型迭代等关键环节。通过统一纳管、统一运维、统一应用、统一监控、统一评估、统一解释,赋予企业客户易用、高效且安全可靠的AI能力运营服务,协助客户规模化管理日益增长的机器学习模型,提升模型使用效率,降低模型集成管理成本,控制模型生产环境风险。SophonMLOps针对企业AI运营的痛点,围绕企业AI模型接入、运营管理、持续训练的全生命周期,分别提供规模化集成管理、高效模型推理、模型监控预警、模型性能评估、隐私安全保障等功能,为企业的AI日常运营插上翅膀。SophonMLOps打通了AI的全生命周期,为企业的各类用户角色搭建了统一的AI协作平台。对于企业而言,MLOps规模化集成管理了多源异构的机器学习模型,并提供高效且保障隐私安全的模型推理、监控预警及性能评估服务;对用户而言,能感受到操作上的快捷,AI应用与...
双碳目标下,全国碳排放监测服务平台启动建设力争2030年前实现碳达峰、2060年前实现碳中和,我国明确提出“双碳”目标,充分彰显了在构建人类命运共同体进程中的大国担当。国家电网公司主动担当重要使命,提出“实现双碳目标,能源是主战场,电力是主力军,电网是排头兵”的战略部署,率先行动,发布《全国碳排放监测服务平台建设工作方案》。“双碳”目标的实现离不开科技支撑。《全国碳排放监测服务平台建设工作方案》指出,全国碳排放监测服务平台建设的总体目标是以电网数字化赋能和助力国家碳达峰碳中和,实现“电力看双碳”,“双碳看经济”,为国家碳排放统计核算体系建设、宏观调控政策制定、经济社会全面绿色转型发展等工作提供决策支持。平台建设需要解决以下问题:以数字化平台技术解决各省的地市、区县、重点行业碳排放数据维度不全面、核算方法不完善、碳核算体系不统一等方面的问题;强化数据应用,发挥好决策支撑作用,深挖电力大数据价值,开展“电力看环保”“电力看经济”等大数据应用。积极响应号召,星环科技打造碳排放监测服务平台解决方案星环科技作为大数据基础软件领域的代表性企业,有着高度的责任感和使命感,为响应“全国碳排放监测服务平...
星环科技致力于打造企业级大数据基础软件,具备大数据与云基础平台、分布式关系型数据库、数据开发与智能分析工具的软件产品矩阵,多年来深耕电力领域,覆盖电力产业“发-输-变-配-用”五大环节,为推动电力行业数字化转型做出了重要贡献。在国网上海电力智能配用电大数据应用系统建设项目中,基于星环科技大数据基础平台TDH构建的智能配用电大数据应用系统汇集了浦东1210平方千米的236万户的用电数据,高负荷738万千瓦,年用电量329亿度,占上海全网四分之一。集成的内外部数据源有10个,整个数据量到现在已经接近8个T了,台账的数据总量有29.14万条。在多元数据集成及大数据平台基础之上,应用系统实现了用电查询,电力地图等基础功能及用户用电行为分析,节电用电预测网架优化和错峰调度等业务应用。基于多源异构数据的关联解析,和海量用电负荷实际数据存储、索引,实现了用电查询的基础应用,包括230万用户,26000个台区,4000余中压馈线的基本台账及用电数据的快速查询,并可以进行用户用电画像、地图定位、供电范围等数据的查询,服务响应时间在三秒以内。此前,星环科技还曾凭借《星环科技电力智慧供应链智能决策平台建设方...
图数据库的应用场景非常广泛,可以应用于各个行业。以下是一些常见的应用场景:金融:在金融领域,图数据库可以帮助银行、保险公司等企业处理复杂的数据结构,支持欺诈检测、交易路由、投资组合分析等操作。社交网络:图数据库可以存储和处理社交网络中的复杂关系图谱和大量用户数据,支持好友推荐、社区发现、个性化内容推荐等操作。物流:在物流领域,图数据库可以帮助企业优化路径规划、物流运输等操作,加速发货、配送时间并提高效率。制造业:图数据库可以支持企业处理复杂的设备关系结构图,进行维修保养、设备性能分析、生产计划优化等操作。能源行业:在能源领域,图数据库可以处理复杂的电网、管道等结构图谱,并支持多种能源趋势分析和紧急事件监测等操作。电商:图数据库可以应用于电商业务中,存储和处理复杂的商品与用户之间的关系,支持个性化推荐、购物车分析、用户行为预测等操作。图数据库可以在各个领域中应用,并且在处理复杂的数据结构和大量的数据时比传统数据库具有更高的性能和效率。星环分布式图数据库StellarDB星环科技致力于打造企业级大数据基础软件,围绕数据的集成、存储、治理、建模、分析、挖掘和流通等数据全生命周期提供基础软件与...
在国产数据库产品方面,星环科技坚持自主研发与技术创新,打造了自主可控的高性能分布式数据库ArgoDB和分布式交易型数据库KunDB,以及分布式图数据库StellarDB等产品。KunDB具备较强的SQL兼容性,同时具备高可用、高并发、在线扩缩容、数据强一致性等能力,适用于操作型业务、高并发业务等场景。ArgoDB具备完整的SQL兼容性,同时具备高扩展、高可靠、多模型、存算解耦等能力,一站式满足数据仓库、实时数据仓库、数据集市、OLAP、联邦计算等场景。通过不断的打磨和对业务场景不断的落地实践,ArgoDB和KunDB已成为具有完全自主知识产权的成熟的国产数据库,能够为更多的客户提供高性能、高可靠、成熟的数据库产品服务,帮助用户应对智能数据时代海量数据的分析与探索。分布式图数据库StellarDB兼容openCypher查询语言,提供海量图数据的存储和分析能力,支持原生图存储结构,支持万亿边PB级数据存储。同时,StellarDB具备毫秒级点边查询能力,10+层的深度链路分析能力,提供近40种的图分析算法,具备数据2D和3D展示能力。星环科技StellarDB在金融、政府和社交网络等领域...